
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Automatic Construction of Parallel Portfolios via Explicit Instance Grouping∗

Shengcai Liu,1 Ke Tang,2† Xin Yao2

1 School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China
2 University Key Laboratory of Evolving Intelligent Systems of Guangdong Province, Department of

Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
liuscyyf@mail.ustc.edu.cn, {tangk3, xiny}@sustc.edu.cn

Abstract

Exploiting parallelism is becoming more and more important
in designing efficient solvers for computationally hard prob-
lems. However, manually building parallel solvers typically
requires considerable domain knowledge and plenty of hu-
man effort. As an alternative, automatic construction of paral-
lel portfolios (ACPP) aims at automatically building effective
parallel portfolios based on a given problem instance set and
a given rich configuration space. One promising way to solve
the ACPP problem is to explicitly group the instances into dif-
ferent subsets and promote a component solver to handle each
of them. This paper investigates solving ACPP from this per-
spective, and especially studies how to obtain a good instance
grouping. The experimental results on two widely studied
problem domains, the boolean satisfiability problems (SAT)
and the traveling salesman problems (TSP), showed that the
parallel portfolios constructed by the proposed method could
achieve consistently superior performances to the ones con-
structed by the state-of-the-art ACPP methods, and could
even rival sophisticated hand-designed parallel solvers.

Introduction
Over the last decade, due to the great development and the
wide application of parallel computing architectures (e.g.,
multi-core CPUs and GPUs) (Asanovic et al. 2009), the
available computing power has been dramatically improved.
As a consequence, exploiting parallelism is now becoming
more and more important in designing efficient solvers for
computationally hard problems. Indeed, in some fundamen-
tal problem domains such as SAT, the mixed integer lin-
ear programming (MILP), and black-box continuous opti-
mization, parallel solvers (Biere 2016; Ralphs et al. 2018;
Tang et al. 2014) have contributed a lot to the state of the
art. However, despite the notable success achieved, the man-
ual design of parallel solvers still remains a laborious work.

∗This work was supported by the National Key Re-
search and Development Program of China (Grant No.
2017YFB1003102), the Natural Science Foundation of China
(Grant Nos. 61672478 and 61806090), Shenzhen Peacock Plan
(Grant No. KQTD2016112514355531), and the Program for
University Key Laboratory of Guangdong Province(Grant No.
2017KSYS008).

†Corresponding author
Copyright c⃝ 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Typically, this requires almost redesign of existing sequen-
tial solvers to involve new mechanisms to handle specific
tasks emerged in parallel solving, such as problem decompo-
sition, information sharing and cooperative solving, which
is non-trivial as identified as the challenge of starting from
scratch in (Hamadi and Wintersteiger 2013).

Recently, (Lindauer et al. 2017) studied generic methods
for building parallel solvers from existing sequential solvers.
The work adopts a simple approach to parallelize a set of se-
quential solvers — running them independently in parallel
on a given problem instance until the first of them solves it.
Such parallel solvers are called parallel portfolios (Gomes
and Selman 2001). To determine the solvers in the portfo-
lio (called component solvers), a specific problem dubbed
automatic construction of parallel portfolios (ACPP) needs
to be addressed (Lindauer et al. 2017). More precisely, in
ACPP all component solvers are selected from a configura-
tion space, with the goal that the performance of the result-
ing portfolio on a given problem instance set is optimized.
The configuration space is induced by a set of parameterized
sequential solvers (called base solvers). As illustrated in Fig-
ure 1, if there is only one base solver, the configuration space
is exactly the solver’s parameter space; otherwise the config-
uration space takes each base solver’s parameter space as a
subspace, and would include an additional top-level param-
eter to decide which subspace (base solver) would be used.
The problem instances in the instance set (called training set)
are given by the portfolio user, and should be representative
of the target use cases to which the portfolio is expected to be
applied. More formally, the ACPP problem could be stated
as follow. Given a set of base solvers B and a training set
I , let C denote the configuration space induced by B. The
parallel portfolio P with k component solvers is denoted as
a k-tuple, i.e., P = (c1, ..., ck), in which ci represents the i-
th component solver of P and is an individual configuration
selected from C, i.e., ci ∈ C. The goal of ACPP is to find
c1, ..., ck from C, such that the performance of P on I ac-
cording to a given performance metric m (e.g., computation
time or solution quality) is optimized.

It is conceivable that any parallel portfolio’s effective-
ness relies heavily on the complementarity among its com-
ponent solvers. In other words, different component solvers
of a high-quality parallel portfolio should be good at solv-
ing different kinds of problem instances. Hence, in the con-

1560

(a) Sinlge base solver (b) Multi base solvers

Figure 1: Configuration space in ACPP with a single base
solver (s1 in (a)) and multiple base solvers (s1, s2, ... in (b)).
Each rounded rectangle represents the parameter space of
the corresponding base solver.

text of ACPP, the premise for obtaining such a portfolio is
that C contains complementary configurations. In the litera-
ture it has been widely reported (Rice 1976; Xu et al. 2008;
Burke et al. 2013; Karafotias, Hoogendoorn, and Eiben
2015) that in many problem domains no single dominant
solver exists but different solvers, or different configurations
of the same solver, perform best on different problem in-
stances. Thus it is suggested that the base solvers used in
ACPP should be selected from those sequential solvers that
are sufficiently different from each other and meanwhile are
highly parameterized with rich configuration spaces. Indeed,
as shown in (Lindauer et al. 2017), the performance of the
output portfolio would get improved as more diverse solvers
are included in the base solver set B.

However, the ACPP problem is far from being satisfac-
torily solved. Currently, there are three key ACPP meth-
ods, namely GLOBAL, PARHYDRA and CLUSTERING,
in which GLOBAL and PARHYDRA are both proposed by
(Lindauer et al. 2017) while CLUSTERING is adapted by
(Lindauer et al. 2017) from ISAC (Kadioglu et al. 2010)
for comparison. These methods adopt different strategies to
tackle the ACPP problem. GLOBAL considers it as an algo-
rithm configuration (AC) problem by treating P as a param-
eterized solver. By this means the ACPP problem could be
directly solved by using the AC procedures existing in the
literature. However, the key issue of this method is that its
scalability is limited since the size of the configuration space
of P , i.e., |C|k, increases exponentially with the number of
the component solvers, i.e., k.

Instead of configuring all component solvers simultane-
ously (as GLOBAL does), PARHYDRA configures com-
ponent solvers for P one at a time. More specifically,
starting from an empty portfolio, PARHYDRA proceeds
iteratively and in the i-th iteration it runs an AC pro-
cedure to configure ci to add to the current portfolio,
i.e., (c1, ..., ci−1), such that the performance of the result-
ing portfolio, i.e., (c1, ..., ci−1, ci), is optimized. The main
drawback of PARHYDRA is that its intrinsic greedy mech-
anism may cause stagnation in local optima. To alleviate
this problem, a modification was made to PARHYDRA
by allowing simultaneously configuring several component
solvers in each iteration. The resulting method is named
PARHYDRAb (Lindauer et al. 2017), where b (b ≥ 1) rep-
resents the number of the component solvers configured in

each iteration. PARHYDRA and GLOBAL could be both
seen as special cases of PARHYDRAb with b = 1 and
b = k, respectively. It is conceivable that the choice of b
is very important for PARHYDRAb since the tendency to
stagnate in local optima would increase as b gets smaller,
while the size of the configuration space involved in each
configuration task in PARHYDRAb, i.e., |C|b, would grow
exponentially as b gets larger. However, in general the best
value of b may vary across different scenarios, and for a spe-
cific scenario it is very hard to determine a good choice of b
in advance.

The third method CLUSTERING tackles the ACPP prob-
lem via explicit instance grouping. That is, it clusters the
problem instances represented in a normalized instance fea-
ture space into k subsets and then independently runs an
AC procedure on each subset to obtain a component solver.
Similar to PARHYDRAb, CLUSTERING also has an im-
portant design choice that is hard to determine in advance.
Specifically, the clustering result has great influence on the
performance of the final parallel portfolio. However, there
exists different normalization approaches that can be used
here, and different of them can result in different instance
clusters. Generally the appropriate choice of the normaliza-
tion approach may vary across different instance sets, and
the accurate assessment of the cluster quality is not possible
before the portfolio is constructed completely.

From a methodological perspective, ACPP methods based
on explicit instance grouping seek to achieve the comple-
mentarity among the component solvers by promoting each
of them to handle different subsets of the problem instances.
Thus for these methods the quality of the instance group-
ing is crucial. A good instance grouping should meet at least
one requirement: Instances that are grouped together should
be similar in the sense that in C there exist same good con-
figurations for them. Unfortunately, such information is un-
known in advance, and thus CLUSTERING uses distances
in the feature space to approximate it, which however has
been experiementally shown to be ineffective (Lindauer et
al. 2017). On the other hand, during the running process of
an ACPP method, typically many AC procedure runs would
be executed to configure the component solvers. In each AC
procedure run many different configurations would be tested
on different problem instances; thus a large amount of run-
data would be generated, which can be used to help charac-
terize the similarity between the problem instances.

Based on the above considerations, in this paper, we pro-
pose a new ACPP method named parallel configuration with
instance transfer (PCIT), which is based on explicit instance
grouping. The novel feature of PCIT is its dynamic instance
transfer mechanism. Unlike CLUSTERING, during the con-
struction process PCIT would dynamically adjust the in-
stance grouping by transferring instances between different
subsets. The instance transfer is conducted according to the
gathered rundata, with the goal that the instances sharing
the same high-quality configurations in C would be grouped
together, such that the complementarity between the compo-
nent solvers configured on different subsets would be favor-
ably enhanced. The experimental results showed that PCIT
could construct much better portfolios than existing ACPP

1561

methods, and these portfolios could even achieve the perfor-
mance level of parallel solvers designed by human experts.

Related Work
Simultaneously utilizing several complementary solvers is
a simple yet effective strategy for solving computationally
hard problems. Besides parallel portfolios, this idea has
been realized in other forms. Among them the notable ones
include sequential portfolios (Rice 1976; Xu et al. 2008;
Kotthoff 2014) which try to select the best solvers for ev-
ery single problem instance before solving it, and adap-
tive solvers such as adaptive parameter control (Karafo-
tias, Hoogendoorn, and Eiben 2015), reactive search (Bat-
titi, Brunato, and Mascia 2008) and hyper-heuristics (Burke
et al. 2013) which seek to dynamically determine the best
solver setting while solving a problem instance. In principle,
all these methods need to involve some mechanisms (e.g.,
selection or scheduling) to appropriately allocate computa-
tional resource to different solvers, while parallel portfolios
do not necessarily require any extra resource allocation since
each component solver is simply assigned with the same
amount of resource.

ACPP is closely related to the area of automatic algo-
rithm configuration, in which the task is to automatically
identify a high-quality configuration from a configuration
space. In the last few years, several high-performance AC
methods (which could handle considerable large configura-
tion spaces) such as ParamILS (Hutter et al. 2009), GGA
(Ansótegui, Sellmann, and Tierney 2009), irace (López-
Ibáñez et al. 2016) and SMAC (Hutter, Hoos, and Leyton-
Brown 2011) have been proposed. As a consequence, re-
cently there has been research interest in utilizing these
AC procedures to automatically identify useful portfolios
of configurations from large configuration spaces. Such at-
tempts were first done in constructing sequential portfolios.
The representative methods for solving this problem are Hy-
dra (Xu, Hoos, and Leyton-Brown 2010) and ISAC (Ka-
dioglu et al. 2010). The basic ideas of these methods were
then adapted to be used in constructing parallel portfolios
(i.e., ACPP), thus resulting in PARHYDRA and CLUSTER-
ING (Lindauer et al. 2017) (see the first section). The main
differences between the automatic construction of sequen-
tial portfolios and of parallel portfolios lie in two aspects:
1) The portfolio size k of parallel portfolios is limited (of-
ten by the number of processor cores available), while for
sequential portfolios in principle it is unlimited since only
some component solvers will be selected to run; 2) Both
approaches are bounded by the performance of the portfo-
lio’s virtual best solver (VBS). However, parallel portfolios
run the whole portfolio in parallel and thus achieve nearly
the same performance of the portfolio’s VBS. For sequential
portfolios the performance gaps could be larger since the al-
gorithm selectors could make mistakes.

Proposed Method
The basic idea of PCIT is simple. Although it is hard to ob-
tain a good instance grouping at one stroke, it is possible
to gradually improve an instance grouping. PCIT adopts a

random initial grouping; that is, the instances are evenly and
randomly divided into k subsets. The quality of this group-
ing could be poor since there is no guidance involved in the
grouping procedure. Consider a simple example where in-
stance set I = {ins1, ins2, ins3, ins4}, configuration space
C = {θ1, θ2}, ins1, ins2 shares the high-quality config-
uration θ1 and ins3, ins4 shares the high-quality configu-
ration θ2. Obviously the appropriate grouping for this ex-
ample is {ins1, ins2}{ins3, ins4}, which would lead the
AC procedure to output θ1 and θ2 on the first and the sec-
ond subset respectively, thus producing the optimal portfo-
lio P = {θ1, θ2}. Random grouping strategy may fail on this
example if it happens to split I as {ins1, ins3}{ins2, ins4}
or {ins1, ins4}{ins2, ins3}, which could cause the AC pro-
cedure to output the same component solver, i.e., (θ1, θ1) or
(θ2, θ2), on both subsets.

The key point here is that if the problem instances grouped
together do not share the same high-quality configurations,
then the cooperation between the component solvers config-
ured on these subsets would be much affected, thus limiting
the quality of the final output parallel portfolio. To handle
this issue, PCIT employs an instance transfer mechanism
to improve the grouping during the construction process
by transferring instances between different subsets. More
specifically, as the configuration process of a component
solver on a subset proceeds, if the AC procedure cannot
manage to find a common high-performance configuration
for every instance in the subset but only some of them, then
it can be inferred that these intractable instances may corre-
spond to different high-quality configurations (in the config-
uration space C) from others. It is therefore better to trans-
fer these instances to other subsets that are more suitable to
them.

PCIT conducts the instance transfer with the help of in-
cumbent configurations (i.e., the best configurations found
by the AC procedure). In each subset, the instances which
cannot be solved satisfactorily by the corresponding incum-
bent are identified as the ones that need to be transferred,
and the target subset of each transferred instance is deter-
mined according to how well the incumbent on the candi-
date subset could perform on the instance. In essence, the
incumbent on a subset can be seen as a common special
characteristic of those “similar” instances (in the sense they
share the same high-quality configurations) within the sub-
set, and PCIT uses it to identify those “dissimilar” instances
and find better subsets for them. In each subset, the perfor-
mance of the incumbent on each instance could be obtained
from the rundata collected from the AC procedure runs.
However, while determining the target subsets for the trans-
ferred instances, how well the incumbents on the candidate
subsets would perform on the transferred instances are un-
known. One way to obtain these performances is to actually
test these incumbents on the transferred instances, which
however would introduce considerable additional compu-
tational costs. To avoid this, PCIT builds empirical perfor-
mance models (EPM) (Hutter et al. 2014) based on the col-
lected rundata to predict these performances.

1562

Algorithm Framework
The pseudo-code of PCIT is given in Algorithm 1. The main
difference between PCIT and the existing methods (e.g.,
GLOBAL and CLUSTERING) is that in PCIT the portfo-
lio construction process is divided into n (n is set to 4 in this
paper) sequential phases (lines 3-13 in Algorithm 1). The
first (n − 1) phases serve as adjustment phases, in each of
which the instance grouping is adjusted (line 12) once the
AC procedures for all component solvers (lines 9-11) finish.
The last phase is the construction phase in which the com-
ponent solvers of the final portfolio are configured on the
obtained subsets with a large amount of time. In fact, the
time consumed for the configuration processes in the last
phase amounts to the sum of the time consumed for the con-
figuration processes in the first (n − 1) phases (lines 4-8).
One thing which is not detailed in Algorithm 1 for brevity
is that, on each subset, to keep the continuity of the config-
uration processes across successive phases, the incumbent
configuration obtained in the previous phase is always used
to initialize the AC procedure in the next phase.

Algorithm 1 PCIT

Input: base solvers B with configuration space C; number
of component solvers k; instance set I; performance metric
m; algorithm configuration procedure AC; number of
independent runs of portfolio construction rpc; time budget
for configuration process tc; time budget for validation
process tv; number of stages n; features F for all instances
in I
Output: parallel portfolio (c1, .., ck)

1: for i := 1...rpc do
2: Randomly and evenly split I into I1, ..., Ik
3: for phase := 1...n do
4: if phase = n then
5: t← tc

2
6: else
7: t← tc

2(n−1)

8: end if
9: for j := 1...k do

10: Obtain component solver cj by running AC on
configuration space C on Ij using m for time t

11: end for
12: I1, ...Ik ← InsTransfer(I1, ...Ik, c1, ...ck, F)
13: end for
14: Pi ← (c1, ..., ck)
15: end for
16: Validate each of P1, ..., Prpc on I using m for time tv
17: Let P be the portfolio which achieved the best valida-

tion performance
18: return P

Another important difference between PCIT and the exist-
ing methods lies in the way of obtaining reliable outputs. For
existing methods, the uncertainty of the portfolio construc-
tion results mainly comes from the randomness of the output
of the AC procedure (especially when the base solvers are
not deterministic). Thus for each specific algorithm configu-

ration task, typically they conduct multiple independent runs
of the AC procedure (with different random seeds), and then
validate the configurations produced by these runs to deter-
mine the output one. For PCIT, in addition to the randomness
mentioned above, a greater source of uncertainty is the ran-
domness of the initial instance grouping results. One way to
handle both of them is to perform multiple runs of portfolio
construction (with different initial instance groupings), and
in each construction process the AC procedure is also run
for multiple times for each configuration task. In this paper,
to keep the design simple, we only allow repeated runs of
portfolio construction and rely on the validation to ensure
the reliability of the final output (lines 16-18).

Similar to PARHYDRA and CLUSTERING, PCIT con-
figures each component solver independently; thus the
needed time for construction is linear to the number of com-
ponent solvers. Moreover, PCIT can be easily performed in
parallel. First, different portfolio construction runs (lines 1-
15) can be executed in parallel, and second, during each con-
struction run the configuration processes for different com-
ponent solvers (lines 9-11) can also be executed in parallel.

Instance Transfer
As shown in Algorithm 2, the instance transfer procedure
first builds an empirical performance model (EPM) based
on the rundata collected from all the previous AC proce-
dure runs (line 1). More specifically, the rundata is actu-
ally records of runs of different solver configurations on dif-
ferent instances, and each run can be represented by a 3-
tuple, i.e., (config, ins, result). The exact implementation
of the EPM here is the same as the one in SMAC (Hutter,
Hoos, and Leyton-Brown 2011), which is a random forest
that takes as input a solver configuration config and a prob-
lem instance ins (represented by a feature vector), and pre-
dicts performance of config on ins. The performances of
the incumbent configuration on the instances in each subset
are obtained by querying the corresponding runs in rundata
1 (line 2). After collecting all of them, the median value is
used to identify the instances that will be transferred (with-
out loss of generality, we assume a smaller value is better for
m) (line 3). Then these instances are examined one by one in
a random order. Specifically, after an instance is selected to
be transferred (lines 7-8), first the built EPM is used to pre-
dict the performance of each incumbent on it (lines 9-10);
then the target subset of this instance is determined (lines
11-17) according to three rules (line 12): 1) Both the source
subset and the target subset will not violate the constraints
on the subset size after the instance is transferred; 2) The
predicted performance on the instance is not worse on the
target subset; 3) The target subset is the one with the best
predicted performance among the ones satisfying 1) and 2).
The subset size constraints, i.e., the lower bound L and the
upper bound U in Algorithm 2, are set to prevent the occur-

1The average performance is used if there are several such runs.
In case that there is no such run recorded in rundata, which means
through the configuration process the incumbent configuration has
not been tested on the instance yet, the instance will be excluded
from the whole transfer process.

1563

rence of too large or too small subsets. In this paper L and
U are set as ⌈(1 ± 0.2) |I|k ⌉, respectively. When all the in-
stances have been examined, this examination round (lines
6-19) is over. Since the sizes of the subsets keep changing
during the instance transfer process, there is a possibility
that an instance, which was examined earlier and at that time
no target subset satisfying the above conditions was found,
has a satisfactory target subset later. To handle this situation,
instances which are not successfully transferred in previous
rounds will be examined again in the next round (line 20).
The whole transfer procedure will be terminated (line 21) if
there is no instance that needs to be transferred, or there is
no successful transfer occurred in the previous round (lines
6-19). It is thus guaranteed that the transfer procedure will
perform at most |T | (i.e., the number of the instances that
need to be transferred) examination rounds, in which case in
each round a single instance is successfully transferred.

Computational Costs
The computational costs of ACPP methods are mainly com-
posed of two parts: the costs of configuration processes and
the costs of validation. Specifically, the total CPU time con-
sumed is rpc · k · (tc + tv) (the small overhead introduced
by instance transfer in PCIT is ignored here). Similarly, for
GLOBAL and CLUSTERING, it is rac · k · (tc + tv), where
rac is the number of independent runs of the AC procedure
(for each configuration task). For PARHYDRAb, the con-

sumed CPU time is rac ·
∑ k

b
i=1[i · b · (tbc + tbv)], where tbc

and tbv refer in particular to the configuration time budget
and the validation time budget used in PARHYDRAb (see
(Lindauer et al. 2017) for more details).

Empirical Study
We conducted experiments on two widely studied domains,
SAT and TSP. Specifically, we used PCIT to build parallel
portfolios based on a training set, and then compared them
with the ones constructed by the existing methods, on an
unseen test set.

Experimental Setup
Portfolio Size and Performance Metric We set the num-
ber of component solvers to 8 (same as (Lindauer et al.
2017)), since 8-core (and 8-thread) machines are widely
available now. The optimization goal considered here is to
minimize the time required by a solver to solve the problem
(for SAT) or to find the optimum of the problem (for TSP). In
particular, we set the performance metric to Penalized Aver-
age Runtime–10 (PAR-10) (Hutter et al. 2009), which counts
each timeout as 10 times the given cutoff time. The optimal
solutions for TSP instances were obtained using Concorde
(Applegate et al. 2006), an exact TSP solver.

Scenarios For each problem domain we considered con-
structing portfolios based on a single base solver and based
on multiple base solvers, resulting in four different scenar-
ios. For brevity, we use SAT/TSP-Single/Multi to denote
these scenarios. Table 1 summarizes the instance sets, the

cutoff time, and the base solvers used in each scenario. Ex-
cept in SAT-Multi we reused the settings from (Lindauer et
al. 2017), in the other three scenarios we all used new set-
tings which had never been considered before in the litera-
ture of ACPP. It is especially noted that this was the first time
the ACPP methods were applied to TSP. Settings in SAT-
Multi are the same as the ones in (Lindauer et al. 2017):
1) Instance set obtained from the application track of the
SAT’12 Challenge were randomly and evenly split into a
training set and a test set, and to ensure the computational
costs for portfolio construction would not be prohibitively
large, the cutoff time used in training (180s) was smaller
than the one used in testing (900s, same as the SAT’12 chal-
lenge); 2) The base solvers in SAT-Multi were the 8 sequen-
tial solvers considered by (Wotzlaw et al. 2012) when de-
signing pfolioUZK, the gold medal winning solver in the
parallel track of the SAT’12 Challenge. The induced config-
uration space C contains 150 parameters in total, including
a top-level parameter used to select a base solver. In SAT-
Single, we chose instances from the benchmark used in the
agile track of the SAT’16 Competition for its moderate cut-
off time (60s). Specifically, we randomly selected 2000 in-
stances from the original benchmark (containing 5000 in-
stances) and divided them evenly for training and testing. We
chose Riss6 (Manthey, Stephan, and Werner 2016), the gold
medal winning solver of this track, as the base solver. Since
Riss6 exposes a large number of parameters, we selected 135
parameters from them to be tunable while leaving others as
default. For TSP-Single and TSP-Multi we used the same
instance sets. Specifically, we used the portgen and the
portcgen generators from the 8th DIMACS Implementation
Challenge to generate 1000 “uniform” instances (in which
the cities are randomly distributed) and 1000 “clustering”
instances (in which the cities are distributed around different
central points). The problem sizes (the number of the cities)
of all these generated instances are within [1500, 2500].
Once again, we divided them evenly for training and testing.
The base solver used in TSP-Single was LKH version 2.0.7
(Helsgaun 2000) (with 23 parameters), one of the state-of-
the-art inexact solver for TSP. In TSP-Multi, in addition to
LKH, we included another two powerful TSP solvers, GA-
EAX version 1.0 (Nagata and Kobayashi 2013) (with 2 pa-
rameters) and CLK (Applegate, Cook, and Rohe 2003) (with
4 parameters), as the base solvers, resulting in a configura-
tion space containing 30 parameters (including a top-level
parameter used to select a base solver).

Competitors and Time Budgets Besides PCIT, we im-
plemented GLOBAL, PARHYDRAb (with b=1,2,4), and
CLUSTERING (with normalization options including lin-
ear normalization, standard normalization and no normal-
ization), as described in (Lindauer et al. 2017) 2 for compar-
ison. For all considered ACPP methods here, SMAC version
2.10.03 (Hutter, Hoos, and Leyton-Brown 2011) was used
as the AC procedure. Since the performance of SMAC could
be often improved when used with the instance features, we

2 The website https://www.cs.uni-potsdam.de/acpp given in
(Lindauer et al. 2017) provided the necessary basic functional
scripts for implementing these ACPP approaches.

1564

https://www.cs.uni-potsdam.de/acpp

Table 1: Summary of the instance sets, the cutoff time, the
base solvers and the configuration space size in each sce-
nario.

Instance Set Cutoff Time Base Solvers
SAT-Single From the SAT’16 Competi-

tion Agile Track, 2000 in-
stances (1000 for training,
1000 for testing)

60s Riss6 (Manthey,
Stephan, and Werner
2016), |C| = 135

SAT-Multi From the SAT’12 Challenge
Application Track, 600 in-
stances (300 for training,
300 for testing)

180s(900s) 8 solvers considered
by (Wotzlaw et al.
2012), |C| = 150

TSP-Single Same as TSP-Multi 20s LKH (Helsgaun
2000), |C| = 23

TSP-Multi 2000 instances containing
1000 “uniform” ones and
1000 “clustering” ones gen-
erated using the genera-
tors from the DIMACS TSP
Challenge (1000 for train-
ing, 1000 for testing)

20s LKH (Helsgaun
2000), CLK (Ap-
plegate, Cook, and
Rohe 2003) and GA-
EAX (Nagata and
Kobayashi 2013),
|C| = 30

Table 2: Detailed time budget (in hours) for each method in
each scenario. In the experiments rpc (for PCIT) and rac (for
GLOBAL, PARHYDRAb and CLUSTERING) were both
set to 10. The 3-tuple in each cell represents (configuration
time budget, validation time budget, total CPU time). Given
the same configuration budget, the same validation budget
and rpc = rac, PCIT, GLOBAL and CLUSTERING would
consume the same amount of CPU time (see the “Computa-
tional Costs” part in the last section). Thus M group is used
to represent these methods for brevity. For PARHYDRAb,
the configuration budget was set to grow linearly with b,
same as (Lindauer et al. 2017).

SAT-Single SAT-Multi TSP-Single TSP-Multi
M group (36,4,3200) (80,4,6720) (16,2,1440) (24,2,2080)
PARHYDRA (6,4,3600) (15,4,6840) (3,2,1800) (4,2,2160)
PARHYDRA2 (12,4,3200) (30,4,6800) (6,2,1600) (8,2,2000)
PARHYDRA4 (24,4,3360) (60,4,7680) (12,2,1680) (16,2,2160)

gave SMAC access to the 126 SAT features used in (Hut-
ter, Hoos, and Leyton-Brown 2011), and the 114 TSP fea-
tures used in (Kotthoff et al. 2015). The same features were
also used by PCIT (for transferring instances) and CLUS-
TERING (for clustering instances). To make the compar-
isons fair, the total CPU time consumed by each method was
kept almost the same. The detailed setting of the time bud-
get for each method is given in Table 2. To validate whether
the instance transfer in PCIT is useful, we included another
method, named PCRS (parallel configuration with random
splitting), in the comparison. PCRS differs from PCIT in
that it directly configures the final portfolios on the initial
random instance grouping and involves no instance transfer.
The time budgets for PCRS were the same as PCIT.

Baselines For each scenario, we identified a sequential
solver as the baseline by using SMAC to configure on the
training set and the configuration space of the scenario.

Experimental Environment All the experiments were
conducted on a cluster of 5 Intel Xeon machines with 60 GB
RAM and 6 cores each (2.20 GHz, 15 MB Cache), running
Centos 7.5.

Results and Analysis
We tested each obtained solver (including the ACPP port-
folios and the baseline sequential solver) by running it on
each test instance for 3 times, and reported the median per-
formance. The obtained number of timeouts (#TOS), PAR-
10 and PAR-1 are presented in Table 3. For CLUSTERING
and PARHYDRAb, we always reported the best perfor-
mance achieved by their different implementations. To de-
termine whether the performance differences between these
solvers were significant, we performed a permutation test
(with 100000 permutations and significance level p = 0.05)
to the (0/1) timeout scores, the PAR-10 scores and the PAR-1
scores. Overall the portfolios constructed by PCIT achieved
the best performances in Table 3. In SAT-Single, SAT-Multi
and TSP-Single, it achieved significantly and substantially
better performances than all the other solvers. Although
in TSP-Multi, the portfolio constructed by PARHYDRAb

obtained slightly better results than the one constructed
by PCIT (however the performance difference is insignif-
icant), as aforementioned, the appropriate value of b in
PARHYDRAb varied across different scenarios (as shown
in Table 3) and for a specific scenario it was actually un-
known in advance (in TSP-Multi it turned out to be 2). Sim-
ilarly, as shown in Table 3, the best normalization approach
for CLUSTERING also varied across different scenarios.
Compared to the portfolios constructed by PCRS, the ones
constructed by PCIT consistently obtained much better re-
sults, which verified the effectiveness of the instance trans-
fer mechanism of PCIT. It is worth noting that GLOBAL
performed significantly worse than all the other ACPP meth-
ods in TSP-Single and TSP-Multi. This may be because the
configuration tasks in GLOBAL (with configuration space
size of |C|k) are much harder than the ones (with configura-
tion space size of |C|) in other methods, which indicates the
importance of decomposing the portfolio construction into
sub-tasks of configuring component solvers. Finally, all the

1565

Table 3: Results on the test set in the four scenarios. The name of the ACPP method is used to denote the portfolios constructed
by it. The performance of a solver is shown in boldface if it was not significantly different from the best performance (according
to a permutation test with 100000 permutations and significance level p = 0.05). For CLUSTERING and PARHYDRAb, the
best performance achieved by their different implementations is reported and the corresponding implementation option, i.e., the
choice of b for PARHYDRAb and the normalization approach (“None” for no normalization, “Linear” for linear normalization
and “Standard” for standard normalization) for CLUSTERING, is also reported.

SAT-Single SAT-Multi TSP-Single TSP-Multi
#TOS PAR-10 PAR-1 #TOS PAR-10 PAR-1 #TOS PAR-10 PAR-1 #TOS PAR-10 PAR-1

Baseline 383 238 31 71 2275 358 565 118 16 455 99 17
PCRS 234 152 26 44 1435 247 110 31 11 105 30 11
PCIT 181 119 21 35 1164 219 87 24 8 86 24 9
GLOBAL 230 149 25 46 1495 253 224 53 13 150 41 14
PARHYDRAb 235 b=4 151 24 40 b=1 1326 246 107 b=1 29 10 85 b=2 24 9
CLUSTERING 227 None 146 23 43 None 1415 254 121 Linear 31 9 99 Linear 28 10

ACPP methods here performed much better than the sequen-
tial solver baselines, indicating the great benefit by combin-
ing complementary configurations obtained from a rich con-
figuration space.

Comparison with Hand-designed Parallel Solvers

To further evaluate the portfolios constructed by PCIT, we
compared them with the state-of-the-art manually designed
parallel solvers. Specifically, we considered the ones con-
structed for SAT. We chose Priss6 (Manthey, Stephan, and
Werner 2016) to compare with the one constructed in SAT-
Single, since Priss6 is the official parallel version of Riss6
(the base solver in SAT-Single). For the same reason, we
chose PfolioUZK (Wotzlaw et al. 2012) (the gold medal
winning solver of the parallel track of the SAT’12 Chal-
lenge) to compare with the one constructed in SAT-Multi.
Finally, we chose Plingeling (version bbc) (Biere 2016),
the gold medal winning solver of the parallel track of the
SAT’16 Competition, to compare with both. Note that all
the manually designed solvers considered here have imple-
mented far more advanced parallel solving strategies (e.g.,
clause sharing) than only independently running component
solvers in parallel. In the experiments the default settings of
these solvers were used and the same statistical tests as be-
fore were conducted. As shown in Table 4, on SAT-Single
test set, the portfolio constructed by PCIT achieved much
better results than others. This may be because the parallel
solvers considered here were not designed for this type of
instances, which were obtained from the SAT’16 Competi-
tion Agile track, a track for simple fast SAT solvers with low
overhead. On the other hand, this indeed demonstrates that
the ACPP methods are widely applicable to different sce-
narios, as long as there are suitable base solvers and train-
ing instances in the scenarios. It is impressive that, on SAT-
Multi test set, the portfolio constructed by PCIT (regardless
of its simple solving strategy) obtained slightly better re-
sults than pfolioUZK, and could reach the performance level
of the more state-of-the-art Plingeling. Such results indicate
PCIT could identify powerful parallel portfolios, with little
human effort involved. Thus the portfolios constructed by
PCIT could conveniently provide at least two advantages.
That is, they are high-quality parallel solvers, and they could
be used as starting points for the development of more ad-

Table 4: Test results of parallel solvers on the test set of SAT-
Single and SAT-Multi. The performance of a solver is shown
in boldface if it was not significantly different from the best
performance (according to a permutation test with 100000
permutations and significance level p = 0.05).

SAT-Single SAT-Multi
#TOS PAR-10 PAR-1 #TOS PAR-10 PAR-1

PCIT 181 119 21 35 1164 219
Priss6 225 146 25 - - -
PfolioUZK - - - 36 1185 213
Plinegling-bbc 452 276 32 33 1090 199

vanced parallel solvers.

Conclusion
In this paper we proposed a novel ACPP method, named
PCIT, which utilized an instance transfer mechanism to im-
prove the quality of the instance grouping. The experimen-
tal results on two widely studied problem domains, SAT and
TSP, have demonstrated the effectiveness of PCIT. Currently
PCIT relies on the instance features to build the EPM. Since
there are problem domains for which no instance features
have yet been defined, it is thus important to investigate how
to adapt PCIT to such scenarios. It is also worth investigat-
ing the effect of the underlying distribution of the instances
on the performance of PCIT. Besides, other directions of fu-
ture work include extending PCIT to use parallel solvers
as base solvers, and investigating solving ACPP from the
perspective of subset selection (Qian, Yu, and Zhou 2015;
Qian et al. 2017).

References
Ansótegui, C.; Sellmann, M.; and Tierney, K. 2009. A Gender-
Based Genetic Algorithm for the Automatic Configuration of
Algorithms. In Proceedings of the 15th International Confer-
ence on Principles and Practice of Constraint Programming,
CP’2009, 142–157.
Applegate, D.; Bixby, R.; Chvatal, V.; and Cook, W. 2006. Con-
corde TSP Solver. http://www.math.uwaterloo.ca/tsp/concorde.
html.
Applegate, D.; Cook, W.; and Rohe, A. 2003. Chained Lin-
Kernighan for Large Traveling Salesman Problems. INFORMS
Journal on Computing 15(1):82–92.

1566

http://www.math.uwaterloo.ca/tsp/concorde.html
http://www.math.uwaterloo.ca/tsp/concorde.html

Asanovic, K.; Bodı́k, R.; Demmel, J.; Keaveny, T.; Keutzer,
K.; Kubiatowicz, J.; Morgan, N.; Patterson, D. A.; Sen, K.;
Wawrzynek, J.; Wessel, D.; and Yelick, K. A. 2009. A View
of the Parallel Computing Landscape. Communications of the
ACM 52(10):56–67.
Balyo, T.; Heule, M. J. H.; and Järvisalo, M., eds. 2016. Proceed-
ings of SAT Competition 2016: Solver and Benchmark Descrip-
tions, volume B-2016-1 of Department of Computer Science Se-
ries of Publications B. University of Helsinki.
Battiti, R.; Brunato, M.; and Mascia, F., eds. 2008. Reactive
Search and Intelligent Optimization. Springer.
Biere, A. 2016. Splatz, Lingeling, Plingeling, Treengeling, Yal-
SAT Entering the SAT Competition 2016. In Balyo et al. (2016),
44–45.
Burke, E. K.; Gendreau, M.; Hyde, M.; Kendall, G.; Ochoa, G.;
Özcan, E.; and Qu, R. 2013. Hyper-heuristics: A Survey of the
State of the Art. Journal of the Operational Research Society
64(12):1695–1724.
Gomes, C. P., and Selman, B. 2001. Algorithm Portfolios. Arti-
ficial Intelligence 126(1-2):43–62.
Hamadi, Y., and Wintersteiger, C. M. 2013. Seven Challenges in
Parallel SAT Solving. AI Magazine 34(2):99–106.
Helsgaun, K. 2000. An Effective Implementation of the Lin-
Kernighan Traveling Salesman Heuristic. European Journal of
Operational Research 126(1):106–130.
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle, T. 2009.
ParamILS: An Automatic Algorithm Configuration Framework.
Journal of Artificial Intelligence Research 36(1):267–306.
Hutter, F.; Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2014.
Algorithm Runtime Prediction: Methods & Evaluation. Artificial
Intelligence 206:79–111.
Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011. Sequen-
tial Model-Based Optimization for General Algorithm Configu-
ration. In Proceedings of the 5th International Conference on
Learning and Intelligent Optimization, LION’2011, 507–523.
Kadioglu, S.; Malitsky, Y.; Sellmann, M.; and Tierney, K. 2010.
ISAC - instance-specific algorithm configuration. In Proceed-
ings of the 19th European Conference on Artificial Intelligence,
ECAI’2010, 751–756.
Karafotias, G.; Hoogendoorn, M.; and Eiben, Á. E. 2015. Param-
eter Control in Evolutionary Algorithms: Trends and challenges.
IEEE Transactions on Evolutionary Computation 19(2):167–
187.
Kotthoff, L.; Kerschke, P.; Hoos, H.; and Trautmann, H. 2015.
Improving the State of the Art in Inexact TSP Solving Using Per-
Instance Algorithm Selection. In Proceedings of the 9th Inter-
national Conference on Learning and Intelligent Optimization,
LION’2015, 202–217.
Kotthoff, L. 2014. Algorithm Selection for Combinatorial Search
Problems: A Survey. AI Magazine 35(3):48–60.
Lindauer, M.; Hoos, H. H.; Leyton-Brown, K.; and Schaub, T.
2017. Automatic Construction of Parallel Portfolios via Algo-
rithm Configuration. Artificial Intelligence 244:272–290.
López-Ibáñez, M.; Dubois-Lacoste, J.; Pérez Cáceres, L.;
Stützle, T.; and Birattari, M. 2016. The irace Package: Iter-
ated Racing for Automatic Algorithm Configuration. Operations
Research Perspectives 3:43–58.
Manthey, N.; Stephan, A.; and Werner, E. 2016. Riss 6 Solver
and Derivatives. In Balyo et al. (2016), 56.

Nagata, Y., and Kobayashi, S. 2013. A Powerful Genetic Algo-
rithm Using Edge Assembly Crossover for the Traveling Sales-
man Problem. INFORMS Journal on Computing 25(2):346–363.
Qian, C.; Shi, J.; Yu, Y.; and Tang, K. 2017. On Subset Selec-
tion with General Cost Constraints. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence, IJCAI’
2017, 2613–2619.
Qian, C.; Yu, Y.; and Zhou, Z. 2015. Subset Selection by Pareto
Optimization. In Proceedings of the 28th Annual Conference
on Neural Information Processing Systems, NIPS’2015, 1774–
1782.
Ralphs, T. K.; Shinano, Y.; Berthold, T.; and Koch, T. 2018. Par-
allel Solvers for Mixed Integer Linear Optimization. In Hamadi,
Y., and Sais, L., eds., Handbook of Parallel Constraint Reason-
ing. Springer. 283–336.
Rice, J. R. 1976. The Algorithm Selection Problem. Advances
in Computers 15:65–118.
Tang, K.; Peng, F.; Chen, G.; and Yao, X. 2014. Population-
based Algorithm Portfolios with Automated Constituent Algo-
rithms Selection. Information Sciences 279:94–104.
Wotzlaw, A.; van der Grinten, A.; Speckenmeyer, E.; and
Porschen, S. 2012. pfolioUZK: Solver Description. In Balint,
A.; Belov, A.; Diepold, D.; Gerber, S.; and Järvisalo, Matti
& Sinz, C., eds., Proceedings of SAT Challenge 2012 : Solver
and Benchmark Descriptions, volume B-2012-2 of Department
of Computer Science Series of Publications B, 45. University of
Helsinki.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
SATzilla: Portfolio-based Algorithm Selection for SAT. Journal
of Artificial Intelligence Research 32:565–606.
Xu, L.; Hoos, H.; and Leyton-Brown, K. 2010. Hydra: Auto-
matically Configuring Algorithms for Portfolio-Based Selection.
In Proceedings of the 24th AAAI Conference on Artificial Intelli-
gence, AAAI’2010, 210–216.

1567

Algorithm 2 InsTransfer
R is the run data collected from all the previous AC proce-
dure runs. L and U are the lower bound and the upper bound
of the size of a subset, respectively.
Input: instance subsets I1, ..., Ik, incumbent configurations
c1, ..., ck, instance features F
Output: instance subsets I1, ..., Ik

1: Build an EPM based on R and F
2: For each instance ins in each subset, obtain the perfor-

mance of the corresponding incumbent configuration on
it from R , denoted as P (ins)

3: Let v be the median value of all P (ins) across all sub-
sets. The instances with bigger values than v are iden-
tified as the ones need to be transferred, denoted as T

4: while true do
5: Tdone ← ∅, Tremain ← ∅
6: while T ̸= ∅ do
7: Randomly select an instance ins from T and let Is

and cs be the subset containing ins and the corre-
sponding incumbent configuration, respectively

8: T ← T − {ins}
9: For each of c1, ...ck, use EPM to predict its per-

formance on ins, denoted as E(c1), ..., E(ck).
10: Sort c1, ...ck according to the goodness of

E(c1), ..., E(ck), denoted as cπ(1), ..., cπ(k)
11: for j := 1...k do
12: if E(cπ(j)) ≤ E(cs) && |Iπ(j)| < U && |Is| >

L then
13: Is ← Is − {ins}, Iπ(j) ← Iπ(j) ∪ {ins}
14: Tdone ← Tdone ∪ {ins}
15: break
16: end if
17: end for
18: if ins /∈ Tdone then Tremain ← Tremain ∪ {ins}
19: end while
20: T ← Tremain

21: if Tdone = ∅ || Tremain = ∅ then break
22: end while
23: return I1, ...Ik

1568

