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Abstract

Enforcing cooperation among substantial agents is one of the
main objectives for multi-agent systems. However, due to the
existence of inherent social dilemmas in many scenarios, the
free-rider problem may arise during agents’ long-run inter-
actions and things become even severer when self-interested
agents work in collusion with each other to get extra bene-
fits. It is commonly accepted that in such social dilemmas,
there exists no simple strategy for an agent whereby she can
simultaneously manipulate on the utility of each of her op-
ponents and further promote mutual cooperation among all
agents. Here, we show that such strategies do exist. Under the
conventional repeated public goods game, we novelly iden-
tify them and find that, when confronted with such strategies,
a single opponent can maximize his utility only via global
cooperation and any colluding alliance cannot get the upper
hand. Since a full cooperation is individually optimal for any
single opponent, a stable cooperation among all players can
be achieved. Moreover, we experimentally show that these
strategies can still promote cooperation even when the oppo-
nents are both self-learning and collusive.

Introduction
The emergence of substantial real-world multi-agent sys-
tems becomes an irreversible tendency in artificial intelli-
gence. Enforcing cooperation on the agents to achieve good
outcomes is a long-standing challenge in multi-agent sys-
tems, especially when the agents are involved in a long-
run interaction or when there are a large number of agents
(Santos, Pacheco, and Santos 2018; Wooldridge 2009; Kraus
1997). One of the underlying reasons for such a challenge
is that there is a social dilemma in many multi-agent sys-
tems (Panait and Luke 2005; Turner 1993). Although the
agents can bilaterally share costs to give benefits to oth-
ers and achieve a positive social equilibrium whereby each
agent’s utility is much improved, without a proper incen-
tive or strategy design, the free-rider problem will occur
and self-interested agents will settle to competitive equilib-
ria that are most likely sub-optimal. This well-known phe-
nomenon is called the tragedy of the commons (Olson 2009;
Hardin 1968). It becomes even severer when some agents
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form a colluding group and tactically adjust the group strat-
egy to get a higher average utility than that of the coopera-
tive equilibrium (Telser 2017; Hilbe et al. 2014). Decades of
research from different disciplines including behavioral eco-
nomics and artificial intelligence has sought to conquer the
multi-agent social dilemma (Leibo et al. 2017; Nowak 2006;
Dietz, Ostrom, and Stern 2003; Dawes 1980). It remains
equally critical today.

One of the most representative models for social dilem-
mas is the repeated Public Goods Games (PGG), which is
a dynamic extension of the abstract public goods games
(Ledyard 1994). A repeated PGG could consist of a se-
ries of stage games (either finitely or infinitely many). In
each stage t, the same group of n agents privately decide
how many of their tokens e to put into a public pot. At
the end of each stage, the tokens in the pot are multiplied
by a factor r, representing the ‘public good’ and is equally
distributed to all the agents. With r smaller than the group
size n, non-contributing free-riders gain more than contrib-
utors. In literature, experimental economic studies suggest
a common interval for r is greater than 0.3n and less than
0.75n (Isaac, Walker, and Thomas 1984). Although this
multi-player game system can yield a maximum total util-
ity when all agents decide to fully contribute their tokens,
the Nash equilibrium of a single stage PGG is no contri-
bution to the public good for every agent. In such a stan-
dard model of the repeated social dilemma, according to
the Folk Theorem, the long-run interaction allows for the
emergency of many equilibria within which the social op-
timum can be directed. But the problem is, without proper
strategy design for the repeated PGG, the individually ratio-
nal agents will lead to an inferior outcome for all or some
agents, than the decisions of ‘socially rational’ agents. The
problem is how to select out good equilibria, which can be
considered loosely equivalent to a social norm (Santos 2017;
Young 2015; Epstein 2001).

In this work, we propose a new theory to solve the social
dilemma under the framework of the repeated PGG. We first
set up the model of the n-player repeated PGG. Via analysis
of the joint Markov Decision Process (MDP) of this game,
we introduce a compelling relation between a single player’s
strategy and the resulting state of the repeated game. We
then accordingly propose a theoretical method to offer one
(or some) of the players a delicately designed Markov strat-
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egy, which we call cooperation enforcing. Confronted with
such a strategy, a single opponent can maximize his utility
only via global cooperation by all players and any collud-
ing alliance cannot get extra benefits. Since a full coopera-
tion is individually optimal for any single opponent, the so-
cial optimum, which means the stable cooperation among
all players, can be achieved. Moreover, one can find that
the classic strategies including Grim Trigger and Win-Stay
Loss-Shift all can be viewed as special cases of our proposed
cooperation enforcing strategies. Because any individual or
group deviation from the social optimum will cause utility
decrease, the proposed strategy is also collusion-resistant.
Although the proposed strategy is theoretically proved to
have the above nice properties, we additionally show some
numerical evidences. In the simulation of the repeated PGG,
the proposed strategy is run against an opponent group con-
taining rational learning players. The learning player is mod-
eled to behave like human. Such a simulation can help us
understand the performance of the proposed strategy in the
real world.

The significance of this newly proposed cooperation-
enforcing strategy is multi-fold. First, it identifies the in-
dividual player’s power to unilaterally influence the payoff
of each player in a group, which has not been discovered
previously. Based on this unilateral influence, the n-player
mutual cooperation can be established simply by one player
launching such a strategy, while any additional condition for
cooperation such as initial condition, extra punishment and
reward, social links, is not required. This makes the model
simple but profound. Second, it also allows us to understand
how difficult it is for players to reach the social optimum and
to sustain such an optimum. It could be further utilized to
establish a good social norm under different environments.
Third, it reduces the amount of optimization computation
required by the players, since they do not have to search
in their entire strategy space if they are aware of the fact
that at least one opponent is using the cooperation enforcing
strategy. Last but not least, since under such strategies, all-
player cooperation is the social optimum, any complicated
multilateral deviation from it will cause damage to the aver-
age utility. Thus these strategies naturally possess the prop-
erty of resisting the collusion, which has been a very tough
problem in multi-player games. They provide us with a new
possibility for solving collusion problems in more advanced
game settings.

Repeated Multiplayer Games
Consider an infinitely repeated public goods game (PGG)
among n players with perfect monitoring. In each stage, ev-
ery player i ∈ {1, · · · , n} decides whether to cooperate
(c) by contributing her own endowment e > 0 to the pub-
lic pool, or to defect (d) by contributing nothing. Without
loss of generality, let e = 1. We denote player i’s action by
ai ∈ A = {c, d}. After every player executes a certain ac-
tion, there are totally 2n possible outcomes for each stage.
Let o ∈ An denote the outcome vector. To analyze the game
from a group’s perspective, we define a general representa-
tion of outcomes as follows.

Definition 1. A stage outcome can be represented as a tuple
o = (aX ,aY ), where aX and aY are the action profiles
from player groups X and Y , respectively. X ∩ Y = ∅ and
X ∪ Y = {1, · · · , n}. Denote the number of cooperators
and defectors in a group by functions #c(·) and #d(·), re-
spectively.

For example, if n = 4 and an outcome is o = ccdc, then
from a single player i’s perspective, o = (ai,a−i), where
ai is the action of i and a−i is the action profile of other
players. If i = 1, then a−1 = cdc and #c(a−1) = 2. From
a joint perspective of two players i and j, o = (aiaj ,a−ij),
where a−ij is the action profile excluding i and j. If i = 1
and j = 2, then a−12 = dc and #c(a−12) = 1. Besides, we
define the n-player mutual cooperation and mutual defection
as o = cn and o = dn.

If the above game is infinitely repeated, then the strat-
egy for each player is a mapping from any history to the
current action a, which could be very complex. We con-
centrate on the strategies depending only on what happened
in the previous stage. These are called memory-one strate-
gies and can be described as a vector of probabilities con-
ditioning on the outcomes of the previous stage. Intuitively,
a memory-one strategy for the n-player PGG could be 2n-
dimensional. However, if the agents are symmetric play-
ers, then the only issue that matters for a player is how
many opponents cooperate (i.e., #c(a−i)) and defect (i.e.,
#d(a−i)). Therefore, from a focal player i’s perspective,
any stage outcome o ∈ An can be represented by a tuple
(ai, k) ∈ A × K, where ai ∈ A = {c, d} is i’s action and
k = #c(a−i) ∈ K = {0, 1, · · · , n − 1} is the number of
cooperating opponents. Then the dimension of the strategy
space is reduced to |A ×K| = 2n. Define the memory-one
strategies for the repeated PGG as follows.
Definition 2. A memory-one strategy for player i can be
defined as a vector p = [pai,k], where each pai,k =
P{c|(ai, k)} is the conditional probability for cooperation
given the previous stage outcome (ai, k). More explicitly,

p = (pc,0, · · · , pc,k, · · · , pc,n−1,
pd,0, · · · , pd,k, · · · , pd,n−1) .

(1)

Such a strategy vector contains 2n components, while the
full outcome space is 2n-dimensional. This is because the
strategy uses a same cooperating probability pai,k for some
outcomes (ai,a−i) that have the same number of cooper-
ating opponents k = #c(a−i). Most of the well-known
classic strategies can be written in the above form. For in-
stance, unconditional cooperation (ALLC) can be given by
(1, 1, · · · , 1); unconditional defection (ALLD) is written as
(0, 0, · · · , 0); the Repeat strategy, which repeats the previ-
ous action, can be represented as pR with pc,k = 1 and
pd,k = 0 for all k.

At the end of each stage game, the stage outcome is per-
fectly observed by all players and the endowments in the
current public pool are multiplied by a factor r, represent-
ing the ‘public good’ and is equally distributed to all the
agents. Then the same stage game repeats. We call r

n the
game’s marginal per-capita rate of return (MPCR) (Isaac,
Walker, and Thomas 1984). For every unit a player spends,
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the MPCR measures how much the she gets back. With r
smaller than the group size n, non-contributing free-riders
gain more than contributors.

For repeated games, it is common to define payoffs as the
average payoff that players receive over all stages. To calcu-
late these expected payoffs, we first define a focal player’s
exact stage game payoff values and payoff vectors.

Definition 3. Confronting with k ∈ K cooperating oppo-
nents, player i’s stage payoff is Rai,k = r(k + 1)/n − 1 if
ai = c and is Rai,k = rk/n if ai = d, where r ∈ (1, n).
Then the payoff vector for i is πi = (Rai,k)(ai,k)∈A×K .

Based on the payoff vectors, now one can derive the aver-
age payoffs. Denote by v(t) = (vo(t))o∈An the probability
distribution over the outcome o(t) ∈ An at the t-th stage
game, where vo(t) = P{o(t) = o}. Let v be a limit point
of the sequence { 1t

∑t
m=1 v(m)} and we refer to it as limit

distribution. Note that when the limit distribution is unre-
lated with the outcome of the initial stage game, then it is a
unique stationary distribution of the Markov chain formed
by all players’ memory-one strategies. Player i’s expected
payoff is an inner product of the limit distribution and her
payoff vector, which is written as πi = πi · v.

Both π and v are associated with the Markov chain,
which consists of all players’ strategies. But recent re-
searches significantly reveal that in repeated games, there
is an underlying relation between a single player’s strat-
egy p and the limit distribution of states v (Akin 2012;
Hilbe et al. 2014). We write this result in a muti-player form
as follows.

Lemma 1. Let p denote the focal player’s memory-one
strategy and let pR denote the Repeat strategy, then for any
limit distribution v (irrespective of the outcome of the initial
stage), we have

(p− pR) · v = 0. (2)

This general relation requires no additional information
of the game. We call it Akin’s Lemma, and it will be an
important foundation for our following analysis.

Cooperation Enforcing Strategy
Traditionally, in repeated multiplayer games, one player
cannot unilaterally manipulate the evolution of the game and
it is even more difficult for a single player to enforce stable
cooperation among all players. However, based on the model
in the previous section, now we will novelly analyze that one
player can delicately design a Markov strategy whereby any
single opponent can maximize his expected payoff only via
global cooperation. We call such strategies cooperation en-
forcing and formally define them as follows.

Definition 4 (Cooperation Enforcing Strategy). A memory-
one strategy p for player i is called cooperation enforcing if
and only if the following conditions hold:
(1) Player i cooperates in the first stage.
(2) pc,n−1 = 1, i.e., player i continues to cooperate if all the
opponents cooperated in the previous stage.
(3) Either for all players l ∈ {1, 2, · · · , n}, πl = Rc,n−1,
or for any opponent j ∈ {1, 2, · · · , n} \ {i}, πj < Rc,n−1.

According to Definition 4, if a focal player adopts a coop-
eration enforcing strategy, the payoffs of her opponents only
have two possible forms, either less than or equal to the pay-
off of mutual cooperation. As a result, the focal player not
only controls the upper bound of each opponent’s payoff, but
also promote mutual cooperation. Based on this definition,
we can immediately obtain the following propositions.

Proposition 1. A memory-one strategy p is cooperation en-
forcing only if pc,n−2 < 1.

Proof. Suppose that player i uses a memory-one coopera-
tion enforcing strategy p with pc,n−2 = 1 while one of her
opponents j adopts ALLD and all of the remaining players
apply ALLC. In this case, the state is stationary in which
j defects and all his opponents cooperate. As a result, the
expected payoff of j will be Rd,n−1 > Rc,n−1, which con-
tradicts the condition (3) in Definition 4.

Proposition 2. In a repeated public goods game, coopera-
tion enforcing strategies exist only if r

n >
1
2 .

Proof. Assume that in a repeated public goods game with
r
n ≤

1
2 , i adopts a memory-one strategy while j uses ALLD

and the remaining players all use ALLC. In this case, no mat-
ter what i’s choice is in each round, πj is between Rd,n−2
and Rd,n−1. From r

n ≤
1
2 , we have Rd,n−1 > Rd,n−2 ≥

Rc,n−1. As a result, j could obtain an expected payoff
πj > Rc,n−1. This contradicts point (3) in Definition 4.

The above two propositions indicate basic necessary con-
ditions for the cooperation enforcing strategies, which could
be convenient for verifying the suitable game structure and
designing the strategies. Now we show that in a repeated
PGG with perfect monitoring, if all players use certain coop-
eration enforcing strategies, they actually constitute an equi-
librium. The equilibrium concept we use is Markov Perfect
Equilibrium (MPE) (Maskin and Tirole 2001), which is a
refinement of subgame perfect equilibrium (SPE).

Proposition 3. If every player i ∈ {1, · · · , n} adopts a
cooperation enforcing strategy pi, then the strategy profile
(p1,p2, · · · ,pn) is a Markov Perfect Equilibrium.

Proof. According to (1) and (2) in Definition 4, every player
chooses cooperating in the first stage and will continue coop-
erating if all the others also cooperate in the previous stage,
thus the n-player mutual cooperation recursively sustains
and every player obtains the same expected payoff Rc,n−1.
It is also known from (3) that if some players adopt coop-
eration enforcing strategies, the others’ payoffs cannot ex-
ceed Rc,n−1. Cooperation is always the best response and
any unilateral deviation induces a payoff loss. Thus a profile
of cooperation enforcing strategies is a Nash equilibrium.
Since the game is infinitely repeated, the strategies actu-
ally constitute a sub-game perfect equilibrium. The cooper-
ation enforcing strategies we defined are Markov strategies,
therefore, the profile of cooperation enforcing strategies is
a Markov perfect equilibrium and generates a stable mutual
cooperation.
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Definition 4 describes our goal for designing the cooper-
ation enforcing strategies but the conditions are still not op-
erational enough. Now we begin to do some reasoning and
derivations, which will finally help us to obtain the detailed
constraints for the cooperation enforcing strategies. We first
show the following two lemmas as stepping stones.

Lemma 2. The third condition in Definition 4 is equivalent
to a logical implication:

∃j 6= i, πj ≥ Rc,n−1 ⇒ vcn = 1. (3)

Proof. The third condition in Definition 4 can be formally
rewritten as a logical disjunction (∀j 6= i, πj < Rc,n−1) ∨
(∀l, πl = Rc,n−1). According to basic logical theory, this
disjunction is equivalent to an implication ¬(∀j 6= i, πj <
Rc,n−1) ⇒ (∀l, πl = Rc,n−1), which is further simplified
as ∃j 6= i, πj ≥ Rc,n−1 ⇒ ∀l, πl = Rc,n−1. Now we only
need to prove the following equivalence relation

∀l, πl = Rc,n−1 ⇔ vcn = 1. (4)

Since the social optimum where every player obtains an ex-
pected payoff Rc,n−1 is reached only when mutual cooper-
ation state is stable, i.e., vcn = 1 and all the other elements
in v are 0, therefore eq. (4) holds and this completes the
proof.

Lemma 2 is of great importance since it shows that the
maximum payoff for any opponent j is πj = Rc,n−1 and is
realized only when the n-player mutual cooperation is sta-
ble. Any type of unilateral deviation from cooperation will
possibly incur payoff decrease, thus the temptation of free
riding is suppressed. One can see that the cooperation en-
forcing strategy essentially sets up a payoff upper bound for
each of the opponent. As long as the opponents are rational,
in order to reach the payoff upper bound, they will sustain
cooperation.

Now we know the basic mathematical constraints for v.
To derive the detailed constraints for the cooperation enforc-
ing strategy p, we need to further expand eq. (2) in Akin’s
lemma and do some derivation and analysis. To this end, we
first need to analyze the game from a joint view of the focal
player i and a specific opponent j. Based on Definition 1,
we define the following marginal limit distribution.

Definition 5 (Marginal Limit Distribution). Let (aiaj , k)
denote a stable outcome in which i and j’s actions are ai
and aj , respectively, and there are k = #c(a−ij) ∈ M =
{0, 1, · · · , n−2} cooperators among the other n−2 players.
Denote by uaiaj ,k the total probability of all such outcomes,

uaiaj ,k =
∑

#c(a−ij)=k

vaiaj ,a−ij . (5)

Then u = (uaiaj ,k)ai,aj∈A,k∈M is the marginal limit distri-
bution which is a 4(n− 1)-dimensional vector. Specifically,
ucc,n−2 = vcn and udd,0 = vdn .

According to Definition 5, now we can expand eq. (2) and
calculate the detailed relation between the game’s limit dis-
tribution and a single player’s strategy.

Lemma 3. Given player i’s strategy p and the marginal
limit distribution u = (uaiaj ,k)ai,ak∈A,k∈M , the formula
in Akin’s lemma for p can be rewritten as

(1− pc,n−2)ucd,n−2

=(−1 + pc,n−1)ucc,n−2 + (−1 + pc,n−2)ucc,n−3 + · · ·
+ (−1 + pc,k)(ucc,k−1 + ucd,k) + pd,k(udc,k−1 + udd,k)

+ · · ·+ pd,0udd,0.

(6)

Moreover, the difference between the expected payoff of j
and that of mutual cooperation is written as

πj −Rc,n−1

=(Rc,n−2 −Rc,n−1)(ucc,n−3 + udc,n−2) + · · ·
+ (Rc,k −Rc,n−1)(ucc,k−1 + udc,k)

+ (Rd,k −Rc,n−1)(ucd,k−1 + udd,k) + · · ·
+ (Rd,0 −Rc,n−1)udd,0.

(7)

Proof. Eq. (6) uses notations in Definition 5 and is directly
derived from Akin’s lemma. Since πj − Rc,n−1 = (πj −
Rc,n−11) ·v. Merge similar terms, then we have eq. (7).

Based on the above stepping stones, now we can propose
a solution for the cooperation enforcing strategies.
Theorem 1. In the repeated public goods game with r > n

2 ,
if a memory-one strategy p cooperates in the first stage and
satisfies the following constraints:

pc,n−1 = 1

pc,n−2 < 1

pd,n−1 <
(1− pc,n−2)(Rc,n−1 −Rc,n−2)

Rd,n−1 −Rc,n−1

pd,n−2 <
(1− pc,n−2)(Rc,n−1 −Rd,n−2)

Rd,n−1 −Rc,n−1

· · ·

pd,k <
(1− pc,n−2)(Rc,n−1 −Rd,k)

Rd,n−1 −Rc,n−1

· · ·

pd,0 <
(1− pc,n−2)(Rc,n−1 −Rd,0)

Rd,n−1 −Rc,n−1

, (8)

then p is a cooperation enforcing strategy.

Proof. Conditions (1) and (2) in Definition 4 are trivially
satisfied. We only need to prove p meets condition (3).

Suppose that i adopts p and j is an opponent with objec-
tive πj ≥ Rc,n−1. Let u be the marginal limit distribution.
By Proposition 1, we have 1−pc,n−2 > 0. Thus multiplying
both sides by 1−pc,n−2 does not change an inequality. After
that, introduce eq. (6) into (1− pc,n−2)(πj −Rc,n−1) ≥ 0,
we have

(1− pc,n−2)(πj −Rc,n−1)

=bcc,n−3ucc,n−3 + · · ·+ bdd,0udd,0 ≥ 0,
(9)

where each baiaj ,k is the coefficient of uaiaj ,k. According to
Lemma 2, we only need to prove the following implication
is TRUE.

bcc,n−3ucc,n−3 + · · ·+ bdd,0udd,0 ≥ 0

⇒ucc,n−3 = · · · = udd,0 = 0.
(10)

2088



Since each element of the marginal limit distribution
uaiaj ,k ≥ 0, one sufficient condition for Implication (10)
to be TRUE is that all the coefficients baiaj ,k < 0. Note in
Lemma 3 each baiaj ,k is a function of the corresponding p.

There are two corresponding constraints for pc,k:
bcc,k−1 < 0 and bcd,k < 0. These two inequalities require:

pc,k <
(1− pc,n−2)(Rc,n−1 −Rc,k)

Rd,n−1 −Rc,n−1
+ 1

pc,k <
(1− pc,n−2)(Rc,n−1 −Rd,k+1)

Rd,n−1 −Rc,n−1
+ 1

. (11)

Since Theorem 1 requests r > n
2 , we have Rc,n−1 >

Rd,k+1 > Rc,k for all k ∈ {1, 2, · · · , n−3}. As a result, the
right sides of the inequalities in eq. (11) are all greater than
1 and the constraints are all vanished. As for pc,0, there is
only one constraint bcd,0 < 0 and we can immediately ver-
ify that the constraint is satisfied. The same conclusion can
be derived for pc,n−2.

Likewise, for pd,k, we have the following constraint

pd,k <
(1− pc,n−2)(Rc,n−1 −Rd,k)

Rd,n−1 −Rc,n−1
. (12)

As for pd,n−1, it should satisfy the constraint bdc,n−2 < 0,
which results in

pd,n−1 <
(1− pc,n−2)(Rc,n−1 −Rc,n−2)

Rd,n−1 −Rc,n−1
. (13)

Furthermore, because Rc,n−1 > Rd,n−2 > · · · > Rd,0

and Rc,n−1 > Rc,n−2, the right sides of the above inequali-
ties are all greater than 0, which makes these constraints en-
forceable. Collecting all of the inequalities above, we com-
plete the proof that Implication (10) is TRUE and p satisfies
the third condition in Definition 4.

Another issue that deserves proper discussion is about
what if multiple opponents deviate together and even make
collusion. The main aim of collusion is to achieve a level
that the joint payoff can be higher than the equilibrium one.
How to conquer the failure of mutual cooperation caused
by collusion is a long-existing tough problem in both game
theory and multi-agent systems. We will see in the follow-
ing theorem, the cooperation enforcing strategy has a very
good performance, even when some players collude to devi-
ate from the mutual cooperation equilibrium.

Theorem 2. In a repeated public goods game, if a coopera-
tion enforcing strategy p exists, then it is collusion resistant.

Proof. If a cooperation enforcing strategy exists, then by
Proposition 2 we have r > n

2 . Moreover, by Lemma 3 we
know that under one player’s cooperation enforcing strategy,
the best response of other players is to cooperate, and the
outcome o = cn is an equilibrium. Then if there is no col-
lusion, the optimal payoff for each player is simply Rc,n−1.
Assume that there are m ≥ 2 players collude to improve
their average payoff, and other n − m players stick to the
equilibrium action c. If in the m collusive players, k of them
cooperate and m−k defect, then there are totally k+n−m

cooperators andm−k defectors. Then the average expected
payoff for the collusive players is:

π̃ =
kRc,k+n−m−1 + (m− k)Rd,k+n−m

m
. (14)

The difference between the collusive payoff and the equilib-
rium (cooperative) payoff is:

π̃ −Rc,n−1 =
(m− k) (n−mr)

mn
. (15)

This difference indicates collusion is beneficial only when
r < n

m , but this contradicts with the necessary condition for
p. Therefore, in a repeated PGG, if a cooperation enforcing
strategy p exists, then it is collusion resistant.
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Figure 1: Schematic representation of parameter regions for
the repeated public goods game.

Figure 1 shows in which parameter regions the cooper-
ation enforcing strategies can exist, given that the public
goods game forms a social dilemma (i.e., 1 < r < n). When
n
2 < r < n, cooperation enforcing strategies always exist.
As r approaches n

2 from the right side r → (n
2 )+, these

strategies tend to behave like a grim trigger strategy. When
r ≤ n

2 , one cannot promote mutual cooperation on her own
and malicious collusive groups may gain the upper hand.

Specifically, based on the above results, we can iden-
tify multi-player versions for many well-known classic
strategies in the two-player iterated prisoner’s dilemma
games, such as Grim Trigger (GT) and Win-Stay Lose-Shift
(WSLS). Based on Theorem 1, we can immediately obtain
the following corollaries.
Corollary 2.1. (1) If r > n

2 , an instantiation of the coopera-
tion enforcing strategy p with pc,n−1 = 1 and pai,k = 0 for
all other states (ai, k) is a multi-player Grim Trigger (GT),
and is collusion-resistant.
(2) If r > max{n2 ,

2n
n+1}, an instantiation of cooperation en-

forcing strategy p with pc,n−1 = pd,n−1 = 1 and pai,k = 0
for all other states (ai, k) is a multi-player Win-Stay Lose-
Shift (WSLS), and is collusion-resistant.

Proof. The proof for these two points is straightforward.
Grim Trigger with pc,n−1 = 1 and pai,k = 0 for all other k
satisfies all the constraints in Eqs. (8). Win-Stay Lose-Shift
also satisfies these constraints. Theorem 2 indicates these
two strategies are all collusion resistant.
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It is worth noting that, as far as we know, there are no
widely accepted explicit definitions of multi-player versions
of WSLS and GT. Take WSLS as an example, what are “win”
and “lose” is correlated with payoffs of all players, which
is further affected by how many other players cooperate and
defect. Thus, there could be more general definitions of the
terms “win” and “lose”. As shown in the above two corol-
laries, with the help of Theorem 1, we can at least identify
multiple strategies which possess the good features that tra-
ditional WSLS also has. These WSLS-like strategies could
be generalized versions of the traditional WSLS into multi-
player games.

Although Grim Trigger strategies can form a Markov per-
fect equilibrium, as this kind of strategy has no tolerance to-
wards other players’ mistakes, it may lead to poor results in
the real world especially when there is noise and uncertainty.
WSLS behaves more kindly than GT and is more robust in
noisy environments (Nowak and Sigmund 1993).

To give an intuitive understanding of the effect of the co-
operation enforcing strategies, now we use WSLS to make a
case study. In Figure 2, we show an example of how the fo-
cal player x adopting a cooperation enforcing strategy con-
strains the expected payoffs of her opponents y and z. Player
x uses WSLS strategy, whereas the strategy of y and z are
randomly sampled from the space of memory-one strategies
105 times. The cube in the graph is the space of three play-
ers’ payoff tuple (πx, πy, πz), with axises x, y and z repre-
senting the payoffs of player x, y and z respectively. Each
blue dot corresponds to a specific expected payoff tuple. The
pink plane πy = Rc,n−1 on the left and the yellow one
πz = Rc,n−1 on the top illustrate the upper bounds of y and
z’s payoffs, respectively. We can see the area of blue dots
never crosses these two planes, which indicates that none of
the opponents can obtain a payoff greater than that of mutual
cooperation. The social optimum (Rc,n−1, Rc,n−1, Rc,n−1)
is a red point, which is the only point of intersection of the
blue region and the two bound planes.

Cooperation Enforcement on Learning and
Collusive Players

In the previous sections, we theoretically identified the coop-
eration enforcing and collusion resistant strategies and found
that a collection of such strategies constitutes a Markov per-
fect equilibrium. In the real world multi-agent systems, if a
player has no idea of the delicately designed strategies, be-
ing a learning player and gradually improving her own pol-
icy based on interaction history is a more realistic choice. In
this section, we will show that, against the cooperation en-
forcing strategies, even the non-strategic learning opponent
can gradually learn to cooperate.

From a learning player’s point of view, a repeated game
can be regarded as a sequential decision-making under un-
certainty. In each stage game, she makes a decision accord-
ing to the history of interactions with her opponents. In this
paper, we only consider the history consisting of the previ-
ous stage game outcome. The uncertainty comes from the
inherent stochastic properties or evolution mechanisms of
other players’ policies. For the learning player, her optimal

Figure 2: Illustration of a cooperation enforcing strategy in a
3-player repeated public goods game with r = 2. The strat-
egy of the focal player x is WSLS while the strategies of
y and z are sampled randomly from the space of memory-
one strategies. Each blue dot corresponds to a feasible ex-
pected payoff tuple (πx, πy, πz) and the coordinate of the
red point in the corner is (Rc,n−1, Rc,n−1, Rc,n−1). The
pink (left) plane and the yellow (top) one are πy = Rc,n−1
and πz = Rc,n−1 respectively.

plan in this MDP of the game can be solved by using dy-
namic programming (DP) based on the Bellman optimality
equation (Mahadevan 1996)

Q∗(o, a) = max
a′∈A

E [Ro′ −R∗ +Q∗(o′, a′)] . (16)

Here Q∗(o, a) is the action value function which estimates
the score for selecting action a after observing the previ-
ous stage game outcome o. After executing a, the learning
player receives a result of the current stage o′ and obtains
a payoff Ro′ . R∗ is the optimal average payoff. There are
many researches for solving the Bellman optimality equa-
tion and reinforcement learning is one which recently at-
tracts much attention (Sutton and Barto 2018). We use the
average reward reinforcement learning approach (Gosavi
2004) and implement it in Algorithm 1.

To investigate whether cooperation enforcing strategies
can bring about mutual cooperation when their adopters
confront learning players, several scenarios need to be an-
alyzed and simulated. For the first scenario, to analyze the
equilibrium, we let all players adopt cooperation enforcing
strategies, except for one who uses a reinforcement learn-
ing approach. For the second scenario, there are more inde-
pendent learning players, i.e., some players use cooperation
enforcing strategies while others independently adopt rein-
forcement learning strategies. For the third scenario, we as-
sume the cooperation enforcing strategy be declared in ad-
vance and analyze its performance when the followers are
learning players, which is also known as Stackelberg game
(DeMiguel and Xu 2009). The simulation results are shown
in Figure 3.

In Proposition 3, we have known that when all players
adopt cooperation enforcing strategies, they are in an equi-
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Figure 3: Illustration of average payoffs during the 3-player repeated public goods game (with r = 2) in three different scenar-
ios. The payoff of mutual cooperation is Rc,n−1 = 1. In each panel, the strategy of player x is fixed to a specific cooperation
enforcing strategy WSLS whereas the policies of y and z can be WSLS or reinforcement learning. (A) y uses WSLS while z
applies reinforcement learning. (B) y and z independently evolve their own policies via reinforcement learning. (C) In this
scenario, the strategy of x is declared beforehand whereas y and z are learning followers who make an alliance.

Algorithm 1: A Learning Player’s Strategy
Initialize a matrix: Q(o, a)← 0 for all o ∈ An, a ∈ A ;
Initialize an estimate of the average payoff R̄← 0 ;
Set outcome of the initial stage game o(0)← cn;
Set the learning rate parameters α, β;
for t = 1, 2, · · · do

Take action a with ε-greedy policy based on
Q(o(t− 1), a);

Receive stage game outcome o(t) and payoff R;
δ ← R− R̄+ maxa′ Q(o(t), a′)−Q(o(t− 1), a);
Q(o(t− 1), a)← Q(o(t− 1), a) + αδ;
if Q(o(t− 1), a) = maxa′ Q(o(t− 1), a) then

R̄← (1− β)R̄+ β[(t− 1)R̄+R]/t;
end

end

librium and a player who deviates cannot obtain a payoff
greater than that of mutual cooperation. There remains a
question here: if the deviator is not malicious but just a
learning player who has no idea of the cooperation enforc-
ing strategies, can she eventually learn to cooperate? The
answer should be yes. If the strategies of all the other play-
ers are fixed to cooperation enforcing strategies, the envi-
ronment for the only learning player is not that complicated.
Besides, mutual cooperation is the only optimal solution to
this scenario. Therefore, as long as the reinforcement learn-
ing player sufficiently explores this environment, she will
generate a “near-optimal” solution to eq. (16) and evolve
to cooperation. Figure 3(A) illustrates that a learning player
learns to cooperate quickly and shares the optimum with all
the cooperation enforcing strategy players.

To analyze the case of more complicated scenarios where
multiple learning players exist, we set up a simulation in
which only a portion of players use cooperation enforcing
strategies while others learn. In this case, however, learn-
ing players can not finally find the optimal solution. This
is because they optimize their own policies independently,
which will lead to a failure of obtaining the dynamic global

knowledge of the whole game system. If other players adapt
their strategies, the environment for one player will be non-
stationary and the optimization target for the learning will
shift. Actually, multi-agent learning is still a challenging
issue in the artificial intelligence community. Figure 3(B)
shows an example of the collapse of mutual cooperation, in
which multiple players independently learn their own poli-
cies cannot lead to mutual cooperation.

Although it seems difficult for cooperation enforcing
strategies to bring about cooperation when their adopters
confront multiple independent learning opponents, we can
conquer this difficulty by establishing a Stackelberg game.
In this Stackelberg setting, some players need to declare
their cooperation enforcing strategies in advance and then
the learning players can explore and evolve their strategies.
Eventually, all the learning players will find the best re-
sponses to their declared policies, which is to fully coop-
erate. We refer to those players who commit strategies as
leaders and the others as followers. Because followers are
witting of the strategies of leaders, they can even coordinate
their policies with each other and work in collusion to com-
pete with leaders. We can obviously extend the reinforce-
ment learning method for a single player to this alliance.
The fixed strategies of the leaders produce a stationary envi-
ronment for the alliance. Therefore, mutual cooperation can
be enforced with a learning alliance. Figure 3(C) provides an
instance that if cooperation enforcing strategies are Stackel-
berg leader strategies, they do promote cooperation.

Conclusions and Future Work
We present a class of delicately designed Markov strategies
for repeated games. Using such a strategy, a single player
can simultaneously constrain the utilities of all her oppo-
nents and enforce mutual cooperation among all of players.
The optimal value of any opponent’s utility can only be re-
alized through all players’ cooperating. Moreover, we prove
that as long as there exists at least one player adopting such
a strategy, any type of colluding alliance cannot get a higher
payoff than that of n-player mutual cooperation. Our results
also show that these strategies can still promote cooperation,
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even when the opponents are non-strategic learning play-
ers. Although we are using the conventional repeated pub-
lic goods game model, the approaches in our paper could
be easily extended to various multi-player games. Immedi-
ate future work is about the effect of a non-linear marginal
per-capita rate of return on the group cooperation, the gen-
eralization of cooperation enforcement in stochastic games
with large action space (McAvoy and Hauert 2016), as well
as the extension into multi-agent systems where agents make
use of different orders of theory of mind (Albrecht and Stone
2018). Moreover, further research on multi-agent reinforce-
ment learning (Perolat et al. 2017) could be potentially in-
spired by this work.
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