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Abstract

Face completion is a challenging generation task because it
requires generating visually pleasing new pixels that are se-
mantically consistent with the unmasked face region. This
paper proposes a geometry-aware Face Completion and Edit-
ing NETwork (FCENet) by systematically studying facial ge-
ometry from the unmasked region. Firstly, a facial geome-
try estimator is learned to estimate facial landmark heatmaps
and parsing maps from the unmasked face image. Then, an
encoder-decoder structure generator serves to complete a face
image and disentangle its mask areas conditioned on both
the masked face image and the estimated facial geometry im-
ages. Besides, since low-rank property exists in manually la-
beled masks, a low-rank regularization term is imposed on
the disentangled masks, enforcing our completion network to
manage occlusion area with various shape and size. Further-
more, our network can generate diverse results from the same
masked input by modifying estimated facial geometry, which
provides a flexible mean to edit the completed face appear-
ance. Extensive experimental results qualitatively and quanti-
tatively demonstrate that our network is able to generate visu-
ally pleasing face completion results and edit face attributes
as well.

Introduction

Face completion, also known as face inpainting, aims to
complete a face image with a masked region or missing con-
tent. As a common face image editing technique, it can also
be used to edit face attributes. The generated face image can
either be as accurate as the original face image, or content
coherent to the context so that the completed image looks
visually realistic. Most traditional methods (Barnes et al.
2009; Huang et al. 2014; Darabi et al. 2012) rely on low-
level cues to search for patches to synthesize missing con-
tent. These image completion algorithms are skilled in fill-
ing backgrounds which contain similar textures but not excel
at specific image object like face since prior domain knowl-
edge isn’t well incorporated.

Recently, CNN based image completion methods with ad-
versarial training strategy have already significantly boosted
the image completion performance (Pathak et al. 2016;
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Figure 1: Face completion and attributes editing results. The
first and third row show the visual quality results of face
completion under the guidance of inferred facial geome-
try. In the second row, the girl’s eyes become smaller af-
ter changing its facial geometry. In the fourth row, the boy’s
mouth becomes much bigger by replacing the mouth patch
in the facial geometry images with a bigger mouth patch.

Yeh et al. 2017; Li et al. 2017). These methods set a masked
image as the network input to learn context features, then
restore the missing content from the learned features. Some
challenges still exist in these methods when they are applied
to real-world face completion problems. First of all, differ-
ent from general objects, human faces have distinct geome-
try distribution, and hence face geometry prior is more likely
to facilitate face completion (Yeh et al. 2017). Few existing
methods utilize the facial prior knowledge and well incorpo-
rate it into an end-to-end network. Second, these algorithms
are incapable of modifying the face attributes of the filled
region (Li et al. 2017), e.g., editing the eye shape or mouth
size in figure 1.

To address these two problems, this paper studies
a geometry-aware face completion and editing network
(FCENet) by exploring facial geometry priors including
facial landmark heatmaps and parsing maps. Landmark
heatmap is an image composed of 68 points labeled by dif-



ferent values to distinguish different face components. Sim-
ilarly, facial parsing map is an image with different val-
ues representing different face components (e.g., eyes, nose,
mouth, hair, cheek, and background). They can not only pro-
vide a hint of target face’s geometry information for face
completion but also point out a novel way to modify face
attributes of masked regions. The FCENet consists of three
stages. In the first stage, facial parsing maps and landmark
heatmaps are inferred from masked face images. In the sec-
ond stage, we concatenate the masked image, inferred land-
mark heatmaps and parsing maps together as the input of
a face completion generator to restore the uncorrupted face
images and mask. In the third stage, two discriminators dis-
tinguish generated face images and real ones globally and
locally to force the generated face images as realistic as
possible. Furthermore, the low-rank regularization boosts
the completion network to disentangle more complex mask
from the corrupted face image. Our FCENet is efficient to
generate face images with a variety of attributes depending
on the facial geometry images concatenated with masked
face image. A few face completion and editing examples of
FCENet are shown in figure 1.

The main contributions of this paper are summarized as
follows:

1. We design a novel network called facial geometry estima-
tor to estimate reasonable facial geometry from masked
face images. Such facial geometry is leveraged to guide
the face completion task. Several experiments systemat-
ically demonstrate the performance improvements from
different facial geometry, including facial landmarks, fa-
cial parsing maps and both together.

The FCENet allows interactive facial attributes editing
of the generated face image by simply modifying its in-
ferred facial geometry images. Therefore, face comple-
tion and face attributes editing are integrated into one uni-
fied framework.

Our face completion generator simultaneously accom-
plishes face completion and mask disentanglement from
the masked face image. A novel low-rank loss regular-
izes the disentangled mask to further enhance similarity
between the disentangled mask and the original mask,
which enables our method to handle various masks with
different shapes and sizes.

Experiments on the CelebA (Liu et al. 2015b) and Multi-
PIE (Gross et al. 2010) dataset demonstrate the superior-
ity of our approach over the existing approaches.

Related Work

Generative Adversarial Network (GAN). As one of the
most significant image generation techniques, GAN (Good-
fellow et al. 2014) utilizes the mini-max adversarial game to
train a generator and a discriminator alternatively. The ad-
versarial training method encourages the generator to gen-
erate realistic outputs to fool the discriminator. At the same
time, the discriminator tries to distinguish real and gener-
ated images. In this way, the generator can generate samples
that obey the target distribution and look plausibly realistic.
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Radford et al. propose a deep convolutional GAN (DCGAN)
(Radford, Metz, and Chintala 2016) to generate high-quality
images on multiple datasets. It is the first time to integrate
the deep models into GAN. To address training instability
of GAN, Arjovsky et al. (Arjovsky, Chintala, and Bottou
2017) analyze the causes of training instability theoretically
and propose Wasserstein GAN. Mao et al. (Mao et al. 2017)
put forward LSGAN to avoid vanishing gradients problem
during the learning process. Recently, improved GAN archi-
tectures have achieved a great success on super-resolution
(Ledig et al. 2017), style transfer (Li and Wand 2016), image
inpainting (Pathak et al. 2016), face attribute manipulation
(Shen and Liu 2017), and face rotation (Huang et al. 2017;
Hu et al. 2018). Motivated by these successful solutions, we
develop the FCENet based on GAN.

Image Completion. The image completion techniques can
be broadly divided into three categories, The first cate-
gory exploits the diffusion equation to propagate the low-
level feature from the context region to the missing area
along the boundaries iteratively (Bertalmio et al. 2000;
Elad et al. 2005). These methods excel at inpainting small
holes and superimposed text or lines but having limitations
to the reproduction of large textured regions. The second
category is patch-based methods, which observe the con-
text of the missing content and search similar patch from the
same image or external image databases (Darabi et al. 2012;
Bertalmio et al. 2003; Criminisi, Pérez, and Toyama 2004;
Hays and Efros 2007). These methods can achieve ideal
completion results on backgrounds like sky and grass, but
they fail to generate semantic new pixels if these patches
don’t exist in the databases. The third category is CNN-
based, which train an encoder-decoder architecture network
to extract image features from the context and generate miss-
ing content according to the image features (Pathak et al.
2016; lizuka, Simo-Serra, and Ishikawa 2017). Deepak et
al. (Pathak et al. 2016) present an unsupervised visual fea-
ture learning algorithm called context encoder to produce a
plausible hypothesis for the missing part conditioned on its
surroundings. A pixel-wise reconstruction loss and an adver-
sarial loss regularize the filling content to bear some resem-
blance to its surrounding area both on appearance and se-
mantic segmentation. Satoshi et al. (lizuka, Simo-Serra, and
Ishikawa 2017) put forward an approach which can gener-
ate inpainting images that are both locally and globally con-
sistent by training a global and local context discriminator.
Their method is able to complete images of arbitrary res-
olutions and various obstructed shapes by training a fully-
convolutional neural network.

Face Completion. Human face completion is much more
challenging than general image completion tasks because fa-
cial components (e.g., eyes, nose, and mouth) are of highly
structurization and contain large appearance variations. Be-
sides, the symmetrical structure is reflected on human faces
like many natural objects. Second, compared to general ob-
ject image completion, face completion need to pay more
attention to preserving face identity. S. Zhang et al. (Zhang
et al. 2018; 2016) develop models to complete face images
with structural obstructions like wavy lines. Y. Li et al. (Li
et al. 2017) propose a generative face completion model as-
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Figure 2: The overall architecture of the FCENet. It consists of three parts: a facial geometry estimator, a generator, and two
discriminators. The facial geometry estimator infers reasonable facial geometry. The generator restores complete face images
and disentangles masks, and the two discriminators distinguish real and generated complete face images globally and locally.
The figure demonstrates that the boy’s mouth is modified to be bigger by interactively changing his mouth in facial geometry
images in the assumption that a certain user tends to edit the mouth attribute.

sisted by a semantic regularization term. Their algorithm is
sensitive to pose and expression variations and cannot ma-
nipulate face attributes of the missing areas. P. Liu et al.
(Liu et al. 2017) integrate perceptual loss into their network
and replace the unmasked region of the generated face im-
age with that from the original face image. Their approach
produces high-quality face images with fine-grained details.
Nevertheless, how to take advantage of facial geometry and
control the face attributes of the filled region is still an open
challenge, and that is the motivation of our FCENet.

Proposed Method

In this section, we introduce the FCENet for face comple-
tion and attributes editing. The FCENet consists of three
parts: first, a facial geometry estimator learns to infer reason-
able and natural facial parsing maps and landmark heatmaps.
Second, an encoder-decoder structural generator restores the
completion face image and disentangles the mask from the
concatenation of the mask face image and facial geome-
try images. Third, global and local discriminators are intro-
duced to determine whether the generated face images are
sampled from ground truth distribution. The overall frame-
work of our algorithm is shown in figure 2.

Network Architecture

Facial Geometry Estimator Geometry is the most dis-
tinct feature of the most real-world object, including human
faces. Human faces contain various visual appearances due
to factors like gender, illumination conditions, makeup, etc.
However, similar facial geometry information still exists in
these faces. As prior domain knowledge, facial geometry is
rarely exposed to these influences. Most existing face com-
pletion algorithms have not yet explored the benefit of facial
geometry prior. Thus we propose facial geometry estimator
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‘P to exploit facial geometry in face completion. The facial
geometry serves as the guidance information for completion
task, which is different from (Li et al. 2017) whose method
treats the parsing map as a semantic regularization by clos-
ing the distance between the parsing maps of the original
image and the generated image.

Details of the facial geometry estimator can be seen in
figure 3. We apply the hourglass(HG) structure to estimate
facial geometry inspired by its successful application on hu-
man pose estimation (Chen et al. 2017; Newell, Yang, and
Deng 2016). The HG block adopts a skip connection mech-
anism between symmetrical layers, which consolidates fea-
tures across scales and preserves spatial information in dif-
ferent scales.

Face Completion Generator and Discriminators Our
generator G has an encoder-decoder architecture that con-
tains four parts: one encoder, two decoders, and one non-
parametric fusion operation. Given the masked face images
concatenated with inferred facial geometry images, the en-
coder extracts a feature vector that can be split into context
feature vector and mask feature vector. These two feature
vectors are fed into the face image decoder and mask de-
coder respectively. Our encoder and decoders have the same
architecture, composing of 9 residual blocks evolved from
ResNet (He et al. 2016). The structure of encoder is sym-
metrical to that of the two decoders, and they bear almost
the same network architecture except for the input layer. By
splitting the latent code inferred by the encoder into two fea-
ture vectors, face context feature and mask feature can be
well disentangled. The generated face completion result is
denoted as G¥(I,,,) and the disentangled mask is denoted as
G™(I,) where we omit [ and I9 for simplicity. At last,
the input masked face image is recovered as I, by a simple
arithmetic operation conducted on G/ (1,,,) and G™(I,,,) to
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Figure 3: Detailed architecture of proposed facial prior estimator. The stacked hourglass blocks extract facial geometry features,
the two branches infer natural facial landmark heatmaps and parsing maps based on shared facial geometry features.

facilitate the disentangling task further. In our framework,
each pixel value is normalized between -1 and 1, and the
disentangled mask is expected to be a matrix filled with -1
and 1, where 1 represents the masked area and -1 represents
the unmasked area. Thus, the recovered masked face image
is formulated as follows,

I, = max(G¥(I,,), G™(I,,)) (D

where the max(-, -) is an element-wise maximum function.

The generator completes face images under the guidance
of inferred facial geometry from the masked input image.
Our facial geometry-aware FCENet has already produced
visually realistic face images in this way. However, some at-
tributes of generated face images might not be satisfactory.
Editing facial attributes by changing its guidance informa-
tion is a natural idea, e.g., editing facial attributes by mod-
ifying inferred facial landmark heatmaps and parsing maps.
Multiple ways can be explored in modifying facial geome-
try images. One alternative way is the copy-and-paste strat-
egy, since abundant facial attributes exist in facial geometry
images from the training set, thus image patches that pos-
sess desired facial attributes can be utilized. Another alter-
native way is modifying facial geometry images directly by
moving landmark points or changing edges of parsing maps.
We still denote modified facial landmark heatmaps and fa-
cial parsing maps as I}/ and I} respectively. Then under the
guidance of modified facial geometry, our FCENet generates
face images with desired facial attributes. Thus, by editing
the inferred facial geometry of filled regions, as highlighted
by the red box in figure 2. The generator is able to produce
a diversity of face images with different attributes. Facial at-
tributes editing cases are presented in section "Experiments
and Analysis”.

The generator can only capture coarse geometry and tex-
ture information of the filled region by optimizing the pixel-
wise reconstruction loss between the original clean face I
and generated complete face G/ (I,,,). To capture fine de-
tails, the global and local discriminators are trained to com-
pete with the generator. By optimizing the generator and dis-
criminators alternatively, the generator G produces complete
face images which are photo-realistic and of high-quality(Li
et al. 2017). The global and local discriminators are com-
posed of same network structure apart from the input layer.
The confidence values they assign to the entire image and
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masked region patch are denoted as DY(-) and D'(-) respec-
tively. The generator G is trained to generate visually realis-
tic face image through adversarial training with the two dis-
criminators, whose object is to solve the following min-max
problem,

min max E;.p(p)[log DY(I) + log D (crop(I))]+

0c 0pag.0p
Ejmp(rm[log(1 — DY(GI(I™)))+
log(1 — D' (crop(GY(I"))))]

where we denote crop(-) as the function to crop the patch
of the original missing region from the generated complete
face image.

2

Loss Functions

Low-rank Regularization. The mask image we adopt in
our approach is a black-background gray image with white
squares representing masked regions. Thus, the mask ma-
trix contains only 1 and -1, where 1 for the masked region
and -1 for the unmasked region. The rank values of several
typical mask matrices are presented in figure 4. Therefore,
low-rank regularization is beneficial to the denoising of the
disentangled mask matrix. When the low-rank regularization
is incorporated into the proposed FCENet, it is required to be
back-propagated, whereas simple rank(-) function doesn’t
satisfy such a condition. Thus, an approximate variant is ap-
plied in our algorithm in practice. We notice that if the mask
matrix M is a low-rank matrix, its elements are linearly cor-
related. Then M T M tends to be a block-diagonal matrix.
Thus, its nuclear norm can be used to measure its rank, i.e.

[|M]|. = tr(VMTM) 3)

Pixel-wise Reconstruction Loss. In our approach, the pixel-
wise loss is adopted to accelerate optimization and boost the
superior performance. For the generated image /9°™ and the
target image 11%79¢!, the pixel-wise loss is written as:

W H
oDy -

r=1y=1

L

T W x H

target |p
Ix,y |

“4)

where p is set as 1 for L1 loss or 2 for L2 loss. The pixel-
wise reconstruction loss is measured at five generated image:
the inferred facial geometry images ;' and I . the generated
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Figure 4: Ranks of some typical mask matrices. The size of
the above matrices is 128 x 128. In these matrices, black rep-
resents -1 and white represents 1. From (a) to (e) we notice
that the more complex the mask is, the larger its rank value
will be. Thus low-rank loss regularizes disentangled masks
since the human labeled mask won’t be much too compli-

cated.

complete face G/ (I,,), the disentangled mask G™(I,,), and
the reconstructed masked face image I,.

Adversarial Loss. The adversarial losses for both the com-
plete face image and its masked region are calculated. The
adversarial loss pushes the synthesized images to reside in
the manifold of target image distribution. We denote N as
batch size, the adversarial loss for the complete face image
is calculated as:

Lg

adv

1 :
= N Z — 10g Dg(Gj (Im))

n=1

&)

Similarly, the adversarial loss for missing region is formu-
lated as:

N

1
szdv =N Z —log Dl(CTOP(Gf (Im))) Q)
n=1
The overall adversarial loss is:
Ladv = aLZd'u + ﬂszdv (7)

The parameters « and 3 are set as 1.

Symmetric Loss. Symmetry is the prior geometry knowl-
edge widely existing in human faces, especially reflected on
frontal face images. To preserve such a symmetrical struc-
ture, a symmetric loss is imposed to constraint the synthe-
sized face images and accelerate the convergence of our al-
gorithm. For a face completion result 19, its symmetric loss
takes the form:

) w/2 H
- - 9 _ 79
Ls’ym = W/2 < O ; ; ‘Iw,y IW—(z—l),y‘ ®)

However, the limitation of the above pixel-level symmetric
loss is obvious and can be divided into three folds: the il-
lumination changes, the intrinsic texture difference, and hu-
man face poses. Hence its weight in the overall loss is not
heavy.

Overall Loss. The final objective loss to be optimized is the
weighted sum of all the loss mentioned above:

L= Ang:g+)‘2Lg:g+)‘3Ladv+/\4L7'ank +)\5Lsym+)\6Lt’U (9)

where Ly, is a regularization term on generated face images
to reduce spiky artifacts (Johnson, Alahi, and Fei-Fei 2016).
LIt and LIS represent the pixel-wise reconstruction losses
for generated image and geometry image respectively.

2510

Experiments and Analysis
Experimental Settings

Datasets. We evaluate our model under both controlled
and in-the-wild settings. To this end, two publicly available
datasets are employed in our experiments: Multi-PIE (Gross
et al. 2010) and CelebA (Liu et al. 2015b). The Multi-PIE
is established for studying on the PIE (pose, illumination,
and expression) invariant face recognition. It consists of 345
subjects captured in controlled environments. The Multi-PIE
dataset contains face images with variational face poses, il-
lumination conditions, and expressions. We choose face im-
ages with the frontal view and balanced illumination, result-
ing in 4539 images of 345 subjects. We use images from
the first 250 subjects for training and the rest for testing,
and there is no overlap between the training and testing sets.
Thus, the training set contains 3627 images belonging to 250
individuals, and the testing set contains 912 images belong-
ing to 95 individuals. The face regions are cropped by their
eyes locations and resized to 128 x 128.

CelebA consists of 202,599 celebrity images with large
variations in facial attributes. These images are obtained
from unconstrained environments. The standard split for
CelebA is employed in our experiments, where 162,770 im-
ages for training, 19,867 for validation and 19,962 for test-
ing. Following (Radford, Metz, and Chintala 2016), we crop
and roughly align all the face images by the locations of the
centers of eyes.

Implementation Details. We use colorful images of size
128 x 128 x 3 in all the experiments. The width and height
of rectangle masks are randomly selected with mean shape
64 x 64 for training so that at least one sense organ is un-
der the obstruction. Whereas, the position is randomly se-
lected to prevent the model from putting too much attention
on completing a certain facial part. The images are random
flipped horizontally by probability 0.5. We set the learning
rate as 0.0002 and deploy Adam optimizer (Kingma and
Ba 2015) for the facial geometry estimator, the generator
and the two discriminators. The FCENet is trained for 200
epochs on the Multi-PIE and 20 epochs on the CelebA. The
weights A1, A2, A3, A4, A5, Ag in overall loss are set as
10,1,1,0.001,0.01,0.0001 in practice, respectively. We ap-
ply end-to-end training in FCENet and facial attributes ma-
nipulation is only conducted on testing phase.

Ground Truth Facial Geometry Extractors. Inferring fa-
cial landmark heatmaps and parsing maps is a significant
step in the FCENet. In our algorithm, Facial heatmaps of 68
landmarks and parsing maps of 11 components are used to
supervise the facial geometry estimator. But these two facial
geometry information is not provided in the Multi-PIE and
CelebA datasets. Therefore, we deploy open source state-of-
the-art face alignment (Bulat and Tzimiropoulos 2017) and
face parsing (Liu et al. 2015a) tools to extract facial land-
marks and parsing maps from original complete face images
as the ground truth geometry, then the facial geometry esti-
mator is trained to recover these ground truth facial geome-
try from masked input face images.



Comparison Results

To demonstrate the effectiveness of our algorithm, we make
comparisons with several state-of-the-art methods: Patch-
Match (PM) (Barnes et al. 2009), Context Encoder (CE)
(Pathak et al. 2016), Generative Face Completion (GFC)
(Li et al. 2017) and Semantic Image Inpainting (SII) (Yeh
et al. 2017). The performances are evaluated both qualita-
tively and quantitatively. Specifically, three evaluation met-
rics are considered: visual quality, Peak Signal-to-Noise Ra-
tio (PSNR) and Structural SIMilarity (SSIM). PSNR directly
measures the difference in pixel values and SSIM estimates
the holistic similarity between two images.

Table 1: Quantitative results on the Multi-PIE and CelebA
testing sets. Bold type indicates the best performance.

Dataset Multi-PIE CelebA
Method PSNR SSIM PSNR SSIM
CE 23.052 0.678 24499 0.732
SII 19.366 0.682 18.963 0.685
GFC 27.208 0.889 24.281 0.836
Ours 27714 0904 24944 0.871

Quantitative Results. Comparisons on PSNR and SSIM are
shown in table 1. For fair comparisons, we retrain the CE
model on the Multi-PIE and CelebA since it is not trained
for face completion, and the GFC model is retrained on
the Multi-PIE. The publicly available SII implementation
is trained only on CelebA and doesn’t support training on
other datasets. We find these indexes are basically consis-
tent with the visual quality, i.e., the more plausible visual
quality, the higher PSNR and SSIM. On quantitative results,
our FCENet outperforms SII, CE, and GFC. Compared to
general image completion models(CE, SII), performances
of models considering facial domain knowledge(GFC, ours)
are substantially better. We also investigate performance im-
provement from GFC to FCENet by comparing their net-
works. Our FCENet exploits facial geometry as guidance
information for face completion while GFC treats them as
semantic regularization. More valid facial geometry infor-
mation is utilized by feeding them into the face comple-
tion generator than by regularizing face semantic loss. Our
FCENet makes use of facial landmark heatmaps and pars-
ing maps that carry richer facial geometry information than
GFC which only deploys facial parsing maps.

Qualitative Results. The visual comparisons are summa-
rized in figure 5 and 6. We mainly show typical exam-
ples with masks covering key face components (e.g., eyes,
mouths, and noses). The PM method searches the most sim-
ilar patches from the masked input and fails to complete ap-
pealing visual results. It is not surprising because the miss-
ing parts differ from the rest image regions in pixel level and
PM does not consider the semantic relevance. SII generates
relatively reasonable results but the completion results lack
global consistency with the original input. About CE and
GFC, reconstruction artifacts can be observed especially for
those hard cases as shown in figure 7. Overall, our model
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Figure 5: Visual quality of completion results on the Multi-
PIE. Our completion results vastly outperform other meth-
ods on visual quality.

(d) GFC

(a)Input (b)) PM () CE (©)Ours  (fSI (2) GT

Figure 6: Visual quality of completion results on the CelebA.
For SII, we use its public implementation on CelebA to
complete face images. Note that SII completes face images

cropped at the center to 64 x 64.

can generate the most realistic results thanks to the guidance
of the geometry information about facial anatomy.

Ablation Study

Effects of Low-rank Regularization and Different Facial
Geometry Images To validate the effects of the low-rank
loss, estimated facial landmark heatmaps and facial parsing
maps. Different experiment settings are applied as table 2
presents.

The experiment setting 1 and 2 are used to verify the ef-
fect of the low-rank regularization. The experiment setting 3,

(b) PM

(d) GFC

(a) Input (c) CE (e) Ours (fysu (2) GT

Figure 7: Hard cases selected from the CelebA. The face
images in the three rows pose difficulty of exceptional con-
text(red background), inpainting face with occlusion(hat)
and posed face. Our FCENet generates visually realistic face
images while reconstruction artifacts can be easily observed

in PM, SII, CE and GFC.



Table 2: Different experiment settings and their testing re-
sults (PSNR, SSIM) on the Multi-PIE for ablation study,
higher values are better.

Exp. Setting 1 2 3 4 5
Low-rank Loss X v v v v
Landmarks X X v X v
Parsing Maps X X X v v
PSNR 24926 25470 27.256 27.482 27.714
SSIM 0.841 0.845 0.898 0.900 0.904

4 and 5 respectively reflect the performance boosting of fa-
cial landmark heatmaps, facial parsing maps as well as both
together in comparison to experiment setting 2 that doesn’t
contain any facial geometry. Two metrics, PSNR and SSIM
are calculated at the testing set as shown in table 2. The vi-
sual quality of testing results under different experiment set-
tings is demonstrated as figure 8.
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Figure 8: Visual quality of completion results under different
experiment settings. (a) and (g) are masked input and ground
truth complete face images respectively, (b)-(f) are comple-
tion results on the Multi-PIE testing set under experiment
setting 1-5 respectively. Effects of low-rank regularization
term and facial geometry are presented intuitively.

Face Attributes Manipulation

After filling the masked regions, users may not be satisfied
with the face attributes of these parts and tend to modify
them. Our estimated facial geometry images allow the users
to perform interactive face attributes editing on the resulting
complete face. Examples are presented in figure 1. Our al-
gorithm also supports face attributes modifications for com-
plete face images by manually pasting a white mask on the
unsatisfied region of a complete face image. Then operations
like copy-and-paste are used to modify facial geometry im-
ages with desired attributes. Hence we can simply change
the facial geometry images to create novel human portraits.
For example, changing the shape of generated faces by sim-
ply editing their geometry images (row 1 and 2 in figure 9),
modifying one attribute while other attributes are kept simi-
lar to the target image (row 2, 3 and 4 in figure 9).
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Figure 9: Attributes editing results. (b) and (c) are modified
facial geometry. The face shapes in the 1st and 2nd rows
are changed. Row 3, 4 and 5 present that nose, mouth and
eyes are edited respectively while other attributes are nearly
unchanged.

Conclusion

This work has systematically studied facial geometry for
face completion and editing, resulting in a new geometry-
aware network, named FCENet. Our network is composed
of a face geometry estimator for inferring facial geometry
from a masked face, a generator for inpainting face im-
ages and disentangling their masks. A low-rank loss is im-
posed to regularize the mask matrix to denoise. Different
from most existing face completion methods, our network
naturally supports facial attributes editing by interactively
modifying facial geometry images. Extensive experimental
results on the widely used Multi-PIE and CelebA datasets
demonstrate FCENet’s superior performance over state-of-
the-art face completion methods.
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