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Abstract 

Deep learning systems can perform well on some image 
recognition tasks. However, they have serious limitations, 
including requiring far more training data than humans do 
and being fooled by adversarial examples. By contrast, ana-
logical learning over relational representations tends to be 
far more data-efficient, requiring only human-like amounts 
of training data. This paper introduces an approach that 
combines automatically constructed qualitative visual repre-
sentations with analogical learning to tackle a hard comput-
er vision problem, object recognition from sketches. Results 
from the MNIST dataset and a novel dataset, the Coloring 
Book Objects dataset, are provided. Comparison to existing 
approaches indicates that analogical generalization can be 
used to identify sketched objects from these datasets with 
several orders of magnitude fewer examples than deep 
learning systems require.  

 Introduction   

Deep learning approaches have, in recent years, become 

very popular within artificial intelligence. This excitement 

is reasonable given that such systems often do provide im-

pressive results given enough training data. On the MNIST 

handwritten digit recognition task (LeCun et al., 1998), for 

example, several convolutional neural network techniques 

have achieved error rates below 0.3% (e.g. Ciresan et al., 

2011; Ciresan et al., 2012). 

 This result is remarkably close to the estimated human 

error rate of 0.2% on this dataset (LeCun et al., 1998) and 

even better than the human classification accuracies from 

two experimental trials 96.8% and 97.8% (Harding et al., 

2018). However, the approach itself is not at all human-

like. The network with the lowest error rate (Ciresan et al., 

2012), for example, was trained on 6 slightly deformed 

versions of the MNIST dataset and validated using the 

original—a total of 420,000 training examples. Eleven-
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year-old children, however, require fewer than 150 exam-

ples to learn to identify a novel symbol (Gibson, 1963). 

Adults require even fewer examples. Clearly, human learn-

ing is far more data-efficient than learning by deep neural 

networks. 

 Human learning is also more stable. Neural networks are 

easily fooled: not only do state of the art neural networks 

classify white noise as, for example, a robin with extreme-

ly high confidence (Nguyen, Yosinski, and Clune, 2015), 

but slight perturbations to correctly classified images—

called adversarial examples—can cause a neural network 

to no longer classify the image correctly (Szegedy et al., 

2013; Goodfellow, Shlens, and Szegedy, 2015; Carlini and 

Wagner, 2017). These perturbations are small enough that 

a human cannot detect them, let alone be fooled by them.  

 Furthermore, convolutional neural networks do not 

model human spatial cognition. When classifying images, 

they learn discriminative patterns that are driven by low-

level relationships between nearby pixels. On the other 

hand, vision psychologists have ample evidence for struc-

tured, relational models in human vision (Marr, 1982; 

Palmer, 1999). Perhaps computational approaches that are 

based on structured, relational information can demonstrate 

human-like learning, in terms of both number of examples 

and stability, within and across datasets. 

 Indeed, it has been demonstrated that such models can 

match human learning on tasks that involve higher order 

cognition. For example, Kandaswamy, Forbus, and 

Gentner (2014) showed that the Structure Mapping Engine 

(SME) can match the learning performance of 4-year-olds 

on a higher-order pattern matching task. Similarly, Lovett 

and Forbus (2013) showed that CogSketch (Forbus et al., 

2011), a model of human visual perception that relies on 

relational structure, can solve mental rotation and paper 

folding tasks using SME. Furthermore, these representa-

tions and analogical comparison have been used to model 

human performance on several visual problem-solving 

tasks, including Ravens’ Progressive Matrices (Lovett & 
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Forbus 2018), performing at the 75th percentile, which is 

better than most adult Americans. 

 This paper demonstrates that the combination of the hu-

man-like visual system of CogSketch and analogical gen-

eralization can also perform sketched object recognition. 

Sketch data has high variability and is relatively hard to 

collect in large quantities (Eitz, Hayes and Alexa, 2012), 

which is likely to pose problems for deep learning models. 

However, we show that our approach has reasonable 

recognition results on two different types of sketches de-

spite having only sparse data with high variability.  

 We begin by describing our approach, including data 

encoding and analogical learning. We then present results 

for experiments on object recognition in sketches using 

two datasets: the MNIST handwritten digit dataset (LeCun 

et al., 1998) and a novel dataset, the Coloring Book Ob-

jects dataset, which consists of drawings of everyday ob-

jects and animals. Finally, we look at related work and 

discuss future directions for this line of research.  

Approach 

Sketch understanding can start with digital ink or bitmaps.  

Here we start with bitmaps, to provide a closer comparison 

with vision-based approaches. Consequently, the first step 

is converting bitmaps into digital ink, and then using Cog-

Sketch to construct relational spatial representations.  The 

second step is analogical learning using the relational rep-

resentations as cases. Figure 1a shows a sketch of a fish 

from the coloring book dataset, used as an example. 

 

Bitmap to Structured Representation 
The process of converting a bitmap input into a structured 

visual representation has three stages: (1) bitmap prepro-

cessing to reduce noise, (2) object segmentation to extract 

the edges and junctions that make up the sketch, and (3) 

spatial encoding to create relational representations. All 

stages and CogSketch are introduced below. 

Bitmap Preprocessing 

Given a sketched object bitmap, we first convert the 

sketches to ink vectors for further processing. To reduce 

noise and speed up the encoding algorithm, each original 

image is resized such that the resized length is below 300 

pixels. Then, the image is blurred and filtered to black and 

white using a threshold of 70. Potrace, a software tool for 

tracing bitmaps and Zhang-Suen’s thinning algorithm 

(1984), are used to generate SVG for input into CogSketch.  

CogSketch Visual Processing 

CogSketch (Forbus et al., 2011) is an open-domain sketch 

understanding system that automatically constructs rela-

tional representations based on visual and conceptual in-

formation. CogSketch is capable of computing spatial 

properties (attributes and relations) at multiple representa-

tional levels on digital-ink sketches.  Its basic level repre-

sentations concern glyphs, which are visual objects.  

Glyphs are decomposed into edges and junctions, the most 

basic units used by CogSketch. To identify edges, ink is 

separated into segments at its discontinuities and junctions. 

At the edge level, the length, curvature, orientation, posi-

tion, and topological relations (i.e., type of junctions, such 

as T-junction) are computed by CogSketch. Edges can be 

assembled into edge-cycles that form closed shapes, which 

provide larger units out of which representations of surfac-

es can be constructed.  Edge-cycles have similar properties 

to edges and many properties of polygons, but, unlike pol-

ygons, can also have curved edges. Shared edges between 

edge-cycles also provide important clues to visual struc-

ture. These representations are motivated by psychological 

studies of human visual processing and spatial cognition, 

when available, but due to the current state of knowledge 

in cognitive science, this is somewhat under constrained. 

Object Segmentation 

Each digital-ink sketch imported into CogSketch is de-

composed into closed edge-cycles and edges. The edge-

cycles and edges are sorted and stored in a decomposition 

tree. From outside to inside of the object, each edge or 

closed edge-cycle is stored in a node of the decomposition 

tree from root to leaves, so the root node contains the con-

tour edge-cycle of the whole sketched object. Figure 1b 

shows the edge-cycle decomposition of the sketched fish 

depicted in Figure 1a. Figure 1c shows the corresponding 

 

Figure 1: (a) is a sketched fish from Coloring book dataset. (b) is the edge-cycle decomposition of (a) from CogSketch. (c) is the corre-

sponding decomposition tree. (d) is the medial-axis transform of the contour edge-cycle of (a). (e) is the segmentation result. 
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decomposition tree. Note that the inner edge-cycles corre-

spond to the eye, fins, body, and head of the fish. 

 To represent properties of edge-cycles, we draw on 

Biederman’s (1987) recognition-by-components theory, 

that people seem to encode visual input as a combination 

of simple shapes. Thus, each edge-cycle is segmented and 

described by several attributes. For example, the medial-

axis transform is found by computing the grassfire trans-

form (Blum, 1967). For each medial axis point, a pair of 

closest points on the edge-cycle is generated. The pairs are 

then iterated over, to find closures of the edge-cycle. A 

closure contains at least one concave point relative to the 

edge-cycle. A line segment is added for each closure.  

 To reduce segmentation noise, we add several con-

straints on closure detection. These are: (1) the sum of the 

angles of two closure points should be less than 3.05 radi-

ans, (2) one of the angles of two closure points should be 

less than 2.85 radians, (3) the distance between the two 

points of each closure should be less than one sixth the 

length of the perimeter of the edge cycle, (4) only one clo-

sure with smallest angle sum is detected in a certain range 

(i.e. 1/20
th

 the length of contour) and (5) all segments 

whose area is below a preset threshold and which do not 

connect more than one other segments are dropped. These 

parameters were all determined experimentally on pilot 

data. Figure 1d shows the medial-axis transform of the 

Figure 1a contour. Figure 1e shows the edge-cycle seg-

mentation of the Figure 1a contour. Notice that each edge-

cycle in the decomposition tree (Figure 1c) is segmented 

into several pieces for later encoding. There are five clo-

sures detected in Figure 1e. 

Spatial Encoding 

After decomposition and segmentation are completed, the 

spatial relations between edge-cycles and segments are 

encoded. Each edge-cycle is described as a combination of 

the attributes of its segments, as well as the positional rela-

tions and connection relations between segments.  

 Attribute selection for segments and edge-cycles poses a 

tricky trade-off: the more attributes described, the more 

details of the segment are available—and the more training 

examples are needed to learn useful generalizations in ana-

logical learning (see below). To address this trade-off, we 

use greedy search to select five attributes with the best dis-

crimination out of eight possible attributes. The selection 

of the eight-attribute scheme is based on visual analysis of 

the datasets and inspired by Geons (Biederman, 1987). All 

attributes are converted to a qualitative size description 

(i.e., small, medium and large) according to preset thresh-

olds. Table 1 describes the details of the eight attributes. 

During encoding, the isa predicate in Cyc is used to ex-

press attributes, for example, 

(isa EdgeCycle-Seg-60 HighSolidity) 

 The connection relations between segments are de-

scribed via the segmentsConnectToViaEdge predicate. The 

first argument of this predicate is the connecting edge of 

first edge-cycle and the second argument is the connecting 

edge of second edge-cycle. For example: 

(segmentsConnectToViaEdge                                                                                                                                                              

    (rightOfEdgeOfCycleFn EdgeCycle-Seg-60)  

    (leftOfEdgeOfCycleFn EdgeCycle-Seg-65)) 

 The positional relations above and leftOf are used to 

describe the relations between edge-cycles of the same 

degree in the decomposition tree. RCC8 relations (Randell 

et al., 1992) are used to describe the containing relations 

between the segments of edge-cycles and their children. 

 The set of entities, attributes, and relations computed for 

a sketched object are combined to form a case, for use in 

analogical learning and classification, as described next.  

Analogical Learning 
Human learning is broad and general, while being data-

efficient.  An important advantage of our approach is that 

we are using off-the-shelf analogical learning models, 

without modification, for this task.  The analogical pro-

cessing models introduced below have considerable psy-

chological evidence supporting them and have been used 

for building AI performance systems for a variety of tasks 

(Forbus & Hinrichs, 2017). 

Attribute Description 

Eccentricity The principal axis ratio computed from the covari-

ance matrix of all polygon contour points. 

Compactness The ratio between the polygon area and estimated 

cycle area based on perimeter of polygon. 

Circularity The ratio between the standard deviation and mean 

of radial-distance between polygon contour points 
and polygon centroid. 

Ellipsity The ratio between the standard deviation and mean 

of d-primes between polygon contour points and 
polygon centroid. 

Convexity The ratio between the perimeter of polygon and the 

perimeter of its convex hull. 

Solidity The ratio between the area of polygon and the area 
of its convex hull. 

Orientation The orientation of the polygon main axis: vertical, 

horizontal, and angular. 

Area Size The relative area size of the polygon with respect to 
other polygons in one segmentation. 

Table 1: Descriptions of the eight encoding attributes 
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Structure Mapping Engine (SME) 

The Structure Mapping Engine (Forbus et al., 2017) is a 

computational model of analogical matching and similarity 

based on Structure Mapping Theory (Gentner, 1983). Giv-

en two cases of structured, relational representations, 

called a base and a target, SME computes one (or up to 

three) mappings between them. A mapping includes a set 

of correspondences that align entities and relations in the 

base and target, a similarity score that indicates how simi-

lar the base and the target are, and candidate inferences, 

which are projections of unaligned structure from one case 

to the other, based on the correspondences.  Here SME is 

used both as a similarity metric and as a means of combin-

ing cases into generalizations, as described below. 

MAC/FAC 

The MAC/FAC algorithm (Forbus, Gentner, and Law, 

1995) is a model of analogical retrieval. Given a probe 

case and a case library, it retrieves up to three examples 

from the case library that are the closest match (i.e., have 

the highest similarity score) to the probe. Cases in the case 

library are structured, relational representations.  When a 

case is stored, a content vector representation is automati-

cally computed for it and stored as well.  Each dimension 

in a content vector represents a predicate, and its strength 

corresponds to the number of occurrences of it in that 

case
1
.  The dot product of two content vectors provides a 

rough estimate of what SME would compute for a similari-

ty score for the corresponding structured representations, 

which is used as a pre-filter.  The MAC stage is a 

map/reduce operation, where dot products for a content 

vector of the probe is computed in parallel with the vectors 

for all items in the case library, with the top three scoring 

cases passed on to the FAC stage as output.  The FAC 

stage also is map/reduce but using SME on the probe and 

the retrieved cases, keeping the best (or up to all three, if 

they are very close to the top).  The MAC stage provides 

scalability, since vector dot products are quite cheap.  The 

FAC stage provides the sensitivity to structure that human 

retrieval demonstrates, probably because structural similar-

ity leads to useful conclusions.  Each case returned from 

FAC is called a reminding. We use MAC/FAC for retrieval 

during both training and testing, as described below. Only 

the top reminding is used. 

SAGE 

The Sequential Analogical Generalization Engine (SAGE; 

McLure et al., 2015a) is a model of analogical generaliza-

tion. Each concept to be learned by analogy is represented 

by a generalization pool, which potentially holds both gen-

eralizations and outlying examples. The generalizations 

and examples in a concept’s generalization pool represent 

                                                 
1 In a large knowledge base like OpenCyc, this leads to very sparse vec-
tors, since there are on order of 10-100 non-zero dimensions out of rough-
ly 105. 

alternative models of the concept.  There are two basic 

operations: adding an example and classifying an example.   

 Here we assume that each training example is labeled 

and added to a single SAGE generalization pool. The ex-

ample is merged to the most similar case retrieved from the 

pool via MAC/FAC. If nothing is retrieved, or the similari-

ty score associated with the top retrieval is below the as-

similation threshold, the training example is added to the 

generalization pool as a new outlier.  If the reminding is 

another example, then a new generalization is formed.  

This is done by replacing non-identical aligned entities 

with skolems, a new unique symbol, and taking the union 

of the statements involved.  A probability is calculated for 

each statement—1.0 if it is aligned in the match, and 0.5 

otherwise. A statement’s probability reflects the frequency 

with which the examples assimilated into the generaliza-

tion contained an expression that mapped to that statement.  

If the reminding is a generalization, then that generaliza-

tion is updated, by adding new statements, perhaps new 

skolems, and updating the probabilities for each statement 

(statements whose probability gets too low are eventually 

deleted, based on another threshold.).  Thus, over time a 

generalization pool can have a set of generalizations and 

outliers.  Each generalization can be thought of as a com-

ponent of a disjunctive model for the concept.  In this sense 

SAGE is like k-means with outliers, except that there is no 

a priori determination of the number of clusters; the algo-

rithm derives that from the data. 

 Classification is performed using MAC/FAC, where the 

probe is the new example to be classified and the case li-

brary is the union of generalization pools representing the 

possible classifications. The generalization pool from 

which the best reminding comes is used as the label for 

that example. 

Experiments 

We test our approach on two very different sketch datasets, 

using a relatively small number of training examples.   

Experiment 1: MNIST 

The MNIST handwritten digit dataset (LeCun et al. 1998) 

is constructed from NIST’s Special Database 3 and Special 

Database 1. It consists of 60,000 training images and 

10,000 testing images of handwritten digits. Each image is 

a 20x20 pixel bitmap centered on a 28x28 pixel field. We 

use randomly-selected subsets of 10, 100, and 500 images 

for training and the full test set. 

Method 

All examples were converted into relational representations 

using the CogSketch pipeline described above. A SAGE 

assimilation threshold of 0.9 was used in all experiments. 

For each training set size, three random subsets were se-
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lected, and the system was trained on each subset and test-

ed on the full test set. 

Results 

See Figure 2 for the average accuracy per digit and Table 2 

for overall accuracy and standard deviation information for 

each training set size compared with the LeNet-5 (LeCun 

et al., 1998). While the LeNet-5 also performed well using 

less than the full MNIST training dataset, note that it 

learned over 20 iterations. Our approach saw each example 

once.  

Experiment 2: Sketched Object Recognition 

Dataset 

We created the Coloring Book Objects dataset
2
 (hereafter 

CBO) by collecting images from a collection of open-

license coloring books. It contains 10 bitmap examples for 

each of 19 different categories of animals and everyday 

objects. Each image is a roughly 900x550 pixel field. The 

images in each category have very high variety including 

style (e.g. realistic vs. cartoon) and view (e.g. profile vs. 

frontal). Figure 4 shows some examples from the CBO 

dataset. We chose objects and animals depicted in coloring 

books because they are designed to be recognizable by 

children, who have had little experience with the world. 

                                                 
2  The Coloring Book Objects dataset and CogSketch sketches can be 
found at http://www.qrg.northwestern.edu/Resources/cbo/index.html. 

But as Figure 3 illustrates, they provide significant varia-

bility nonetheless. 

Method 

We use leave-one-out cross-validation to perform sketched 

object recognition. In each round, nine images are used as 

training data and one image is used for testing. As some 

animals or objects have texture or noise, only closed edge-

cycles as perimeters are encoded into representations. Each 

animal or everyday object category has a generalization 

pool. A SAGE assimilation threshold of 0.9 assimilation is 

used and average accuracy is computed.  

 As a baseline, we compare to results of the CNN model 

LeNet-5 (LeCun et al., 1998) trained using the same leave-

one-out cross-validation technique. The model has 2 con-

volution layers with a ReLU activation followed by max-

pooling layers and a fully connected layer with softmax. 

This CNN model performed above 99% accuracy on the 

full MNIST training set. 

 

Methods  Training Size 

(per digit) 

Overall Accuracy 

Our Approach  10 54.9% 

Our Approach 100 76.24% 

Our Approach 500 85.03% 

LeNet-5 1500 x 20 iter 98.3% 

LeNet-5 6000 x 20 iter 99.2% 

Table 2: Accuracy and standard deviation per training size 

 

Figure 3: A subset of examples in CBO 

 

Figure 2: Average accuracy per digit 

Figure 4: The accuracy (%) for each category 

1340



Results 

Figure 4 shows the sketched object recognition accuracy 

for each category using our approach. Table 3 shows the 

overall accuracy and standard deviation of each model. 

Our approach achieves 29.47% accuracy, which is signifi-

cantly above chance. The CNN model only achieves 5.26% 

accuracy, which does not differ from chance.  

Discussion 

These results indicate that CogSketch plus analogical gen-

eralization can surpass 85% accuracy on the MNIST da-

taset using only 500 examples per concept, and reaches 

76.24% with just 100 examples per concept. We note that 

with LeNet-5 we were not able to get better than chance 

performance until the system was given 1,000 examples 

per concept on standard MNIST inputs. We did not get 

very competitive results with the state-of-art because the 

MNIST dataset is a highly down-sampled, to fit the con-

straints of CNNs at the time, which introduces significant 

amounts of noise. Even though the preprocessing stage 

removes some noise, the object segmentation stage and the 

attributes CogSketch computations for segment edge-

cycles still have bias or errors. Thus, some images have 

similar segmentations to other digits. For example, Figure 

5 shows the confusion matrix from when our system was 

trained on 100 examples per digit. A frequent failure mode 

is the digit two being mistaken for a five, and vice versa. 

This is an example of the segmentation problem—both 

twos and fives are sometimes interpreted as two segments 

(essentially a top curve and a bottom curve), connected in 

the middle.  

 As mentioned above, attribute selection is a tricky ques-

tion that needs further exploration. When segments are 

similar, the selected attributes may lose information. For 

example, Figure 5 shows that some nines are recognized as 

fours. This is because the computed attributes of the edge-

cycles in these images sometimes cannot distinguish be-

tween the upper triangle of a four and the upper circle of a 

nine—both are closed edge cycles. Our results might be 

better with the original NIST dataset, but we have not yet 

explored this option.  

 With the Coloring Book Objects dataset, which has ex-

tremely high variability, even with only 9 training exam-

ples as training data, our system has significantly better 

accuracy than chance, whereas a CNN model performs at 

only chance (Table 3). The variability in this dataset is 

extreme: Animals sometimes have hats, for example. Fig-

ure 6 shows the confusion matrix for this dataset. It shows 

that our system has high accuracy on simple objects such 

as mittens and pencils but cannot distinguish butterflies 

and ice-cream—likely because they have complicated tex-

ture or shapes. Being able to recursively decompose recog-

nition might be necessary to get very high accuracy on this 

dataset.   

 While our results do not yet approach the state of the art 

on the MNIST dataset and the performance on the Color-

ing Book Object dataset has plenty of room for improve-

ment, these results already support the hypothesis that 

structured relational representations and off-the-shelf ana-

logical learning models can be used to produce systems 

that learn to recognize object from sketches in more hu-

Methods Overall Accuracy 

(%) 

Standard 

Deviation  

Our approach 29.47% 2.72% 

LeNet-5 5.26% 1.19% 

Table 3: Overall Accuracy and standard deviation results 

Figure 5: Confusion matrix of MNIST (100 training samples) 

Figure 6: Confusion matrix of CBO classification results 
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man-like ways, with far better data efficiency than deep 

learning models.   

Related Work 

Here we discuss four existing approaches on learning 

sketched objects. We highlight where these approaches 

overlap with ours, and how they differ.  

 Eitz, Hays and Alexa (2012) created a large dataset of 

human object sketches containing 80 sketch bitmaps per 

category from 250 different categories, called the Berlin 

dataset. They represented sketches using local feature vec-

tors that encode distributions of image properties. Specifi-

cally, the distribution of line orientation within a small 

local region of a sketch is encoded. With the local feature 

vectors, they partitioned the vectors into k disjunct clusters 

via k-means clustering. A frequency histogram of the k 

clusters is generated as the feature representation of 

sketches. With the frequency histograms, KNN and SVM 

were tested on the whole dataset. KNN could achieve 

around 25% accuracy with 10 training examples and 43% 

accuracy with 80 training examples. SVM could reach 

31% accuracy with 10 training examples and 55% accura-

cy with 80 training examples. Prior work with analogical 

generalization on this dataset (McLure et al., 2015b) 

achieved similar levels of performance on a subset of that 

database by introducing an Ising model to handle textures 

over edge-cycles.  The integration of Biederman’s recogni-

tion-by-components model with CogSketch encoding, in-

troduced here, could be combined with texture encoding to 

improve performance on this dataset as well. 

 Seddati, Dupont, and Mahmoudi (2015) presented a 

deep convolution neural networks (ConvNets) model for 

sketch recognition, which they tested on the Berlin dataset. 

The model contains 15 layers, which are a combination of 

convolution layers with ReLU followed by Maxpool lay-

ers. Each sketch is rescaled from 1x1111x1111 to 

1x180x180 and the black and white pixels are reversed. 

During each iteration of training, 64 samples from 64 dif-

ferent sketches categories were randomly selected. With 

0.1 learning rate and a momentum equal to 0.9, the model 

could reach 75.42% average accuracy after 80 epochs 

(epoch = 13056 examples presented to the ConvNet).  

While this accuracy on that corpus is impressive, it uses far 

more data than people require on such tasks.  

 On the other hand, Lake et al. (2015) used Bayesian 

program learning (BPL) to learn to recognize handwritten 

symbols and generate new, similar examples after seeing 

only one example of each symbol, using their framework. 

Symbols were represented as probabilistic programs—

sequences of movements based on pen strokes. Having 

seen a single such example of a symbol, the model was 

able to match human learning on a similar symbol match-

ing task. It was also able to generate similar images that 

humans matched to the original with high fidelity.  Unfor-

tunately, it is well-known in handwriting recognition that 

stroke data is easier to recognize than bitmap data, so we 

do not see it as applicable here.   

 Dai and Zhou (2017) used an approach that combined 

logical abduction and statistical induction (LASIN) to learn 

encodings for hand-written symbols from several datasets. 

For each dataset, LASIN learned dictionaries of primitive 

concepts combined with background knowledge, such as 

strokes or ink clusters, that were then used for encoding the 

symbols. The utility of the learned dictionaries was tested 

using support vector machines (SVM) with a linear kernel. 

MNIST was one of several datasets used for testing. With a 

dictionary of 200 strokes, an SVM reached 97% accuracy 

on 5-fold cross-validation of a randomly selected subset of 

1000 MNIST training examples (100 per digit). A diction-

ary of 20 strokes achieved approximately 91% accuracy on 

this task.  While our approach differs in terms of its encod-

ing strategy and learning method, Dai and Zhou’s results 

provide evidence that thousands of training examples are 

not necessary for robust learning. Rather, it is important to 

determine appropriate representations for the forms being 

learned. We argue that the representations used by humans 

are a good place to start. 

Conclusions and Future Work 

We have shown that analogical learning over relational 

representations is a viable and promising path for sketch 

recognition. Our approach is based on a human-like encod-

ing scheme and achieves solid results with a very small 

number of training examples on different types of sketches. 

We note that deep learning systems require from 60,000 

examples (Ciresan et al. 2011) to 420,000 examples (Cire-

san et al. 2012) over hundreds of epochs to achieve the 

performance that they report on MNIST.  Moreover, the 

Coloring Book Objects dataset illustrates that deep learn-

ing models have poor performance with small numbers of 

training examples, whereas analogical generalization, de-

spite the high variability of the examples, performs much 

better.   

 While the data efficiency of analogical generalization is 

already very encouraging, we plan several lines of future 

work to improve it further.  First, we plan to explore dy-

namic attribute selection, using statistics gleaned from 

SAGE to control the choice of attributes in subsequent 

encoding.  Second, we plan to integrate texture representa-

tions, as per McLure et al (2015b).  Finally, we plan on 

using near-miss learning (McLure et al. 2015a), which 

provides additional discrimination to analogical generaliza-

tion and has been beneficial in other datasets. 
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