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Abstract

Strong Stackelberg equilibrium (SSE) is the standard solu-
tion concept of Stackelberg security games. As opposed to
the weak Stackelberg equilibrium (WSE), the SSE assumes
that the follower breaks ties in favor of the leader and this is
widely acknowledged and justified by the assertion that the
defender can often induce the attacker to choose a preferred
action by making an infinitesimal adjustment to her strategy.
Unfortunately, in security games with resource assignment
constraints, the assertion might not be valid; it is possible
that the defender cannot induce the desired outcome. As a re-
sult, many results claimed in the literature may be overly opti-
mistic. To remedy, we first formally define the utility guaran-
tee of a defender strategy and provide examples to show that
the utility of SSE can be higher than its utility guarantee. Sec-
ond, inspired by the analysis of leader’s payoff by Von Sten-
gel and Zamir (2004), we provide the solution concept called
the inducible Stackelberg equilibrium (ISE), which owns the
highest utility guarantee and always exists. Third, we show
the conditions when ISE coincides with SSE and the fact
that in general case, SSE can be extremely worse with re-
spect to utility guarantee. Moreover, introducing the ISE does
not invalidate existing algorithmic results as the problem of
computing an ISE polynomially reduces to that of computing
an SSE. We also provide an algorithmic implementation for
computing ISE, with which our experiments unveil the em-
pirical advantage of the ISE over the SSE.

Introduction

The past few years have witnessed the huge success of game
theoretic reasoning in the security domain (Tambe 2011;
An 2017). Models based on the Stackelberg security game
(SSG) have been deployed to protect high-profile infrastruc-
tures, natural resources, large public events, etc. (e.g., (Tsai
et al. 2009; Jain et al. 2010; Yin, An, and Jain 2014;
Fang et al. 2016; Basilico et al. 2017)). An SSG models the
interaction between a defender and an attacker, where the
defender commits to a mixed strategy first, and the attacker
best responds with knowledge of the defender strategy.

The Stackelberg equilibrium is the standard solution con-
cept for Stackelberg games (Leitmann 1978). In such an
equilibrium, no player has the incentive to deviate and the
leader assumes that deviations made will result in optimal
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responses of the follower when evaluating the benefit of
deviations. The tie-breaking rules differentiates two forms
of Stackelberg equilibria. The strong form of the Stack-
elberg equilibrium, called the strong Stackelberg equilib-
rium (SSE), assumes that the follower always breaks ties by
choosing the best action for the defender, whereas its coun-
terpart, the weak Stackelberg equilibrium (WSE), assumes
that the follower always chooses the worst action. The SSE
is commonly adopted as the standard solution concept be-
cause the WSE may not exist (Von Stengel and Zamir 2004);
and the counter-intuitive tie-breaking rule is justified, im-
plicitly or explicitly in the literature, by the assertion that the
defender can often induce the favorable strong equilibrium
by selecting a strategy arbitrarily close to the equilibrium.

Unfortunately, the assertion may break, especially in sce-
narios with various resource assignment constraints, such as
scheduling constraints in the Federal Air Marshals Service
(FAMS) domain, constraints on patrol paths for protecting
ports, and constraints in the form of protection externali-
ties (Tsai et al. 2009; Jain et al. 2010; Shieh et al. 2012;
Gan, An, and Vorobeychik 2015). Most existing works
failed to realize the potential impossibility to induce SSE
in such domains. If the desired SSE cannot be induced, re-
sults claimed would questionably be overly optimistic. Such
overoptimism is problematic in its own right and may even
cause greater risks for the following reasons. First, these
results may be used in making security resource acquisi-
tion decisions, i.e., what combination of security resources
need to be procured (McCarthy et al. 2016); overoptimism
of SSE may cause an insufficient number or wrong types of
resources to be deployed. Second, statements made based
on comparisons between the expected utility of SSE with
some heuristic strategies or human-generated solutions to
claim superiority of SSE strategies would be in potential
jeopardy (Pita et al. 2008; Tsai et al. 2009; Xu et al. 2017).
Third, the SSE strategy recommended may not be the opti-
mal one, thus failing in optimizing the use of limited security
resources, which is the primary mission of security games.

In this paper, we remedy the inadequacy of the SSE in
security games and make the following key contributions.
1) We formalize the notion of overoptimism by defining the
utility guarantee of the defender’s strategies, and show with
a motivating example that the utility claimed to be guar-
anteed by the SSE is much higher than the actually guar-



anteed utility. 2) Inspired by the notion of inducible strat-
egy (Von Stengel and Zamir 2004), we characterize the so-
lution concept with the highest utility guarantee and call it
inducible Stackelberg equilibrium (ISE). 3) We compare ISE
with SSE and show that for games with certain structures,
the two concepts are equivalent, though in general cases the
guaranteed utility of SSE can be arbitrarily worse than that
of ISE; in addition, introducing the ISE does not invalidate
existing algorithmic results as the problem of computing an
ISE polynomially reduces to that of computing an SSE. 4)
We provide algorithmic implementation for computing the
ISE and conduct experiments to evaluate our results; our
experiments unveil the significant overoptimism and sub-
optimality of the SSE, which suggests the practical signif-
icance of the ISE solution.

Other Related Works To the best of our knowledge,
Okamoto, Hazon, and Sycara (2012) are the only excep-
tion who have raised the concern of lack of inducibility
in security games, though their model is a very specific
type of network security games that cannot be generalized
to standard security games, especially games with schedul-
ing constraints. Besides that, the more important question
regarding the overoptimism due to the lack of inducibil-
ity and the algorithmic remedies needed for such overopti-
mism were left unanswered (in particular, the solution al-
gorithm proposed by Okamoto, Hazon, and Sycara only
converges to a local optimum even only in their setting).
These questions are addressed in the affirmative in this pa-
per. The concept of inducible target in our paper (Defi-
nition 2) is inspired by inducible strategy first proposed
by von Stengel and Zamir (2004) in their study of gen-
eral Stackelberg games. However, the focus of their work
was solely on characterizing the range of leader’s utility
in Stackelberg equilibria with the aim of confirming the
advantage of commitment (Von Stengel and Zamir 2004;
von Stengel and Zamir 2010). Some other works consid-
ered potential deviation of the attacker from their optimal
responses and proposed solution concepts that were robust
to these deviations (Pita et al. 2009; Yang et al. 2014;
Nguyen et al. 2013). Our work differs from this line of re-
search in that we consider perfectly rational attackers.

Preliminaries
Security Games with Arbitrary Schedules

A security game is a two-player Stackelberg game played
between an attacker and a defender. The defender allocates
resources R to protect a set of targets 7. Let n T
A resource € R can be assigned to a schedule s C T
which covers multiple targets and is chosen from a known
and constrained set S, C 27 The attacker’s pure strategy is
choosing one target ¢ € T to attack, and his mixed strat-
egy can be represented as a vector a € A where a; de-
notes the probability of attacking ¢ € T. The defender’s
pure strategy is a joint schedule ;7 which assigns each re-
source to at most one schedule. Let j be represented as a
vector P; = (Pj;) € {0,1}" where P}; indicates whether
target ¢ is covered in joint schedule j. The set of all feasible
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joint schedules is denoted by J. The defender’s mixed strat-
egy x € X is a vector where x; denotes the probability of
playing joint schedule j. Let ¢ = {c;) be the coverage vector
corresponding to x, where ¢; = . ; Pj;x; is the marginal
probability of covering t.

The payoffs of players are decided by the target cho-
sen by the attacker and whether the target is protected by
the defender. The defender’s payoff for an uncovered at-
tack is denoted by U} (¢) and for a covered attack US(t).
Similarly, U¥(t) and UZ(t) are attacker’s payoffs respec-
tively. A widely adopted assumption in security games is
that U5(¢t) > UY(t) and U¥(t) > US(t). In other words,
covering an attack is beneficial for the defender, while hurts
the attacker. Given a strategy profile (x,a), the expected
utilities for both players are

Ualx,2) = ZteT
U,(x,a) = ZteT atc:US(t) + (1 —c)U,' (1)),

where c is the coverage vector corresponding to x. Let
U.(x,t) and Uy(x,t) denote the expected utilities of the
attacker and defender respectively when ¢ is attacked. The
illustrated security game model has a wide applicability in
many security applications (Kiekintveld et al. 2009; Jain et
al. 2010; Tsai et al. 2009; Gan, An, and Vorobeychik 2015).

jeJ

agleUg(t) + (1 = e)Ug (t)]

Stackelberg Equilibria and Tie-Breaking Rules

In an SSG, the defender acts first by committing to a mixed
strategy and the attacker moves after having observed the de-
fender’s commitment. The solution concept of Stackelberg
games, called Stackelberg equilibrium, captures the outcome
in which the defender’s strategy is optimal, under the as-
sumption that the attacker will always respond optimally to
the strategy the defender plays (Leitmann 1978). A pair of
strategies (x*, f(x*)) forms a Stackelberg equilibrium iff:

1. f: X — Ais a best response function of the attacker,
that satisfies: U, (%, f(x)) > U,(x,a) for all x € X’ and
ac A,

2. Ua(x*, f(x*)) = Ua(x, f(x)) forall x € X.

A tie represents a situation where multiple best response
strategies exist for the attacker. Ties are not rare corner cases,
but a fundamentally recurring situation in security games.
To achieve maximal usage of defense resources, algorithms
avoid allocating too many or too few resources to each tar-
get, and in most cases generate a tied solution (Paruchuri
et al. 2008; Kiekintveld et al. 2009). Thus, a tie-breaking
rule — how the attacker breaks ties — plays a central role
in security games and is exploited to design efficient algo-
rithms, such as ORIGAMI (Kiekintveld et al. 2009). Differ-
ent tie-breaking rules lead to different Stackelberg equilib-
ria. The strong Stackelberg Equilibrium (SSE) and the weak
Stackelberg Equilibrium (WSE) are two prevailing solution
concepts, defined respectively with the optimistic and pes-
simistic assumptions of the attacker’s tie-breaking behavior:

e SSE: f¥(x) € arg max;cr(x) Ua(x, t) for every x;
e WSE: /' (x) € arg minyep(x) Ua(x, t) for every x;



ty tz t3 ty

2 1 2 2

Attacker . 5 l l

—4 —4 —4

22 e

Defender —1 —0.5 _-2 _-2

L I L1 L1

u yjc S1 Sz S3

Ua’ Ud | |
v, vy S4

Figure 1: Motivating example

where I'(x) = arg maxier U, (X, t) is the artack set, the set
of all best response pure strategies (targets) for attacker. In
words, the attacker breaks ties in favor of the defender in the
SSE, while against the defender in WSE.

WSE and SSE  WSE follows the spirit of maximin solu-
tion (Sandholm 2015), which provides the defender a guar-
anteed value in the sense that if the attacker breaks ties in a
different manner, the defender does not gain less. The SSE,
however, does not provide such a value guarantee. Despite
this, the security game literature has adopted SSE instead
of WSE primarily because a WSE may not exist (Conitzer
and Sandholm 2006). In addition, the counter-intuitive as-
sumption that the attacker breaks ties in favor of the de-
fender is justified by the assertion that the desired outcome
can often be induced by playing a strategy arbitrarily close
to the SSE strategy. Kiekintveld et al. (2009) were the first
who explicitly made such a claim in the security game do-
main, following the analysis for generic Stackelberg games
(Von Stengel and Zamir 2004). Since then, despite a lack of
systematic research, the claim has been commonly used to
support the SSE in security games of various types, includ-
ing games with scheduling constraints (e.g., (Jain et al. 2010;
Varakantham, Lau, and Yuan 2013; Gan, An, and Vorobey-
chik 2015)). The idea of SSE is also integrated in real world
systems such as the ARMOR deployed at LAX (Pita et al.
2008), and IRIS for the Federal Air Marshal Services (Tsai
et al. 2009). To see what can go wrong with the SSE assump-
tion, we provide a concrete example in the next section.

Motivating Example

Consider an instance shown in Figure 1 where T
{t1,t2,t3,t4}. The defender has one resource R = {r}.
We first consider the scenario without resource assign-
ment constraints, which has a unique SSE with coverage
¢ = (&, %, 15, 75). In SSE, the attacker will break the tie
I'(c) = T by attacking ¢5. This can be induced by decreas-
ing the coverage on to with infinitesimal amount and in-
creasing the coverage on other targets, making ¢, be strictly
preferred. However, with resource assignment constraints,
the defender cannot decrease the coverage on one target arbi-
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trarily while simultaneously not decreasing coverage on all
other targets. Suppose joint schedules J = {s1, 2, $3, 54}
as shown in Figure 1. (There is only one resource.) The
game still has a unique SSE where the defender plays x =
(3,%,%,0) and the attacker is assumed to attack 5, bring-
ing the defender an expected utility of —%. Such outcome
is explicitly or implicitly considered with previous men-
tioned infinitesimal strategy deviation in security game liter-
ature (Jain et al. 2010). Unfortunately, there exists no strat-
egy arbitrarily close to x which makes to be strictly pre-
ferred by the attacker. If x; is decreased, the attacker will
prefer ¢, over to; otherwise t3 or t4 will be attacked. Thus,
any infinitesimal strategy deviation will cause the attacker
to attack ¢q, t3 or 4. The best induced outcome for the de-
fender is only approaching —%, achieved by decreasing x;
with infinitesimal amount and the attacker is induced to at-
tack t7.

Can the defender do better than fg? The answer is

yes. Consider the mixed strategy (1,0,0, 3). The attack set
is {t1,t3,t4} and the defender can induce the attacker to
strictly prefer ¢ by playing (3 — 4,0,0, 3 + &) with in-
finitesimal §. By doing this, the defender can guarantee an
expected utility arbitrarily close to —0.5, better than —%. In
fact, this is the best outcome that the defender can achieve
with infinitesimal strategy deviation. Such optimal outcome
is captured by the solution concept called inducible Stackel-
berg equilibrium (ISE), proposed in the following section.

Inducible Stackelberg Equilibrium

The above example reveals a failure of the attempt to induce
the desired SSE outcome by playing a strategy arbitrarily
close to the SSE strategy. It is natural to ask: Given any strat-
egy x, what is the best outcome inducible by playing strate-
gies arbitrarily close to x? Associated with such best out-
come, which strategy is optimal? To answer these questions,
inspired by the “pessimistic” view of the leader’s payoff in
Stackelberg games (Von Stengel and Zamir 2004), we define
the utility guarantee of a defender strategy as the supremum
of the worst-case expected utility that can be achieved by
playing a strategy arbitrarily close to the measured one.

Definition 1 (Utility Guarantee). The utility guarantee of
a defender strategy x is defined as

U'(x) = limsup min Uy(x', 1)
x'—x teEL(x’)

(D

The utility guarantee is well-defined since the limit su-
perior always exists. It measures the inducibility of a de-
fender strategy: U (x) is the optimal outcome at x that is
inducible via infinitesimal strategy deviation. The aforemen-
tioned assumption widely acknowledged in security games
falsely claim that any SSE strategy x provides utility guaran-
tee Uy(x, f7(x)), i.e., Ul(x) = Uq(x, f°(x)). Therefore,
we need to find the optimal strategy with respect to the util-
ity guarantee. We notice that the optimal utility guarantee
coincides with the “pessimistic” leader’s payoff (Von Sten-
gel and Zamir 2004) as follows:

2

max U (x) = sup min Ug(x,t
xE/\}.’( ( ) xegtel"(x) d( )



Inspired by the analysis of “pessimistic” leader’s pay-
off (Von Stengel and Zamir 2004), we introduce several use-
ful notions for defining ISE. The first is inducible target.

Definition 2 (Inducible Target). A target t is inducible iff
there exists at least one defender mixed strategy x € X such
that T'(x) = {t}.

Inducible target offers the defender a lower bound on the
utility guarantee as U’(x) > Uy(x,t) holds for any in-
ducible target ¢ in I'(x). The intuition is as follows. Since
t is inducible, there exists x’ against which ¢ is the unique
best response for attacker. Thus, from x, we can always play
(1 — a)x+ ax’ with @« — 0 which always makes ¢ a unique
best response as long as « > 0. Then it is easy to verify that
the supremum in (1) is always at least Uy ((1 — a)x+ax’, t),
of which the limit is Uy(x, t).

The concept of inducible target is insufficient to fully
characterize the utility guarantee of a strategy because a pair
of targets might be indistinguishable from the attacker’s per-
spective as they always bring the attacker the same utility
irrespective of the strategy the defender plays. Such targets
are called identical targets.

Definition 3 (Identical Target). A pair of targets t and t'
are identical iff Uy (x,t) = Uy (x,t') for any x € X.
Identical targets are non-inducible by Definition 2. How-
ever, it is possible that the optimal utility guarantee in (1)
is achieved via infinitesimal strategy deviation that induces
a group of identical targets to be “unique” best responses.
Thus, a generalized notion, inducible element, is defined to
capture this special case. We begin with defining an element.

Definition 4 (Element). An element is a set of targets in
which: i) every pair of targets are identical, and ii) no target
is identical to any target not in it.

The reason that we call it an element is as follows. First,
from the attacker’s perspective, the element is the gener-
alization on farget as it characterizes the extend to which
the attacker can distinguish from the perspective of pay-
offs. Second, with mild assumption which often holds true in
practice, one can easily verify that two targets are identical
iff they have same payoffs for attacker and they are covered
by the same set of schedules. Thus it is easy to enumerate
all possible elements. Let {¢} be a singleton element if no
target in 7" is identical to ¢. The inducible element extends
the concept of inducible targets as follows.

Definition 5 (Inducible Element). An element e is in-
ducible iff there exists at least one defender mixed strategy
x € X such that T'(x) = e.

The observation that inducible target offers a lower bound
to utility guarantee extends to inducible element. To show
this, we first define the utility function in an element-based
manner. For a defender strategy x, we define Uy(x, e) and

Ua(x,e) as follows

Uq(x,e) = min Uy(x, t)
R tee (3)

Uas(x,€) = Uy(x,t) Vtee.

One key observation here is that, if e is inducible, Uy(x, e)
lower bounds U (x). This follows the similar explanation
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with inducible targets. Since e is inducible, there exists x’
such that T'(x’) = e by definition and we can “perturb” x
towards x’ with infinitesimal amount and the attack set be-
comes exactly e. The observation follows as we notice that
Ua(x, e) is a smooth function and thus the change on it with
infinitesimal deviation on x is bounded.

With singleton element defined, the target set T is parti-
tioned into a disjoint element set £. It is easy to see that,
for any defender strategy x, the attack set I'(x) is always
a union of some elements in £. Thus, we define I'(x)
{e € £ | e C T'(x)}, and one can always verify that
I'(x) = Ueepx) € I'(x) can be interpreted as an “attack

set” consisting of elements, instead of targets. Let £ I'ceg
denote the set of inducible elements. The utility guarantee is
actually decided by the inducible elements as presented in
the following equation.

U’ (x)

max
ecl(x)NET

= Ua(x,e) “4)
The correctness of this equation formally follows the anal-
ysis of “pessimistic” leader’s payoff by Von Stengel and
Zamir (2004), and here we provide an intuitive explana-
tion. Since the players’ utility functions are smooth, with
infinitesimal strategy deviation, Uy(x,t) and U,(x,t) can
be regarded as unchanged for any ¢. Besides, with infinites-
imal strategy deviation, it is only possible for defender to
“remove” some target out of the attack set, while it is un-
able for the defender to add a new target into the attack set
given the non-zero gap between attacker’s utilities between
targets inside and outside the attack set respectively. Thus,
since the inducible outcome U?(x) is defined on the worst
tie-breaking rule, i.e., . nl%n )Ud(x’, t) in (1), and infinites-
el (x’

imal strategy deviation won’t change the defender’s utility
on any target, the defender always has an intention to re-
duce the attack set via infinitesimal strategy deviation. It is
then noticed that, any inducible element can be the attack
set itself with infinitesimal strategy deviation as we shown
before, while any element, that is not inducible, cannot be
the unique best response element. Besides, the definition of
element determines that if one target from element e is in
the attack set, so as all targets from e. Thus, the defender
can only get min;c. Uy(x,t) under worst-case tie-breaking
rule, when e € T'(x) N £’ becomes the unique best response
element with infinitesimal strategy deviation.

To this end, we characterize the inducible outcome with
well-defined concept of inducible elements, and we are
ready to define the concept of inducible Stackelberg equilib-
rium, which straightforwardly follows the previous analysis
Definition 6 (ISE). A pair of strategies (x*, f*(x*)) forms
an ISE if the following holds:

I x* '(x);
X GarggleagU (x)

2. flix) € arg mi(n)Ud(x,t) where e(x) €
tee(x
arg max U(x,e).
ecl(x)NET

Tie-breaking rule f partially shares the property of f°
as the attacker breaks the ties of elements in favor of the



defender. Meanwhile, it behaves as f W when the attacker
breaks the ties of targets from the same element. Notice that
ISE successfully addresses the inducibility issue of SSE, and
always exists by its definition. In the next section, we con-
duct extensive analysis to compare ISE with SSE.

ISE vs. SSE

In this section, we show that when Subsets of Schedules Are
Schedules (SSAS) (Korzhyk et al. 2011) is satisfied, ISE and
SSE are equivalent under mild assumption. However, in gen-
eral cases the utility guarantee of SSE can be much worse
than that of ISE, and we present one such example.

Formally, SSAS states that 2° C S for all s € S. This
can happen, for example, when the defender can choose to
bypass arbitrary targets on their patrol route.

Theorem 7. If SSAS is satisfied, every SSE (x*,t*) such that
cy= > 0is also an ISE.

Proof. Tt is easy to see that when SSAS is satisfied, no pair
of targets are identical, as every target ¢ covered by s is
uniquely covered by s’ = {t}. Therefore, & = {{t} | Vt €
T'}. We then show that each singleton element {¢} is in-
ducible. In other words, ¢ is an inducible target. If T'(x*)
contains only ¢*, then ¢* is inducible. If I'(x*) also con-
tains other targets, since SSAS is satisfied, we can construct
a defender strategy x’ such that x} = zj for all supporting

strategies j that does not contain t*, and {,C;-\ (s} = x for

all other j that contains s. Thus, the corresponding coverage
¢« strictly decreases while the coverage of other targets re-
main the same. As a result, the attacker will strictly prefers
to attack t*, so t* is inducible. O

Under SSAS, the set of SSE strategies is also a sub-
set of NE strategies (Korzhyk et al. 2011). This suggests
the relationship between SSE, ISE and NE strategies il-
lustrated in Figure 2a. Notice that security games with-
out schedules can be seen as ones with singleton sched-
ules S = T, so that SSAS is satisfied trivially. Although
SSAS is valid in many real scenarios, it is risky to re-
gard it as being ubiquitous. For example, in the presence
of protection externalities (Gan, An, and Vorobeychik 2015;
Gan et al. 2017), the effect that a defense resource might pro-
tect a set of targets within a certain radius can hardly be con-
fined to a specific subset; in FAMS tasks (Tsai et al. 2009;
Jain et al. 2010), when air marshals are allocated to a row of
connected flights, it is unrealistic to make them “jump” over
only a subset of the schedule. Our example below shows that
in general security games, SSE can be arbitrarily worse than
ISE in terms of the utility guarantee.

Example 1. The example is shown in Figure 2b. The de-
fender has only one resource. One can verify, the SSE strat-
egy uniformly allocates this resource on 1, ..., S,,—1 in order
to make ¢, be in the attack set. Unfortunately, ¢, is not in-
ducible since t5 is weakly dominated by ¢, for the attacker.
Therefore, U] (x) = L. On the other hand, the ISE strat-
egy uniformly assigns the resource on s; and s,, which to-
gether cover all the targets and U] (x') = 1

3-
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Figure 2: (a) SSE, ISE and NE; (b) SSE can be arbitrarily
worse w.r.t. utility guarantee.

Example 2. Notice that, in previous examples shown in the
paper, a lot of targets have equal payoffs. However, this is
only for the convenience of exposition. It is possible that
ISE is not SSE when all targets have unequal payoffs. For
example, there are 4 targets t1, to, t3, and t4. Payoffs for the
attacker on a successful attack are 1, 2, 3, and 4, respectively,
and on an unsuccessful attack are -1, -2, -3, and -8 respec-
tively. Payoffs for the defender on preventing an attack are
1, 100, 2, and 30 respectively and for failing to cover the
attacked target are -1, 0, -2, and -3 respectively. There are
two schedules s1 = {t1,t2,t3} and sy = {4}, and one re-
source available to the defender. We can easily verify that
SSE strategy is x°°F = (0.5,0.5) and attacker is assumed
to attack ¢o. However t5 is not inducible, and ISE strategy is
x5 = (9/14,5/14) and attacker is induced to attack t,.

Computing an ISE

We have shown that ISE mitigates the inducibility risk of
SSE which can cause extremely worse performance in util-
ity guarantee. In this section, we show that, from a com-
putational perspective, ISE does not complicate existing so-
Iution concepts as the problem of computing an ISE poly-
nomially reduces to that of computing an SSE on the same
class of schedules. Besides the theoretical result, a practical
approach is also presented to compute an ISE.

A Polynomial-time Reduction to Computing an SSE

We start by defining the feasibility of a target. We say a tar-
get is feasible if there exists x € X such that ¢ € T'(x). We
will refer to the problem of deciding if a target is feasible or
not, the feasibility problem; and of deciding if a target is in-
ducible or not, the inducibility problem. The feasibility and
inducibility of an element follow the similar definitions. We
first restrict the investigation to games without identical tar-
gets. The reduction is presented in Theorem 9, where a series
of feasibility checks are incorporated as sub-procedures.

Lemma 8. For any target t in security games, the inducibil-
ity problem reduces to the feasibility problem on games with
the same class of schedules in polynomial time'.

Proof sketch. The intuition behind Lemma 8 is the obser-
vation that whenever U, (c,t) > Uy(c,t’) for all t/ # ¢,

!The detailed proof is available at the Appendix on the full ver-
sion: https://arxiv.org/pdf/1811.03823.pdf.



there is a lower bound ¢ of the gap, such that U,(c,t) —
Ua(c,t') > 6 forall ' # ¢, and log § is bounded by a poly-
nomial in the input size. Blending ¢ into the payoffs, we con-
struct a new game such that ¢ is inducible in original game
if and only if ¢ is feasible in the new constructed game. [l

Theorem 9. The problem of computing an ISE reduces to
the problem of computing an SSE of games with the same
class of schedules in polynomial time.

Proof. An ISE can be computed in the following way:

1. Check inducibility of every targets and obtain 7'7.

2. For each t € T, solve maxy.ter(x) Ud(xX,t), which
yields the defender’s optimal strategy under the constraint
that ¢ is an optimal response of the attacker.

. Among all the solutions obtained above, find out the one
with the highest defender utility. The corresponding tar-
get, t* say, and the optimal defender strategy correspond-
ing to t* forms an ISE.

Specifically, in Step 1, the inducibility problem reduces to
the feasibility problem by Lemma 8. The feasibility of ¢ can
further be decided by computing the SSE of a game in which
defender’s payoff parameters are modified to: U} (¢') = 1
and US(t') = 2forallt’ # t;and U} (t) = 3and US(t) = 4
(the attacker’s payoffs remain the same as in the feasibil-
ity problem). In this game, even the penalty on ¢ is strictly
higher than the rewards on all the other targets, so the de-
fender strictly prefers the attacker to choose ¢, irrespective
of the coverage of the targets. Therefore, ¢ is feasible if ¢ is
in the attacker’s attack set in every SSE, so we can check
whether this is true to decide the feasibility of ¢.

In Step 2, each of the optimizations can be solved, again,
by computing the SSE of a game in which defender’s payoff
parameters are modified to: U} (') = 1 and U§(t') = 2 for
allt’ # t; and U} (t) = 3 and U5 (t) = 4 (the attacker’s pay-
offs remain the same as in the original game). t is inducible
and hence feasible in the original game, and the feasibility
remains in modified game as the attacker’s payoffs are the
same. For the same reason above, an SSE must incorporate
t in the attack set, so that U, (x,t) > U,(x,t') Vt' # tis
satisfied. In addition, ¢; is maximized in the solution, so the
SSE is exactly a solution to the optimization in Step 2.

Therefore, an ISE is obtained via polynomially many calls
to the computation of an SSE. This completes the proof. [J

Dealing with Identical Targets

In the presence of identical targets, it is assumed that, for
every inducible element, the target worst for the defender is
to be chosen by the attacker. We keep Step 1 of the proce-
dure in the proof of Theorem 9 by treating identical targets
as one target, so that a target is inducible if at least one target
identical to it is inducible (even though this target might not
actually be induced). However, when we actually compute
the defender’s optimal strategy conditioned on a particular
inducible target being attacked as in Step 2, we need ad-
ditional constraints that require this target is worst for the
defender among all targets that is identical to it, i.e.,

Ua(cr,t) < Uglep,t'), Vit identical to t.
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We convert the constraints to equivalent ones in the form of
Uu(x,t) > Uy(x,t") (as in Step 2) to finish the reduction.

Observe that ¢; = ¢ since t’ and t are identical, so the
above constraints are equivalent to

Ua(cr,t) < Ugle,t'), V' identical to ¢,

which only involve a single variable c;. Thus, the constraints
effectively reduce to an inequality of the form o < ¢; < f3,
with two constants « and 3. For ¢; > «, given the objec-
tive of the problem as maximizing Uq(x, t) (which increases
with ¢;), this part can be ignored: if the solution does not
satisfy ¢; > «, that means there is no feasible solution sat-
isfying ¢; > «; we simply skip ¢ in Step 3. The second half,
¢ < [, can be captured by modifying the attacker’s pay-
off parameters of an arbitrary target ¢/, that is identical to
t, to US(t') = UX(t) U.(B,1), so that the constraint
Ua(ct,t) = Ugqlew,t') is now equivalent to ¢; < S (this
constraint is useless before the modification when it always
holds that U, (¢t, t) = Uy (cy, t)).

Algorithmic Implementation

As a theoretical result, the above reduction involves repeated
calls of computing an SSE and therefore falls short on prac-
tical performance. We introduce a more concise practical
approach to compute an ISE. We first limit our scope to
the games without identical target. The extension to include
identical targets into consideration is fairly straightforward.
First, inducibility of a target ¢ can be decided using the
following program: ¢ is inducible iff the optimum u»* > 0.

max u
st Ug(x,t) > Uy(x,t) +u V' #t (5)

ZjGJ 7y =1

Solving the above program for each ¢ € T', we obtain the
inducible target set 7. By Proposition 10, the computation
of an ISE further converts to computing an SSE of a game
restricted to targets in 7. There is a large body of research
on designing algorithms for computing an SSE of security
games with various types of schedules, such as ASPEN (Jain
etal. 2010) and CLASPE (Gan, An, and Vorobeychik 2015).
These algorithms can be applied directly.

Implied by Proposition 10 to compute the “pessimistic”
leader’s payoff (von Stengel and Zamir 2010), we can di-
rectly compute an SSE in a restricted game g’ whose target
set is the set of inducible targets in targeted game g, and map
this SSE to ISE of game g.

Proposition 10. For a security game g = (T, R, S), an SSE
defender strategy of the game ¢ = (T!, R, S') is an ISE
strategy in g, where TT is the inducible target set of g, and
ST ={snTls e S}.

When identical targets exist, we first enumerate all in-
ducible elements £’ by solving optimization (5) with slight
modification, by replacing the target ¢ and utility function
Ui (x,t) with the element e and element-based utility func-

tion Uy (x, e) defined in (3), for € {a,d}. An ISE can be



computed with the multi-LP approach (Conitzer and Sand-
holm 2006), where each LP corresponds to an inducible el-
ement e € £ as follows

max u
st. Ua(x,e) > U,(x,e’) Ve e& 6
u < Ug(x,t Viee ©

Zje.] {Ej =1

The solution with the highest objective among multiple LPs
is an ISE. It can be easily verified that the large body of de-
signing algorithms, especially those based on strategy gen-
eration techniques, can adapt to solve (6) with little effort.

Experimental Evaluation

We evaluate our solution concept and proposed algorithmic
implementation with extensive experiments. All results are
obtained on a platform with a 2.60 GHz dual-core CPU and
8.0 GB memory. All linear programs are solved using the ex-
isting solver CPLEX (version 12.4). The random instances
are generated as follows: rewards and penalties are all in-
tegers randomly drawn from [0, 5] and [—5, 0] respectively.
Each schedule is randomly generated covering a fixed num-
ber [ of targets and each target is ensured to be covered by
at least one schedule. The resources are all homogeneous,
ie., S, = S for any r € R. Unless otherwise specified, all
results are averaged on 100 randomly generated instances.
For the purpose of comparison, we define the overopti-
mism and sub-optimality of SSE w.r.t. the utility guarantee.

Definition 11 (Overoptimism and sub-optimality). Let x
be an SSE strategy.

(%) > U (x);

e x is sub-optimal if Ul(x) < max,ex UL (X)).

o x is overoptimistic if Ug(x
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Figure 3: (a) Inducibility; (b) Scalability.

Inducibility We depict the percentage of inducible targets
on instances with 100 targets and 1 resource on Figure 3a.
The results show that with more schedules and more targets
per schedule, the game has more inducible targets. That is
because the defender can cover the high valued targets with
enough resources so that the low valued targets can be in-
duced to become unique best responses. The important ob-
servation here is that the percentage is neither too high nor
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too low (within [15%, 30%)]), which indicates that the in-
ducibility is not a trivial property.

Scalability We evaluate the scalability of our algorithmic
implementation for computing an ISE. The result is shown
on Figure 3b. The game instances are randomly generated
with I = 5, |R| = 5, |T| ranges from 50 to 400 with step
size of 50, and |S| = |T|/2. We adopt the column gen-
eration approach with heuristic bounds to solve the large
scale LPs (Gan, An, and Vorobeychik 2015). As a compar-
ison, the scalability of computing SSE with the same algo-
rithmic framework is also depicted. The result shows that,
it takes almost the same computational costs to compute
an ISE and an SSE. The algorithmic implementation can
compute ISE for large-scale instances. Thus, ISE success-
fully mitigates the inducibility issue of SSE without sacri-
ficing the benefit of scalable algorithms for computng SSE.
Overoptimism and Sub-optimality of SSE We examine
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Figure 4: Overoptimism and sub-optimality of SSE.

the overoptimism and sub-optimality of SSE. 500 instances
are randomly generated with 200 targets, 1 resource, |S| €
{16,18,20} and [ € {16, 18,20}. This setting fits many re-
alistic security domains, such as the port protection (Shieh
et al. 2012), where the Coast Guard has few resources (pa-
trol boats) and limited schedules due to complex geographic
and efficiency constraints, and each schedule corresponds
with one patrolling path visiting several targets. The results
are shown in Figure 4, where PeO and PeS denote the per-
centages of instances with overoptimistic and sub-optimal
SSE respectively. Moreover, Figure 4 also shows the com-
parisons between the expected utility of SSE (“SSE-u”) with
the utility guarantee of SSE (“SSE-g”) averaged on instances
where SSE is overoptimistic, and similarly the comparisons
between average utility guarantees of SSE and ISE (tagged
with “SSE-g” and “ISE-g” respectively) on instances, where
SSE is suboptimal. The 95% confidence interval is depicted.



T |R| |S] | PeO PeS
400 3 24 24 22% 6%
400 5 26 26 18% 8%
400 5 26 24 26% 14%
400 5 24 28 18% 26%
600 3 20 40 32% 10%
600 3 22 42 24% 6%
600 3 18 38 38% 4%
800 3 30 40 24% 6%
800 3 28 38 26% 10%
800 3 28 40 26% 6%

Table 1: Parameter settings with 3 and more resources.

The results show that SSE suffers from significant overopti-
mism and sub-optimality, which is highly problematic as we
explained in the introduction. We also conduct simulations
in a large number of different parameter settings with 3 and
more resources. Here we list the results on ten settings in
Table 1. For each of these settings, we randomly generate 50
instances. Significant numbers of cases with overoptimistic
and suboptimal SSE are observed for almost every setting.
Thus, the aforementioned risk of applying SSE in practice
can be a general issue for many security domains and ap-
plications, and we argue that ISE should be considered as a
“safer” alternative.

Conclusion

This paper reveals the significant potential risk of overopti-
mism of SSE in security games. We propose a new solution
concept, ISE, by exploiting the inducible targets. Our theo-
retical analysis proves the existence of ISE and its optimal-
ity in utility guarantee, and our formal comparisons between
ISE and SSE emphasize that ISE is a more suitable solution
concept in security games. Extensive evaluation shows that
SSE is significantly overoptimistic and ISE achieves signifi-
cantly higher utility guarantee than SSE. We will investigate
the inducibility issues in generic games and Bayesian games
in future work.
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