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Abstract

We consider auction settings in which agents have limited ac-
cess to monetary resources but are able to make payments
larger than their available resources by taking loans with a
certain interest rate. This setting is a strict generalization of
budget constrained utility functions (which corresponds to in-
finite interest rates). Our main result is an incentive compati-
ble and Pareto-efficient auction for a divisible multi-unit set-
ting with 2 players who are able to borrow money with the
same interest rate. The auction is an ascending price clock
auction that bears some similarities to the clinching auc-
tion but at the same time is a considerable departure from
this framework: allocated goods can be de-allocated in future
and given to other agents and prices for previously allocated
goods can be raised.

Introduction
One of the common simplifications in mechanism design
is to assume that the monetary resources available to each
agent are far more than the magnitude of the economic trans-
action for which a mechanism is being designed. This as-
sumption is hidden in the quasi-linear utility model, which
states that the utility for a certain outcome is its value minus
the payment, no matter how large the payments are. While
this assumption is fine for a variety of settings, this breaks if
the magnitude of a transaction is large. For example, if one
wants to buy a house or pay for college tuition, the amount of
available funds may even be more important than the actual
value. A first order approximation to this issue is to consider
the budget constrained utility function, which assumes that
the utility is quasi-linear if the payment is below the bud-
get and minus infinity otherwise. In the recent past, some
progress has been made to develop our understanding of de-
sign of efficient mechanisms for budget-constrained utility
functions. However, budget constrained utility functions fail
to capture an important aspect of real life: to make large pur-
chases one can borrow money. This is done by using finan-
cial instruments such as credit-cards, loans, mortgages, etc.

In this paper we investigate this gap – between the real-
world scenario and our theoretical understanding of money-
constrained mechanism design – by designing mechanisms
for agents whose utility functions are non-linear convex
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functions of their payments. To be more specific, we con-
sider utilities of the form u = v(x) − β(π) where v(x) is
the value the agent derives from the implemented outcome,
π is the payment and β is a non-linear convex function of
the payment. This can be used to model scenarios with in-
terest rates. For example, suppose that an agent has B mon-
etary units readily available and has access to a bank that
can lend him money with interest rate, say, γ − 1. This set-
ting can be modeled by defining β(π) := π for π ≤ B and
β(π) := B + γ(π − B) for π > B. To see this, if the agent
is charged π > B by the auctioneer, he can use B from his
own funds and borrow π−B from the bank. Since the agent
has to pay (γ − 1)(π − B) in interest to the bank, his final
true cost will be β(π) := B + γ(π −B).

The problem of designing auctions with non-quasi-linear
utilities is notoriously hard, which explains why the vast ma-
jority of work in mechanism design assumes quasi-linearity.
The progress in non quasi-linear utilities has been limited,
with a few exceptions, mostly to budget-constraints and risk-
aversion. In this paper, we seek to make progress in the prob-
lem of utilities that take interest rates into account. We con-
sider the simplest possible setting: an auction for one unit of
a divisible good between two agents who have access to Bi
monetary units and can borrow at the same common interest
rate.

Our main result is an individually-rational, incentive-
compatible and Pareto-efficient auction for the setting de-
scribed above. We note that the usual notion of efficiency
in mechanism design - social welfare maximization - is im-
possible to be achieved in an incentive compatible manner
in this setting (even if one allows for approximations). By
social welfare here we mean the sum of the utilities of all
agents (including the seller) which is

∑
i ui +

∑
i πi =∑

i vi(xi) + πi − βi(πi). Note that unlike quasi-linear set-
tings the payments no longer cancel out and hence our social
welfare doesn’t coincide with the sum of values

∑
i vi(xi).

The reason is that a special case of our setting is that of bud-
get constrained utility functions (by taking γ → ∞), for
which incentive compatible social welfare maximization is
known to be impossible (Dobzinski, Lavi, and Nisan 2008).
In such cases, Pareto-efficiency becomes the natural way to
achieve efficiency. Note for example that when Bi are very
large or the interest rates tend to zero, Pareto-efficiency boils
down to social-welfare maximization.
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Since our setting is a strict generalization of budget con-
strained utilities, our auction must naturally be the clinching
auction in the limit when the parameter γ tends to∞, since
the clinching auction is the unique Pareto-efficient incentive-
compatible auction for budget constrained utilities. Our auc-
tion, therefore, contains many elements in common with
Ausubel’s clinching auction (Ausubel 1997), but at the same
time is a considerable departure from the traditional clinch-
ing framework. The major similarities are that our auction
can also be cast as an ascending price clock auction, which
keeps at each step provisional allocation and payments and
computes demands to determine what amount is safe to be
given to each agent without violating demands of the oth-
ers. Unlike the traditional clinching framework, however, the
amount allocated to each agent is not monotone in the price,
i.e., units can be allocated at some price and later taken away
from an agent and given to the other. Secondly, the auction
can, at a given price, increase the price charged for goods
allocated at lower prices. Thirdly, the outcome is not deter-
mined when the price clock reaches the second-highest val-
uation. In our auction, the clock ascends all the way to the
highest valuation and non-trivial changes in the allocation
can happen all the way to the end.

Note on the model and contribution The model studied
in this paper is admittedly simple: only 2 players and sym-
metric interest rates. We believe that the major contribution
of this work is not a generally applicable framework but a
proof of concept that progress can be made for sophisticated
utility functions. From the technical perspective our main
contribution is a novel and non-trivial ascending auction
with unique features. We believe the construction of our
ascending auction is interesting in its own right.

Full Version A full version of this paper is available online
in (Goel, Mirrokni, and Paes Leme 2018) where additional
intuition behind the our new auction format is proposed. In
that version we show how to cast the auction design problem
as a differential equations problem and show it has a solu-
tion by using the Existence Theorem of First-Order Ordinary
Differential Equations. We map back the solution to the dif-
ferential equation to an auction satisfying all the desirable
properties. The auction is correct but has a somewhat cryp-
tic description that lacks economic intuition. Later we show
how to re-interpret the solution to the differential equation
as an ascending price clock auction, which is the auction de-
scribed in the conference version.

Related Work In Bayesian settings, Maskin and Riley
(Maskin and Riley 1984) were the pioneers in studying the
design of mechanism with non-quasi-linear utilities. Their
approach also uses differential equations as the main math-
ematical tool, but since their setting is Bayesian (while ours
is worst-case), both the equations and mechanisms obtained
are quite different. Note that their mechanisms are depend
heavily on the distribution from which types are drawn,
where our mechanisms have no such dependency.

Also central to the study of the impact of financial con-
straints in auctions is the work of Che and Gale (Che and
Gale 1998; 2006). The authors study the impact of finan-
cial constraints in the Bayes-Nash equilibria of standard auc-
tions (such as first and second price auctions). Besides being
Bayesian, another major difference to our work is the ap-
proach: while Che and Gale compare different auction for-
mats, we take the mechanism design approach. An interest-
ing connection between our papers is that both their work
and ours provide a reduction from generic utilities to the
quasi-linear setting. Yet, the reductions are different in na-
ture and serve different purposes in the analysis. Che and
Gale reduce to the quasi-linear setting by adding a fictitious
risk-neutral bidder, while our reduction works by transfer-
ring the risk from the buyers to the auctioneer. Also, while
our reduction is used to design dominant strategy incentive
compatible mechanisms, Che and Gale use their reduction to
establish revenue (Bayes-Nash-type) equivalence theorems.

The problem of mechanism design in which players have
non-quasi-linear utility functions is well studied for the case
in which the available goods are indivisible and each agent
wants to acquire at most one good (unit-demand agents).
For unit-demand agents, the stable marriage model of Gale
and Shapley (Gale and Shapley 1962) together with the var-
ious flavors of the deferred-acceptance algorithm allow the
design of efficient mechanisms with good incentive proper-
ties for a variety of settings with sophisticated utility func-
tions. This is the route taken in the papers of Aggarwal,
Muthukrishnan, Pal and Pal (Aggarwal et al. 2009), Alaei,
Jain and Malekian (Alaei, Jain, and Malekian 2010), Mori-
moto and Serizawa (Morimoto and Serizawa 2012). Closer
to our work is the paper by Dutting, Henzinger and Weber
(Dütting, Henzinger, and Weber 2011), extend (Aggarwal et
al. 2009) the framework to account for hard and soft budget
constraints, but stay within the realm of unit-demand bidders
and heavily rely on stable matching constructions.

Our paper differs from this line of work in the sense
that we look at the simplest setting in which the stable
matching machinery is not available: divisible multi-unit
auctions. Another major difference is that our goal is to
design Pareto-efficient auctions while the previously men-
tioned papers focus on implementing envy-free outcomes.
In the last sense, our paper is closer to the line of work ini-
tiated by Dobzinski, Lavi and Nisan (Dobzinski, Lavi, and
Nisan 2008) and inspired by Ausubel’s framework (Ausubel
1997). In (Dobzinski, Lavi, and Nisan 2008) the authors
design an incentive compatible, individually rational and
Pareto-efficient auction for budget constrained utility func-
tions. Their auction has been extended in multiple direc-
tions: (Bhattacharya et al. 2010) show how to elicit budgets
truthfully, (Fiat et al. 2011; Colini-Baldeschi et al. 2012)
generalize the clinching to matching markets and (Goel,
Mirrokni, and Paes Leme 2012) to general polymatroidal
environments and (Goel, Mirrokni, and Paes Leme 2013)
shows that the clinching auction allows for an online im-
plementation. Closely related to this work is (Goel, Mir-
rokni, and Leme 2014) which designs Pareto-efficient auc-
tions where agents have constrained quasi-linear utilities,
which mean that ui = vi(xi) − πi when (xi, πi) belong to
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Figure 1: Interest rates represented by a β-function and
its corresponding τ -taxation for B = 1 and γ = 2.

a certain admissible set Ai and −∞ otherwise. This allows
the authors to generalize the Polyhedral Clinching Auction
to settings with average budgets and in general to settings
in which the available budget is a function of the allocation.
However, the model in (Goel, Mirrokni, and Leme 2014) is
not expressible enough to capture interest rates and other
types of non-linearities.

Multi-Unit Auctions with Interest Rates
We say that an agent has βi-utility if his utility for an out-
come in which he is assigned a bundle xi and is charged
payment πi is

uβi (xi, πi) = vi(xi)− βi(πi)

where βi : R+ → R+ is a convex, strictly monotone func-
tion such that βi(πi) ≥ πi for all πi ≥ 0. Intuitively, this
measures his cost for acquiring πi dollars. For quasi-linear
players, βi is simply the identity βi(πi) = πi. For tradi-
tional hard budget constraints βi(πi) = πi for πi ≤ Bi and
βi(πi) = ∞ otherwise. We will denote its left and right
derivatives at πi as: β′i(πi−) and β′i(πi+).

We will be particularly interested in the case player i has
Bi monetary units available to him and can borrow addi-
tional resources at an interest rate r = γi − 1. This is repre-
sented by:

βi(πi) =

{
πi, πi ≤ Bi
Bi + γi(πi −Bi), πi ≥ Bi

which is depicted in Figure 1.
We consider this problem in the context of multi-unit auc-

tions with divisible goods: the allocation of each player is
a real number xi ∈ [0, 1] and vi(xi) = vi · xi. The set of
feasible allocations is given by F = {x ∈ Rn+;

∑
i xi ≤ 1}.

We assume that the β-functions are public information
and that values are private. So, fixed βi for each player,
a mechanism for multi-unit auctions is a pair of mappings
x : Rn+ → Rn+ and π : Rn+ → Rn+. Incentive compatibil-
ity and individual rationally have their usual meaning: each
player maximizes his utility by reporting his true value and
upon reporting his true value, he has non-negative utility.
Since this is not a quasi-linear setting, Myerson’s character-
ization (Myerson 1981) doesn’t directly apply.

We say that an allocation (x, π) is Pareto-efficient if there
is no alternative allocation (x′, π′) where each agents utility

is at least as good as in the original allocation, the revenue
of the auctioneer is at least as good and at least one of them
strictly improves. Formally: there is no alternative alloca-
tion, where:

vi · x′i − βi(π′i) ≥ vi · x′i − βi(π′i),∀i∑
i

π′i ≥
∑
i

πi,
∑
i

uβi (x
′
i, π
′
i)+π

′
i >
∑
i

uβi (xi, πi)+πi

Before designing an auction for this setting, it is instruc-
tive to see why simple designs fail to achieve the desirable
properties. A natural auction for this setting is the one which
holds sequential second price auctions for infinitesimal parts
of the good: for each infinitesimal part of the good, allocate
to the buyer with largest marginal valuation for that piece,
where the marginal valuation for buyer i is vi if he hasn’t
reached his budget and vi/γi otherwise. This design, while
simple, doesn’t yield an incentive compatible auction. Con-
sider the example with 1 unit of a divisible good and 2 play-
ers with values: v1 = 1 + ε, v2 = 1, γ1 = γ2 = 1/ε and
B1 = B2 = 1/3. In the simple design, for the first 1/3 of
the good, both agents bid 1, so agent 1 acquires the first 1/3
and pays his entire budget and from this point on, he bids
v1/γ1 = O(ε), so agent 2 acquires the remaining 2/3 of the
good. Now, if agent 1 were to shade his bid to 1 − ε, the
situation would be reversed and agent 2 would be allocated
the first 1/3 + O(ε) of the good and agent 1 would be all-
located 2/3. Notice that the mechanism can’t even be made
truthful by changing the payment rule, since the allocation
is not monotone.

Indeed, there is a deeper reason why it is not possible to
get a simple Pareto-efficient auction in this setting. Once
γ → ∞, any auction that is Pareto-efficient must recover
the Clinching Auction in (Dobzinski, Lavi, and Nisan 2008),
since it is the unique incentive compatible auction with hard
budget constraints. We refer to (Dobzinski and Leme 2014)
for an in-depth discussion of why simple designs typically
fail to achieve Pareto-efficiency in an incentive-compatible
manner.

Equivalence between βi-utilities and quasi-linear
settings with taxation
First we show that designing a Pareto-efficient auction for
agents with βi-utilities is equivalent to designing Pareto-
efficient auctions for quasi-linear settings in which the auc-
tioneer is subject to taxation over his revenue. The central
idea behind the equivalence is to consider effective payments
π̂i = βi(πi) and design an auction in terms of effective pay-
ments charged to the buyer. The issue with that is that π̂i
effective payment results in revenue πi = β−1i (π̂i) paid to
the auctioneer. Below, we formally define a setting with tax-
ation:

Quasi-linear settings with taxation Consider the prob-
lem where there are n agents with quasi-linear utilities
ui(xi, πi) = vi ·xi−πi and for each agent there is a taxation
function τi : R+ → R+ that is strictly monotone, concave
and has τi(πi) ≤ πi for all πi ≥ 0.
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An auctioneer is taxed on the income received from each
buyer according to the τi-taxation functions. His revenue is
therefore

∑
i τi(πi). An allocation for this setting is Pareto-

efficient if there is no alternative allocation (x′, π′) such that:

vi · x′i − π′i ≥ vi · x′i − π′i,∀i,
∑
i

τi(π
′
i) ≥

∑
i

τi(πi)

∑
i

ui(x
′
i, π
′
i) + τi(π

′
i) >

∑
i

ui(xi, πi) + τi(πi)

Now, given a mechanism (x, π) for the setting with β-
utilities, consider the mechanism (x, π̂) for the setting with
quasi-linear utilities and τ -taxes with τ = β−1 in which
π̂i(v) = βi(πi(v)). It follows directly from the definitions
that (x, π) is incentive-compatible, individually-rational and
Pareto optimal for the β-utilities setting iff (x, π̂) is such for
the τ -taxes setting.

Lemma 0.1 (equivalence). Given βi strictly monotone con-
vex functions and τi = β−1i strictly monotone concave func-
tions, there is an incentive-compatible, individually-rational
and Pareto-optimal mechanism for agents with β-utilities iff
there is a mechanism with the same properties for quasi-
linear agents where the auctioneer pays τ -taxes on his rev-
enue.

The main advantage of Lemma 0.1 is that it allows us to
use Myerson’s characterization of incentive compatibility,
since agents are quasi-linear. We recall Myerson’s charac-
terization:

Lemma 0.2 ((Myerson 1981)). A single-parameter mecha-
nism for quasi-linear agents defined by x : Rn+ → [0, 1]n

and π : Rn+ → Rn+ is individually-rational and incentive
compatible iff:

• xi(vi, v−i) is monotone non-decreasing in vi for any fixed
v−i;

• payments are such that πi(vi, v−i) = vi · xi(vi, v−i) −∫ vi
0
xi(u, v−i)du.

Characterizing Pareto-efficient outcomes
Our first step is to provide a characterization of Pareto-
efficient outcomes for settings with taxation. The following
Lemma is a version of Proposition 2.4 in (Dobzinski, Lavi,
and Nisan 2008) for the utility model studied in this paper.
Versions of this lemma for different settings have been pro-
vided in (Bhattacharya et al. 2010; Goel, Mirrokni, and Paes
Leme 2012; Goel, Mirrokni, and Leme 2014). We recall the
reader that τ ′i(πi−) and τ ′i(πi+) denote the left and right
derivatives of the taxation function τi.

Lemma 0.3 (Pareto-optimality characterization). Consider
n agents with quasi-linear utilities and an auctioneer that
obtains revenue

∑
i τi(πi) from the outcome (x, π) and a

divisible multi-unit auctions setting, i.e.
∑
i xi(v) ≤ 1. Such

outcome is Pareto-optimal iff (i) all goods are sold, i.e.,∑
i xi(v) = 1 and (ii) no trade is possible, i.e., for all

agents i 6= j such that xi > 0, it holds that vi · τ ′i(πi−) ≥
vj · τ ′j(πj+).

Proof. For the (⇒) direction, if the allocation doesn’t sum
to one, one can allocate the left-over goods to some player
for free, improving his utility. Also, if for some pair xi > 0
and vi · τ ′i(πi−) < vj · τ ′j(πj+), then there is some ε for
which τi(π) − τi(πi − viε) < τj(πj + vjε) − τj(πj). So,
consider the outcome (x′, π′) where for k 6= i, j, x′k = xk
and π′k = πk, x′i = xi − ε, π′i = πi − viε, x′j = xj + ε
and π′j = πj + vjε. All utilities are still the same, and the
auctioneer revenue improved.

For the (⇐) direction, consider an allocation (x, π) with
the two characterization properties and let (x′, π′) be a
Pareto-improvement. If some players utility strictly im-
proved we can always increase his payment so that the util-
ities are the same as before for all agents but the revenue of
the auctioneer improved. Assuming that, we now compare
the revenue in both allocations.

0 ≥
∑
i

τi(πi)− τi(π′i) ≥
∑

i;πi>π′
i

τ ′i(πi−) · (πi − π′i)+∑
i;πi<π′

i

τ ′i(πi+) · (πi − π′i) =

=
∑

i;πi>π′
i

τ ′i(πi−) · vi · (xi − x′i)+∑
i;πi<π′

i

τ ′i(πi+) · vi · (xi − x′i) ≥ 0

Since:
∑
i;πi>π′

i
xi − x′i =

∑
i;π′

i>πi
x′i − xi and the coeffi-

cients τ ′i(πi−) · vi are larger then the coefficients τ ′i(πi+) ·
vi by the characterization condition. So, this implies that∑
i τi(πi)− τi(π′i) = 0 contradicting the fact that (x′, π′) is

a Pareto improvement.

Ascending Price Clock Auction
We now present our main result, which is an ascending clock
auction for the quasi-linear setting with taxation, which we
call the Taxed Ascending Auction.

We consider a setting with 2 agents each of them defined
by two public parametersBi and γ and a private value vi. We
will assume in the description that both values vi are multi-
ples of a small quantity ε. Our goal is to design an ascending
price clock auction to sell one unit of a divisible good.

The price clock will be represented by a pair
(p1, p2) which will represent the prices for each of
the agents. The clock will start at (0, 0) and incre-
ment each price by ε in a round-robin fashion, i.e.,
(0, 0), (ε, 0), (ε, ε), (2ε, ε), (2ε, 2ε), (3ε, 2ε), ....

We will keep for each player i a vector dxi[p] indexed by
price p which indicates how many units he acquired at price
p and pri[p] as the price per unit he was charged for those
units. In each stage, we will refer to xi =

∑
p dxi[p] and

πi =
∑
p pri[p] · dxi[p]. We will also keep a variable x∗,

which we will call the ∗-pool and use to store the goods that
were allocated to an agent but had to be de-allocated because
the agent could no longer afford them. The ∗-pool is a pool
of goods that will be reserved to the higher valued agent (the
∗-player). The identity of the ∗-player will be determined
once one of the agents drops out of the auction.
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Given i ∈ {1, 2} we will denote the other player by −i,
so if i = 1, xi and πi will denote x1 and π1 and x−i, π−i
will denote x2 and π2. Finally, we will also use the notation
[z]+ to denote max(z, 0).
Taxed Ascending Auction

Initialize dxi[p] = 0 and pri[p] = p for all prices p,
p1 = p2 = 0 and i = 1.

Main Loop: Repeat while p1 ≤ v1 or p2 ≤ v2.
1. Choose agent in round-robin schedule and increase price:
i = 3− i, pi = pi + ε.

2. Update price for previously allocated goods: if p−i <
v−i, then for all prices p′ ≤ γ−1pi, update pri[p

′] =
γ−1pi.

3. Recollections:
• if γ−1p > vi, collect back all the goods allocated to

player i and add them to the pool. Formally: x∗ = x∗+∑
q xi[q] and xi[q] = 0 for all q.

• if i total payment is larger then Bi, collect back the
most expensive goods and add them to the ∗-pool. For-
mally: if πi > Bi, find p′ such that

∑
q<p′ pri[q] ·

dxi[q] ≤ Bi and
∑
q≤p′ pri[q] · dxi[q] > Bi. Let

Ki =
1

pri[p
′] [Bi−

∑
q<p′ pri[q] ·dxi[q]] be the amount

of goods at price p′ the player can keep. And update:
x∗ = x∗ + (xi[p

′] −Ki) +
∑
q>p′ dxi[q], dxi[q] = 0

for q > p′ and dxi[p
′] = Ki.

4. Clinching: The demand of i decreases to di = 1
pi
[Bi−πi]

if pi ≤ vi and di = 0 otherwise; and compute the clinched
amount for player −i as δ−i = [1− x1 − x2 − x∗ − di]+
and allocate: dx−i[p−i] = dx−i[p−i] + δ−i.

5. Pool Re-assignment: if p−i > v−i, then
dxi[pi] = dxi[pi] + x∗, x∗ = 0.

First we show that the Taxed Ascending Auction has the
desired properties:
Theorem 0.4. The Taxed Ascending Auction is an incentive-
compatible, individually rational and Pareto efficient auc-
tion for 2 players with taxation functions τi(πi) = πi for
πi ≤ Bi and τi(πi) = Bi + γ−1(πi −Bi) for πi ≥ Bi.

The first part of the theorem is easy, as it is usually the
case in the analysis of ascending auctions. The auction is in-
dividually rational because no item is ever given to an agent
at a price-per-unit larger then his value. Also, if we ever raise
the price of previously allocated goods to a price higher then
the agent’s valuation, we collect back those goods in step (3).

For incentive compatibility, notice that the only point in
which the valuation affects the auction is when the agent’s
demand drops to zero in step (4). Besides step (4), the agent
valuation is used nowhere else. By increasing his value, the
agent can only potentially be allocated goods at a higher
price per unit then his valuation. Declaring a smaller value
can only prevent him from acquiring goods he wants. Also
notice that the price increase for previously allocated goods
in step (2) and the recollection in step (3) are unaffected by

the value of the agent. So no matter which value agent i
declares, the price per unit paid in the end will be at least
γ−1v−i. Also note that the re-assignment to the ∗-pool are
also not affected by the value declaration of the agents.

Finally, we need to show that the outcome is Pareto-
efficient. First we argue that all the good is allocated in the
end, i.e., by the end of the auctions x1 + x2 = 1. The proof
of that fact is similar to the one for the traditional clinching
auction. First we consider the following invariant:

Lemma 0.5. In the beginning of each iteration of the main
loop, the following invariant holds: min(1, 1

pi
[Bi − πi]) =

1− x1 − x2 − x∗.

Proof. This is clearly true for p = (0, 0). Now, we show
that this is preserved as an invariant. Notice that in steps (1)
and (2), the value of pi and πi. Step (3) prevents πi from
being above Bi, so the quantity min(1, 1

pi
[Bi − πi]) is non-

increasing. If it stays the same, then no clinching happens
and since nothing changes for player −i, then the invari-
ant continues to hold. If on the other hand, this value de-
creases, the notice that since 1 − x1 − x2 − x∗ was equal
to min(1, 1

pi
[Bi − πi]) in the beginning of that iteration of

the main loop, then the clinched amount δ−i is equal to the
decrease in min(1, 1

pi
[Bi−πi]), therefore preserving the in-

variant.

Lemma 0.6. All goods are allocated in the end of the auc-
tion.

Proof. The previous lemma states that while there are un-
allocated goods, both players have demand that equals the
total amount of unallocated goods. At the first time that one
player reduces his demand to zero, the other player still de-
mands the entire amount of unallocated goods, so he will
clinch the remainder.

We note that the collection and reassignment of goods,
via the ∗-pool doesn’t influence this argument, since re-
collected goods are eventually re-assigned to the highest val-
ued player.

The following lemma completes the proof of Pareto-
efficiency of the Taxed Ascending Auction.

Lemma 0.7. The outcome of the Taxed Ascending Auction
satisfies condition (ii) in Lemma 0.3.

Proof. We consider four cases:

1. v2 < γ−1v1. In this case, the price of all items allocated to
player 2 are raised to at least γ−1v1 in step (2) of the auc-
tion, which causes them to be collected in step (1). There-
fore the allocation is (1, 0). For this allocation, condition
(ii) in Lemma 0.3 states that v2 ≤ τ ′(π1−)v1 which holds
since v2 ≤ γ−1v1 ≤ τ ′(π1−)v1.

2. v1 < γ−1v2. Analogous to the previous item.
3. γ−1v1 < v2 ≤ v1. Consider the first price in which the

demand of one of the agents drops to zero. This can hap-
pen for one of two reasons:

1993



(a) price p2 reaches v2, his demand drops to zero and
player 1 clinches less then his entire demand. The only
way this can happen is (by Lemma 0.5) if the demand of
1 was larger then 1, which implies that player 2 didn’t
have an opportunity to clinch any amount. So the pay-
ments are π1 < B1 and π2 = 0, implying a Pareto-
optimal outcome.

(b) price p2 reaches v2, his demand drops to zero and
player 1 clinches his entire demand, spending B1. In
this case, the payments at that moment of the auction
are B1 for player 1 and some π2 < B2 for player 2.
The price clock will continue to ascend all the way up
to v1 and no more clinching will happen, but the price
of previously allocated units to player 2 keep rising. Ei-
ther:
• the price increase won’t cause player 2 to pay B2

or more. In such case the final payments are B1 for
player 1 and 0 < π2 < B2. In such case we need
to check two inequalities for property (ii) of Lemma
0.3: v1τ ′(π1−) = v1 ≥ v2τ

′(π2+) = v2 and
v2τ
′(π2−) = v2 ≥ v1τ

′(pi1+) = γ−1v1, both of
which hold by the assumption in this case.

• the price increase causes player 2 to pay more then
B2 and some units are collected in step (2), assigned
to the ∗-pool and then re-assigned later for some price
p ≥ v2 to player 1, which is the highest value player.
By the recollection procedure, the payment of player 2
is exactlyB2 while player 1 has some payment strictly
greater B1 (strictly greater because he is assigned
units from the ∗-pool. Now, checking conditions (ii),
we get: v1τ ′(π1−) = γ−1v1 ≥ v2τ

′(π2+) = γ−1v2
and v2τ ′(π2−) = v2 ≥ v1τ ′(pi1+) = γ−1v1, both of
which hold by the assumptions in this case.

(c) before reaching v2, the demand of one player reaches
zero because his payment reaches Bi by the increase in
price of previously allocated goods that happens in step
(2) of the auction. If this happens, immediately the pay-
ment of the other agent also reachesBi in the clinching
step. As the clock ascends, both agents potentially have
the price of their allocated goods increased and have
items collected to the ∗-pool, but the total payment re-
mains Bi. Only the higher valued player (in this case
player 1) receives the goods from ∗-pool, so we end
up with an allocation in which player 2 pays B2 and
player 1 pays either B1 or some amount larger or equal
to B1. Condition (ii) in Lemma 0.3 holds by the same
argument as in the second part of item (b).

4. γ−1v2 < v1 < v2 is analogous.

Open Problems This paper leave open the question of
whether it is possible to design incentive-compatible and
Pareto-efficient auctions for the following cases: (i) 3 or
more agents with symmetric interest rates; (ii) 2 players with
agent-specific interest rates; (iii) 2 players with generic non-
linear βi-functions. The main issue with (i) and (ii) is that
the characterization of Pareto-efficiency is less crisp in those

cases. Most natural generalizations of the Taxed Ascend-
ing Auction break either incentive-compatibility or Pareto-
efficiency when we move to 3 players or asymmetric interest
rates.
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