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Abstract

Bribery in election (or computational social choice in gen-
eral) is an important problem that has received a considerable
amount of attention. In the classic bribery problem, the briber
(or attacker) bribes some voters in attempting to make the
briber’s designated candidate win an election. In this paper,
we introduce a novel variant of the bribery problem, “Election
with Bribed Voter Uncertainty” or BVU for short, accommo-
dating the uncertainty that the vote of a bribed voter may or
may not be counted. This uncertainty occurs either because a
bribed voter may not cast its vote in fear of being caught, or
because a bribed voter is indeed caught and therefore its vote
is discarded. As a first step towards ultimately understand-
ing and addressing this important problem, we show that it
does not admit any multiplicative O(1)-approximation algo-
rithm modulo standard complexity assumptions. We further
show that there is an approximation algorithm that returns a
solution with an additive-ε error in FPT time for any fixed ε .

Introduction
In multiagent systems, election (or voting) is an important
mechanism for collective decision-making. This importance
has led to extensive investigations of various aspects of elec-
tion. Indeed, the field of computational social choice inves-
tigates algorithmic and computational complexity aspects of
this mechanism (see, e.g., the book by Brandt et al. (2016)).
In this paper, we focus on two important aspects of election
that have received an extensive amount of attention but are
still not fully understood: uncertainty and bribery.

Uncertainty. Most studies in election investigated determin-
istic models and did not consider uncertainty, which is how-
ever often encountered in real-world scenarios. There are
two exceptions. One exception is the investigation of un-
certainty from the perspective of the possible winner. In
this perspective, the input is incomplete and the problem is
to determine if it is possible to extend the incomplete in-
put to make a designated candidate win or lose. The uncer-
tainty can be incurred by voters’ incomplete preference lists,
as shown by Konczak and Lang (2005); Xia and Conitzer
(2011); Betzler and Dorn (2010); Baumeister and Rothe
(2012); Betzler, Hemmann, and Niedermeier (2009). The
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uncertainty can also be incurred by an incomplete set of can-
didates (e.g., additional candidates may be added), as shown
by Chevaleyre et al. (2010); Xia, Lang, and Monnot (2011);
Baumeister, Roos, and Rothe (2011). The other exception
is the investigation of uncertainty incurred by complete but
probabilistic inputs. For example, Wojtas and Faliszewski
(2012) introduced an election model in which voters or can-
didates may have some probabilities of no-show, either be-
cause the communication network is not reliable or because
voters inherently behave as such.
Bribery. Faliszewski, Hemaspaandra, and Hemaspaandra
(2009) introduced the bribery problem in which a briber
(or attacker) attempts to make a designated candidate win
by paying a (monetary) bribe to some voters. Once bribed,
a voter will vote for the candidate designated by the at-
tacker. This problem has received a considerable amount of
attention; see, e.g., Lin (2010); Brelsford et al. (2008); Xia
(2012); Faliszewski et al. (2015); Faliszewski, Hemaspaan-
dra, and Hemaspaandra (2011); Faliszewski et al. (2009);
Parkes and Xia (2012); Chen et al. (2018a). Most stud-
ies in this context consider deterministic models, but re-
searchers have started investigating the issue of uncertainty
in this context as well. For example, Erdelyi, Hemaspaandra,
and Hemaspaandra (2014) considered the bribery problem
with uncertain voting rules; Mattei et al. (2015) considered
the bribery problem with uncertain information, Erdélyi et
al. (2009) considered uncertainty in the lobbying problem,
which is related to, but different from, the bribery problem.
New problem: Election with Bribed Voter Uncertainty
(BVU). We observe that in the context of the bribery prob-
lem, there is an inherent uncertainty that has not been con-
sidered in the literature: The vote of a bribed voter may
or may not be counted, either because a bribed voter may
choose not to cast its vote in fear of being caught, or be-
cause a bribed voter is indeed caught and therefore its vote
is discarded. In this setting, each voter is associated with a
price of being bribed as well as a probability that its vote
is not counted upon taking a bribe. The goal of the attacker
is to bribe a subset of voters such that the total bribing cost
does not exceed a given budget, while the probability that a
designated candidate wins the election is maximized.

The importance of understanding bribed voter uncertainty
cannot be overestimated. This is because, even with the pro-
liferation of anonymous and unregulated cryptocurrencies
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(e.g., Bitcoin) that are deemed as ideal for bribery purposes,
there is still a possibility that a bribe-taking voter is detected
(see Goldfeder et al. (2017)). In the United States, telling
a voter whom to vote for is one type of voting fraud and
may cause the votes to be discarded (see Heritage Founda-
tion (2018)), as attested by the case that the Wetumpka City
Council District 2 election was switched after 8 ballots were
ruled (by a judge) to be thrown out (see Arwood (2017)).

Our Contributions
In this paper we make three main conributions. First, we in-
troduce and initiate the study of the BVU problem, which
captures a new form of uncertainty in bribery.

Second, we characterize the hardness of the BVU prob-
lem and show that the newly captured uncertainty com-
pletely changes the complexity of the bribery problem as
follows. In the absence of uncertainty, the bribery prob-
lem can be solved by a simple greedy algorithm (as shown
by Faliszewski, Hemaspaandra, and Hemaspaandra (2009)).
In the presence of uncertainty, assuming P 6= NP, there
is no O(1)-approximation algorithm even if there are only
two candidates; assuming W [1] 6= FPT, there is no O(1)-
approximation algorithm that runs in FPT time parameter-
ized by r, which is the difference between the number of
votes received by the winner and the number of votes re-
ceived by the designated candidate in the absence of bribery.

Third, despite the strong hardness result mentioned above,
we show the existence of an additive ε-approximation FPT
algorithm when the number of candidates is a constant. This
means that for an arbitrary small ε > 0, there is an algo-
rithm that runs in FPT-time (parameterized by the parame-
ter r mentioned above) and returns an approximate solution
with an objective value that is at most ε smaller than the op-
timal objective value. This result relies on a reduction from
the BVU problem to a new variant of the knapsack prob-
lem (involving a stochastic objective and multiple cardinal-
ity constraints) and an approximation algorithm for this new
variant of the knapsack problem (while leveraging dynamic
programming and a non-trivial application of Berry-Essen’s
Theorem). Both the proof technique and the new variant of
the knapsack problem may be of independent interest.

All of the omitted proofs can be found in the full version
of the present paper Chen et al. (2018b).

Problem Statement and Preliminaries
The basic election model. In the basic election model, there
are a set of m candidates C = {c1,c2, . . . ,cm} and a set of n
voters V = {v1,v2, . . . ,vn}. Each voter has a preference over
the candidates. There is a voting rule according to which a
winner is selected. In this paper we focus on the plurality
rule with a single winner, namely that every voter votes for
its most preferred candidate and the winner is the candidate
that receives the highest number of votes.

The classic bribery problem in the basic election model.
A voter may be bribed to deviate from its own preference.
Suppose each voter vi has a price qi. If vi takes a bribe of
amount qi from the briber (or attacker), then vi will vote,

regardless of vi’s own preference, for the designated candi-
date of the brier (i.e., the candidate preferred by the briber).
The briber has a total bribe budget Q. The goal of the briber
is to make the designated candidate win the election. The
bribery problem has been extensively investigated in the lit-
erature; see, for example, Faliszewski, Hemaspaandra, and
Hemaspaandra (2009); Lin (2010); Brelsford et al. (2008);
Xia (2012); Faliszewski et al. (2015); Parkes and Xia (2012).
BVU (Election with Bribed Voter Uncertainty): A new
problem. As discussed before, we introduce and study a
novel variant of the classic bribery problem. Suppose voter
vi takes a bribe of amount qi from the briber. With proba-
bility pi ∈ [0,1], which is independent of anything else, the
vote of vi goes to the designated candidate and is counted;
with probability 1− pi, the vote of vi is not counted (for the
two reasons mentioned above), that is, no candidate will re-
ceive the vote from vi. Without loss of generality, let c1 be
the winner when there is no bribery and cm be the briber’s
designated candidate. Let Vj be the subset of voters that vote
for candidate c j in the absence of bribery, then |V1| > |Vj|
for any j > 1. Moreover, let r = |V1|− |Vm|, namely the dif-
ference between the number of votes received by the winner
c1 and the number of votes received by the designated can-
didate cm in the absence of bribery. The BVU problem is
formalized as follows, while noting that the voters in Vm do
not need to be bribed because they already vote for cm.

The (Plurality-)BVU Problem
Input: A set of m candidates C = {c1,c2, . . . ,cm}, where
c1 is the winner and cm is the designated candidate in the
absence of bribery; a set of n voters V = {v1,v2, · · · ,vn}
with V = ∪m

j=1Vj, where Vj is the subset of voters that
vote for c j in the absence of bribery; a positive integer r =
|V1|−|Vm|; the briber’s budget Q; each vi is associated with
a price qi for bribe and a probability pi with which the vote
of the bribed voter vi goes to the designated candidate cm
and is counted (i.e., 1− pi is the probability that the vote
of the bribed vi is not counted)
Output: Find a set of indices I∗ ⊆ {1,2, · · · ,n} such that
• ∑i∈I∗ qi ≤ Q, and
• the probability that the designated candidate cm wins is

maximized by bribing voters in V ′ = {vi ∈V \Vm|i∈ I∗}
Preliminaries. Let Z be a random variable taking non-
negative values. The Markov’s inequality (see, for exam-
ple, Stein and Shakarchi (2009)) says the following: For any
a > 0, it holds that

Pr(Z ≥ a)≤ E(Z)
a

. (1)

Theorem 1 (Berry-Essen’s Theorem; see Berry (1941)).
Let Z1,Z2, . . . ,Zn be independent random variables with
E(Zi) = 0, E(Z2

i ) = σ2
i > 0, and E(|Zi|3) = ρi < ∞. Let

Sn =
Z1 +Z2 + . . .+Zn√
σ2

1 +σ2
2 + . . .+σ2

n

.

Then, it holds that
sup
x∈R
|Fn(x)−Φ(x)| ≤C0 ·ψ0, (2)

2573



where C0 is a universal constant, Fn(x) is the cumulative
distribution function of Sn, Φ(x) is the standard normal dis-
tribution N (0,1), and

ψ0 =
( n

∑
i=1

σ2
i

)−3/2
·

n

∑
i=1

ρi.

The following Corollary is a folklore. For completeness,
its proof is provided in the full version Chen et al. (2018b).
Corollary 1. Let Yj and Z j for 1 ≤ j ≤ m be 2m indepen-
dent random variables taking values in Z≥0 such that for
any integer 0≤ h≤ ` and 1≤ j ≤ m, the following holds:

Pr(Yj ≥ h)≥ (1−δ )Pr(Z j ≥ h)−δ .

Then, we have:

Pr

(
m

∑
j=1

Yj ≥ `

)
≥ (1−δ )m Pr

(
m

∑
j=1

Z j ≥ `

)
−mδ .

Hardness of the BVU Problem
We show the hardness of the BVU problem for m = 2. By
introducing dummy voters whose prices are higher than the
briber’s budget Q (i.e., they cannot be bribed), the hardness
result immediately applies to the case of an arbitrary m > 2.

Hardness Result
The goal of this subsection is to prove the following.
Theorem 2 (Main hardness result). Assuming W [1] 6= FPT ,
there does not exist an O(1)-approximation algorithm for
BVU problem that runs in FPT time parameterized by r, even
if m = 2. Moreover, assuming P 6= NP, there does not exist
an O(1)-approximation algorithm for the BVU problem that
runs in polynomial time if r is part of the input, even if m= 2.

In order to prove Theorem 2, we leverage the equivalence
between the BVU problem with m = 2 and the following
Knapsack with Uncertainty (KU) problem.

Knapsack with Uncertainty (KU)
Input: A knapsack of capacity Q; a set of n′ items, with
each item associated with a size qi and a profit Pi, which is
an independent random variable such that Pr(Pi = 1) = pi
and Pr(Pi = 0) = 1− pi; a positive integer r.
Output: Find a set of indices I∗ ⊆ {1,2, · · · ,n} such that
• ∑i∈I∗ qi ≤ Q, and
• Pr(∑i∈I∗ Pi ≥ r+1−|I∗|) is maximized.

Lemma 1. The BVU problem with m = 2 is equivalent to
the KU problem.

Proof of Lemma 1. Consider the BVU problem with m =
2. Recall that c1 is the winner in the absence of bribery, c2
is the designated candidate, r = |V1|− |V2|, and the problem
is to bribe a set V ′ = {vi ∈ V1|i ∈ I∗} of voters so that the
probability c2 wins is maximized.

Consider the number of votes received by candidates c1
and c2 after the briber bribes the voters in V ′. For a bribed
voter vi ∈V ′, there are two possibilities:

• The vote of vi is counted, meaning the number of votes
received by candidate c1 decreases by 1 and the number
of votes received by candidate c2 increases by 1.

• The vote of vi is not counted, meaning the number of votes
received by c1 decreases by 1 but the number of votes
received by c2 remains the same.

This means that the votes received by candidate c1 de-
creases to |V1| − |V ′|. Hence, for c2 to win, it needs at
least |V1| − |V ′|+ 1 votes. Given that c2 originally receives
|V2| votes, at least |V1|− |V ′|− |V2|+ 1 = r−|I∗|+ 1 votes
from the bribed voters are counted. Let Xi be a binary ran-
dom variable indicating whether the vote of vi is counted,
then Pr(Xi = 1) = pi and Pr(Xi = 0) = 1− pi. The prob-
ability that at least r− |I∗|+ 1 votes of the bribed voters
are counted is Pr(∑i∈I∗ Xi ≥ r+1−|I∗|). That is, the BVU
problem with m = 2 essentially asks for an index set I∗
such that ∑i∈I∗ qi≤Q and Pr(∑i∈I∗ Xi ≥ r+1−|I∗|) is max-
imized. This is exactly the KU problem.

In order to prove Theorem 2, we also need:

Theorem 3. Assuming W [1] 6= FPT , there does not exist an
O(1)-approximation algorithm for the KU problem that runs
in FPT time parameterized by r.

Proof of Theorem 3. We leverage the d-sum problem,
which is known to be W [1]-hard (see Downey and Fellows
(1992)), and show a reduction from the d-sum problem to
the KU problem. We first review the d-sum problem.

The d-sum Problem (Downey and Fellows (1995))
Input: s positive integer x1,x2, · · · ,xs and an integer t.
Output: Decide whether or not there exists a subset E ⊆
{x1,x2, · · · ,xs} of |E|= d elements such that ∑i:xi∈E xi = t.

The rest is to show the following reduction: If there is an
α-approximation algorithm that solves the KU problem in
f (r)nO(1) time for some computable function f and some
constant α , then this algorithm can be used to solve the d-
sum problem in f (d)mO(1) time. This contradicts the W [1]-
hardness result of the d-sum problem mentioned above.

The details of the reduction follow. Given an instance of
the d-sum problem with s integers x1,x2, · · · ,xs, we con-
struct an instance of the KU problem as follows. Let n′ = s
and r = 2d− 1. Construct n′ items in the KU problem with
pi = Pr(Pi = 1) = 2−ωxi and qi = M−ωxi for 1 ≤ i ≤ n,
where ω = dlog2 αe+1 and M = sω ∑

s
i=1 xi. Let Q = dM−

ωt. We make two claims.

Claim 1. If the d-sum instance admits a solution, then there
exists a solution to the KU problem with an objective value
at least 2−ωt .

Proof. Suppose the d-sum problem admits a solution E. Let
I = {i|xi ∈ E} be the index set of items in the solution. We
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observe that

∑
i∈I

qi = dM−ω ∑
i∈I

xi = dM−ωt = Q, and

Pr

(
∑
i∈I

Pi ≥ d

)
= Pr(Pi = 1,∀i ∈ I) = ∏

i∈I
pi = 2−ωt .

Hence, there exists a solution with an objective value at least
2−ωt . Thus, Claim 1 holds.

Claim 2. If the d-sum instance does not admit a solution,
then any solution to the KU problem has an objective value
at most 2−ω(t+1) < 1/α ·2−ωt .

Proof. Suppose the d-sum problem does not admit a solu-
tion. Note that for any solution I to the KU problem, we
have |I| ≤ d; otherwise, |I| ≥ d +1 leads to

∑
i∈I

qi ≥ (d +1)M−ω ∑
i∈I

xi > dM > Q,

which contradicts that I is a solution. We split |I| ≤ d into
two scenarios: |I| ≤ d−1 or |I|= d.

• In the case |I| ≤ d−1, Claim 2 holds because

Pr

(
∑
i∈I

Pi ≥ r+1−|I|

)
≤ Pr

(
∑
i∈I

Pi ≥ d +1

)
= 0 < 2−ω(t+1).

• In the case |I|= d, the fact ∑i∈I qi ≤ Q and qi = M−ωxi
and Q = dM−ωt implies ∑i∈I xi ≥ t. Since the d-sum
problem does not admit a solution, either ∑i∈I xi ≥ t+1 or
∑i:xi∈I xi ≤ t−1. Given that ∑i∈I xi ≥ t, we have ∑i∈I xi ≥
t +1. Then, Claim 2 holds because

Pr

(
∑
i∈I

Pi ≥ d

)
= ∏

i∈I
pi = 2−ω ∑i∈I xi ≤ 2−ω(t+1).

Under Claims 1-2, we observe that an α-approximation
algorithm for the KU problem can be used to solve the d-
sum problem as follows:

• In the case the α-approximation algorithm for the KU
porblem returns a feasible solution with an objective value
that is ≤ 2−ω(t+1), the optimal objective value is at most
α · 2−ω(t+1) < 2−ωt . Claim 1 implies that the d-sum in-
stance does not admit a feasible solution.

• In the case the α-approximation algorithm for the KU
problem returns a feasible solution with an objective value
that is > 2−ω(t+1), Claim 2 implies that the d-sum in-
stance must admit a feasible solution.

Hence, any α-approximation algorithm for solving the KU
problem can be used to solve the d-sum problem. This com-
pletes the proof of Theorem 3.

Corollary 2. Assuming P 6= NP, there does not exist an
O(1)-approximation algorithm for the KU problem that runs
in polynomial time if r is part of the input.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Lemma 1 shows that the KU prob-
lem is equivalent to the BVU problem with two candidates.
The hardness of the KU problem is established by Theorem
3 and Corollary 2. Hence Theorem 2 holds.

An Approximation Algorithm in FPT time
Having showed that the BVU problem is hard, now we
present an approximation algorithm for solving it. The al-
gorithm runs in FPT time for any fixed constant m and any
small constant ε . In terms of approximation ratio, our algo-
rithm returns a value that is ≥ OPT− ε , where OPT ∈ [0,1]
is the optimal objective value. Note that the hardness result
given by Theorem 2 suggests that an additive approximation
algorithm is perhaps the best algorithm we can hope for.

Algorithmic Result
Theorem 4 (Main algorithmic result). For an arbitrary
small constant ε > 0, there exists an algorithm for the BVU
problem, which runs in rO(mr/ε)+nO(m5/ε5) time and returns
a solution with an objective value no smaller than OPT− ε ,
where OPT ∈ [0,1] is the optimal objective value.

In order to prove Theorem 4, we need to design an ap-
proximation algorithm for the BVU problem. For this pur-
pose, we define a new variant of the Knapsack problem.
The MKU Problem. The MKU problem deals with items
that have deterministic sizes but random profits and involves
a stochastic objective function, and the goal is to maximize
a certain “overflow” probability under the knapsack’s vol-
ume and cardinality constraints. More specifically, the MKU
problem is defined as follows:

Multi-block Knapsack with Uncertainty (MKU)
Input: A knapsack of capacity Q; a set of items V =
{v1,v2, · · · ,vn}, with each item associated with a size qi
and a profit Pi, which is an independent random vari-
able such that Pr(Pi = 1) = pi and Pr(Pi = 0) = 1− pi;
a partition of the n items into a constant m ≥ 2 sub-
sets V1,V2, · · · ,Vm, and a quota ∆ j for each Vj such that
∆ j ≤ r+1 for some positive integer r; a positive integer k
such that k ≤ r+1; a positive index 1≤ j0 ≤ m−1.
Output: Find a set of indices I∗ ⊆ {1,2, · · · ,n} such that
• ∑i∈I∗ qi ≤ Q,
• |V (I∗)∩Vj| ≥ ∆ j for all 1≤ j ≤ m−1 and j 6= j0,
• |V (I∗)∩Vj0 |= ∆ j0 ,
• Pr(∑i∈I∗ Pi ≥ k) is maximized,
where V (I∗) = {vi|i ∈ I∗}.

Note that in the preceding definition, we intentionally
make the parameters of the MKU problem correspond to the
parameters of the BVU problem exactly, because we intend
to reduce the number of notations used in this paper (for bet-
ter readability). That is, parameters n, m, Vj, Q, pi, qi, r and
I∗ in the BVU problem correspond to the same parameters in
the MKU problem. We will use the problem context to dis-
tinguish the meanings of these parameters. Because of this,
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we say an instance of the MKU problem corresponds to an
instance of the BVU problem when they have the same set
of parameter values.

Now we show that the BVU problem can be solved effi-
ciently by utilizing an algorithm for the MKU problem.

Theorem 5. Let ε > 0 be an arbitrary small constant. De-
note by OPTBVU and OPTMKU the optimal objective value of
the BVU problem and the MKU problem, respectively. A fea-
sible solution to the BVU problem with an objective value at
least OPTBVU − ε can be found in O(rmΛ) time, where Λ is
the time for finding a feasible solution to the corresponding
MKU problem with the objective value at least OPTMKU−ε .

Proof idea. Here we show the proof idea for a weaker ver-
sion of the theorem, which finds a near optimal solution for
BVU in O(nm−1Λ) time, and is actually sufficient for prov-
ing Theorem 4. We observe that after bribing a fixed subset
of voters, the total votes received by candidates 1, . . . ,m−1
are fixed since they always lose some votes from the bribed
voters who originally voted for them. Therefore, we can
guess the number of bribed voters in each Vj via nm−1 enu-
merations. Suppose we guess the correct value of each ∆ j,
where ∆ j voters in Vj are bribed, then the probability that
cm wins is the same as the probability that at least k votes
from the bribed voters are counted for some value k such
that k+ |Vm|= max{|Vj|−∆ j,1≤ j≤m−1}+1. The prob-
lem now becomes exactly the MKU problem except that
|V (I∗)∩Vj| ≥ ∆ j is replaced with |V (I∗)∩Vj|= ∆ j.

Now we show that there is an approximate algorithm for
solving the MKU problem.

Theorem 6 (algorithm for solving the MKU problem). For
any arbitrary small constant ε > 0, there exists an algo-
rithm for the MKU problem that runs in rO(mr/ε)+nO(m5/ε5)

time and returns a solution with an objective value that is
no smaller than OPT− ε , where OPT ∈ [0,1] is the optimal
objective value in the MKU problem.

Proof of Theorem 4. By putting Theorem 5 and Theorem
6 together, we obtain Theorem 4.

The Proof of Theorem 6
The main difficulty originates from the maximization of a

probability involving the sum of random variables, which
does not have a simple explicit expression. A natural idea
is to approximate the summation of random variables with
a Gaussian variable via Berry-Essen’s Theorem. However,
such an approximation is not always achievable because the
condition in Berry-Essen’s Theorem does not necessarily
hold. Furthermore, even if Berry-Essen’s Theorem is appli-
cable, bounding the tail probability of a Gaussian variable
together with a set of other constraints required in MKP is
still challenging. Figure 1 highlights the proof strategy for
overcoming these difficulties.

Specifically, We partition the set of items into big and
small ones based on their probability. Then, we differentiate
the case that the optimal solution contains many big items
(Case 1), which is easily coped with by using Markov’s in-
equality (Lemma 2), from the case that the optimal solution

Theorem 6

Case 1: the optimal solution 
contains many big items 

(Lemma 2)

Case 2: the optimal solution 
does not contain many big items

Dealing with big items 
(Lemma 3)

Dealing with small items 
(Lemma 4)

Scenario 1: not so 
many small items 

(Lemma 5)

Scenario 2: many 
small items 

(Lemmas 6-8)

Figure 1: Strategy for proving Theorem 6.

does not contain many big items (Case 2), whose treatment
is much more complicated and proceeds as follows.

• First, we apply Corollary 1 to decompose the MKU prob-
lem in Case 2 into a series of sub-problems, each of which
is a stochastic knapsack problem with one cardinality con-
straint.

• Second, for big items (Lemma 3), we round their proba-
bility to O(k/ε) ≤ O(r/ε) distinct probabilities. This al-
lows us to guess the number of big items corresponding to
the rounded probabilities in the optimal solution, leading
to the selection of the optimal subset of big items.

• Third, for small items (Lemma 4), there are two scenar-
ios:

– In the scenario where the optimal solution does not con-
tain a large volume of small items, we present a dy-
namic programming algorithm (Lemma 5).

– In the scenario where the optimal solution contains a
large volume of small items, Berry-Essen’s Theorem is
applicable and we can use it to transform the problem
of maximizing a specific probability to the problem of
approximating the summation of moments of random
variables in the optimal solution. Since the moments of
a random variable are deterministic, we can leverage
the technique for solving the classic knapsack problem
(Lemmas 6-8).

Definition 1 (big vs. small items). Under the assumption
that ε > 0 is a small constant such that 1/ε ≥ 4 is an integer,
we say an item in the MKU problem is big if pi > 1−ε2 and
is small otherwise.

Lemma 2 (the case the optimal solution containing many
big items). If |T ∩B j∗ | ≥ 2k, then there is a polynomial-time
algorithm that returns a solution I to the MKU problem such
that

• ∑i∈I qi ≤ Q,
• |V (I)∩Vj| ≥ ∆ j for j 6= j0,
• |V (I)∩Vj0 |= ∆ j0 , and
• Pr(∑i∈I Pi ≥ k)≥ 1− ε .

Proof idea. We first select the 2k big items with the smallest
sizes within B j∗ . Using Markov’s inequality, it is not difficult
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to show that even for these 2k items, the probability that their
total profit is at least k is greater than or equal to 1− ε . To
further ensure |V (I)∩Vj| ≥ ∆ j, we simply add items of the
smallest size in each Vj.

Lemma 3 (dealing with big items in the case the optimal
solution not containing many big items). If |T ∩B`| ≤ 2k−1,
then there is an algorithm that runs in kO(mk/ε) ≤ rO(mr/ε)

time and returns a set I∩B` of big items such that
• |I∩B`|= |T ∩B`|,
• QI∩B`

≤ QT∩B`
, and

• Pr(PI∩B`
≥ h)≥ (1−2ε/m)Pr(PT∩B`

≥ h) for any h≥ 0.

Proof idea. Note that
Pr(PT∩B = h) = ∑

I⊆T∩B,|I|=h
∏
i∈I

pi ∏
i 6∈I

(1− pi),

Since |T ∩B|< 2k, even if we increase or decrease the value
of each pi in the above equation by a factor of 1+ ε/(mk),
the value of Pr(PT∩B = h) changes by a factor of 1+O(ε/m).
Therefore, we can round down the probabilities of all the big
items into the form of (1− ε2)(1+ ε/(mk)) j. By doing so
there are only O(km/ε) different kinds of probabilities. We
can guess the number of big items in T that have the same
rounded probability, and select the ones with the smallest
size instead.

Lemma 4 (dealing with small items in the case the optimal
solution not containing many big items). There exists an al-
gorithm that runs in nO(m5/ε5) time and returns a feasible
solution I∩S` such that
• |I∩S`|= |T ∩S`|
• QI∩S` ≤ QT∩S`
• Pr(PI∩S` ≥ h)≥ Pr(PT∩S` ≥ h)−Θ(ε/m)

The proof of this lemma needs a sequence of results.
Lemma 5. For any ζ , there exists an algorithm that runs
in (mn/ε)O(ζ ) time and returns a solution I ∩ S` such that
|I ∩ S`| = |T ∩ S`|, QI∩S` ≤ QT∩S` and Pr(PI∩S` = h) ≤
Pr(PT∩S` = h)+2ε/(mn) for every 0≤ h≤ ζ −1.

Proof idea. The algorithm is based on dynamic program-
ming that recursively solves the following sub-problem: Let
S[ j] be the set of the first j items in S. Find a partial solution
I∩S[ j] such that |I∩S[ j]|= |T ∩S[ j]|, QI∩S[ j] ≤QT∩S[ j] and
Pr(PI∩S[ j] = h)≤ Pr(PT∩S[ j] = h)+ j ·ε/(mn2) hold for every
0≤ h≤ ζ −1 and 0≤ϖ ≤ n′. This can be done using a sim-
ilar approach as that for the classical knapsack problem (see,
e.g., Vazirani (2013)), except that we do not know the values
of |T ∩S[ j]|, and the value of Pr(PT∩S[ j] = h) for every j and
h. To handle this, we solve sub-problems for all the possible
(approximate) values of |T ∩ S[ j]| and Pr(PT∩S[ j] = h), that
is, for any 0 ≤ ϖ ≤ n′ and any uh ∈ {0,η ,2η , . . . ,η · 1/η}
where η = ε/(mn2), we find a partial solution I ∩S[ j] such
that I∩S[ j] = ϖ , Pr(PI∩S[ j] = h)≤ uh + j · ε/(mn2) hold for
every 0≤ h≤ ζ−1. We can further guess (within an error of
O(η)) the value of Pr(PT∩S = h) for every h, through which
the dynamic programming can return a solution satisfying
Lemma 5.

Definition 2. For any subset D of small items and integer
h≥ 0, we define

ĥD =
h−∑i∈D pi√

∑i∈D σ2
i

=
h−∑i∈D pi√

∑i∈D pi(1− pi)
.

The proofs of the following two lemmas mainly consist
of mathematical calculations together with a suitable appli-
cation of Berry-Essen’s theorem.

Lemma 6. If

∑
i∈I∩S`

pi > (m/ε)4 and |Φ(ĥI∩S`)−Φ(ĥT∩S`)| ≤ O(ε/m),

then

Pr

(
∑

i∈I∩S`

Pi ≥ h

)
≥ Pr

(
∑

i∈T∩S`

Pi ≥ h

)
−Ω(ε/m),

where Φ(x) is the cumulative distribution function of the
standard normal distribution.

Lemma 7. If

∑
i∈T∩S`

pi > (m/ε)4

and the following holds for some I∩S`:

• |∑i∈I∩S` pi−∑i∈T∩S` pi| ≤ O(ε/m), and
• |∑i∈I∩S` pi(1− pi)−∑i∈T∩S` pi(1− pi)| ≤ O(ε/m),

then
|Φ(ĥI∩S`)−Φ(ĥT∩S`)| ≤ O(ε/m)

for every 0≤ h≤ k.

Now we can replace the condition of Pr(PI∩S` ≥ h) ≥
Pr(PT∩S` ≥ h)−Θ(ε/m) in Lemma 4 with the conditions
in Lemma 7, leading to the following lemma whose proof is
based on a dynamic programming approach similar to that
of Lemma 5.

Lemma 8. If ∑i∈T∩S` pi > (m/ε)4, then there exists an al-
gorithm that runs in O(m2n5/ε2) time and returns a feasible
solution with item set I∩S` such that

• QI∩S` ≤ QT∩S` , and
• |I∩S`|= |T ∩S`|, and
• |∑i∈I∩S` pi−∑i∈T∩S` pi| ≤ O(ε/m), and
• |∑i∈I∩S` pi(1− pi)−∑i∈T∩S` pi(1− pi)| ≤ O(ε/m).

Proof of Lemma 4. Without loss of generality we assume
S` = {1,2, · · · ,n′}. Recall that S` consists of small items.
For any small item vi we have ε2 ≤ 1− pi ≤ 1. We prove
Lemma 4 by considering the following two scenarios:

• Scenario 1: ∑i∈T∩S` pi ≤ (m/ε)4.

• Scenario 2: ∑i∈T∩S` pi > (m/ε)4.

In Scenario 1, we observe that by Markov’s inequality
Eq.(1), we know

Pr(PT∩S` ≥ h)≤ ε/m for h≥ (m/ε)5.
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Let ζ = (m/ε)5. Lemma 5 showed that we can find a subset
I∩S` of items in polynomial time such that

Pr(PI∩S` = h)≤ Pr(PT∩S` = h)+2ε/(mn)

holds for every 0≤ h≤ ζ −1. Then

Pr(PI∩S` ≥ h)≥ Pr(PT∩S` ≥ h)−2ε/m

for every 0≤ h≤ ζ −1. Since

Pr(PI∩S` ≥ h)≥ 0≥ Pr(PT∩S` ≥ h)−2ε/m

for h ≥ ζ , we find a near-optimal solution I ∩ S` in polyno-
mial time. Hence, Lemma 4 holds in Scenario 1.

In Scenario 2, we have ∑i∈T∩S` pi > (m/ε)4. As high-
lighted before, the difficulty encountered here is to maxi-
mize the probability with respect to the sum of random vari-
ables. Our strategy is to first replace the condition

Pr(PI∩S` ≥ h)≥ Pr(PT∩S` ≥ h)−Θ(ε/m) (3)

in Lemma 4 with a stronger, but handier condition. More
precisely, by Lemma 6 and Lemma 7, we show that Eq (3)
is true if we have |∑i∈I∩S` pi−∑i∈T∩S` pi| ≤ O(ε/m), and
|∑i∈I∩S` pi(1 − pi) − ∑i∈T∩S` pi(1 − pi)| ≤ O(ε/m), plus
some cardinality constraints. Note that these knapsack-like
constraints are much easier to handle when compared with
Eq (3). We will design a dynamic programming based
algorithm that finds a feasible solution with respect to
these stronger but handier conditions (Lemma 8). Thus,
Lemma 4 holds in Scenario 2.

Now we are ready to prove Theorem 6.

Proof of Theorem 6. Let T be the set of indices of items
that are selected by the optimal solution to the MKU prob-
lem, and OPTMKU = Pr(∑i∈T Pi ≥ k) be the optimal objec-
tive value given by the optimal solution. For any I (i.e.,
the indices of the items that are selected by an approxi-
mation algorithm), we define PI = ∑i∈I Pi and QI = ∑i∈I qi.
Denote by S the set of indices of small items and B the
set of indices of big items. Let B j = {i|i ∈ B,vi ∈ Vj} and
S j = {i|i ∈ S,vi ∈Vj}. According to the number of big items
selected by the optimal solution in each Vj, namely |T ∩B j|,
we divide the MKU problem into the following two cases:

• Case 1: There exists some 1 ≤ j∗ ≤ m such that |T ∩
B j∗ | ≥ 2k.

• Case 2: |T ∩B j| ≤ 2k−1 for every 1≤ j ≤ m.

In Case 1, as 1 ≤ j∗ ≤ m, we can guess j∗ by O(m) enu-
merations. When the guess of j∗ is correct, Theorem 6 is
proven as Lemma 2.

In Case 2, we have |T ∩B j| ≤ 2k−1 for every j. We first
guess the values of |T ∩B j| and |T ∩ S j| for all j, leading
to nO(m) enumerations. For the correct guess, Corollary 1
says that a near optimal solution I can be found when the
following conditions are satisfied simultaneously:

• |I∩B j|= |T ∩B j| and |I∩S j|= T ∩S j|.
• QI∩B j ≤ QT∩B j and QI∩S j ≤ QT∩S j .

• For δ = Θ(ε/m) and any 0≤ h≤ k, we have

Pr(PI∩S j ≥ h) ≥ (1−δ )Pr(PT∩S j ≥ h)−δ , (4a)

Pr(PI∩B j ≥ h) ≥ (1−δ )Pr(PT∩B j ≥ h)−δ . (4b)

This means that we can decompose the MKU problem in
Case 2 into a sequence of sub-problems, each of which asks
for a near optimal solution I∩B j or I∩S j. Let 1≤ `≤m be
an arbitrary index. Then, Theorem 6 in Case 2 is proven as
Lemma 3 (dealing with big items) and Lemma 4 (dealing
with small items).

Conclusion and Discussion
We have introduced the BVU problem with the uncertainty
that the vote of a bribed voter may not be counted (either be-
cause the bribed voter does not cast its vote in fear of being
caught, or because the bribed voter is indeed caught and its
vote is discarded). We have showed that the BVU problem
does not admit any multiplicative O(1)-approximation algo-
rithm in FPT time modulo standard complexity assumptions.
We have also showed that there is an algorithm that returns
an approximate solution with an additive-ε error in FPT time
for any arbitrary small ε . Given the hardness result, this al-
gorithm is perhaps the best one can hope for.

The BVU problem has many interesting aspects that de-
serve further studies. First, our algorithmic result assumes a
constant number of candidates. Future work needs to char-
acterize the hardness of, and design approximate algorithms
for, the BVU problem when the number of candidates is part
of the input (rather than a constant). The problem with an ar-
bitrary number of candidates may be strictly harder than that
of a constant number of candidates. It is not clear whether
or not our approximation algorithm, which works for a con-
stant number of candidates, can be extended to cope with
the case of an arbitrary number of candidates. Moreover,
the hardness of the BVU problem (with both a constant and
an arbitrary number of candidates) needs to be investigated
with respect to other voting rules, such as the k-approval
or Borda rule. Nevertheless, our hardness result with m = 2
candidates immediately implies a hardness result with re-
spect to the Borda voting rule.

Furthermore, the notion of uncertainty is a rich topic that
needs to be explored further. Even for the particular kind of
uncertainty introduced in the present paper, there are many
problems that deserve to be studied. For example, it is inter-
esting to incorporate the probabilistic no-show introduced
by Wojtas and Faliszewski (2012) into our model such that
unbribed voters have some probabilities of no-show (i.e.,
not casting their votes); of course, the reason that an un-
bribed voter may not cast its vote is different from the afore-
discussed reason that the vote of a bribed voter may not be
counted. Another outstanding future work is to consider the
probability that a voter accepts a bribe. Moreover, the litera-
ture focuses on the setting where the costs of bribery are de-
terministic. However, such a cost usually is only an estima-
tion because it is private to a voter. Therefore, it is perhaps
more reasonable to assume that the probability that a voter
takes a bribe depends on the price offered by the briber.
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