
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Certifying the True Error: Machine Learning in Coq with
Verified Generalization Guarantees

Alexander Bagnall, Gordon Stewart
Ohio University, Athens, OH 45701
{ab667712, gstewart}@ohio.edu

Abstract

We present MLCERT, a novel system for doing practical
mechanized proof of the generalization of learning procedures,
bounding expected error in terms of training or test error. ML-
CERT is mechanized in that we prove generalization bounds
inside the theorem prover Coq; thus the bounds are machine
checked by Coq’s proof checker. MLCERT is practical in that
we extract learning procedures defined in Coq to executable
code; thus procedures with proved generalization bounds can
be trained and deployed in real systems. MLCERT is well
documented and open source; thus we expect it to be usable
even by those without Coq expertise. To validate MLCERT,
which is compatible with external tools such as TensorFlow,
we use it to prove generalization bounds on neural networks
trained using TensorFlow on the extended MNIST data set.

1 Introduction
There is great optimism regarding the potential of artificial
intelligence, and machine learning in particular, to automate
tasks currently performed by humans. But there are also at-
tendant challenges. In adversarial contexts, recent work at
the intersection of machine learning and security has demon-
strated that an attacker can exploit the sensitivity of a net-
work to small input perturbations, so-called adversarial exam-
ples (Szegedy et al. 2013), in order to force misclassifications
with high confidence. More broadly, machine learning sys-
tems can go wrong or be exploited in a variety of ways, at
both training and inference time, as Papernot et al. compre-
hensively survey (Papernot et al. 2016). As machine learning
becomes critical infrastructure in systems like autonomous
vehicles, practitioners must ensure that machine-learned com-
ponents do not invalidate high-level safety and security prop-
erties of the systems in which they are embedded.

In this paper, we make progress toward securing the foun-
dations of machine learning practice by presenting a new
system, MLCERT, for building certified implementations of
learning procedures, those with machine-checked generaliza-
tion guarantees in a theorem prover. With respect to related
work, which is primarily SMT-based (e.g., (Katz et al. 2017)),
we target deeper functional specifications such as general-
ization error, or the expected error of a learned model when
deployed on the distribution against which it was trained.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

data	
 set

TensorFlow

executable	
 model

𝑒𝑟𝑟 ≤ 𝑒𝑟𝑟6 + 𝜖

prove MLCert

Figure 1: MLCERT

Our technical approach (Figure 1) composes tools from in-
teractive theorem proving, learning theory and statistics, and
quantized neural networks (Hubara et al. 2016), those that
learn low-precision weights. We train models either in ML-
CERT, which is embedded in the Coq theorem prover (Bertot
and Castéran 2013) or using an external tool such as Tensor-
Flow (Abadi et al. 2016). We prove generalization bounds,
relating expected to experimental error, using mechanized
libraries of results from learning theory and statistics such as
Chernoff inequalities, treating learning procedures as proba-
bilistic programs with a denotational semantics in the style
of (Kozen 1985). To validate experimental error of the Coq
implementation of a model when run on a set of examples,
we extract models to executable OCaml or Haskell code,
which we then compile and run against an input data set.
Statistical techniques for proving generalization are depen-
dent on the complexity of the hypothesis class being learned.
To tighten bounds without compromising performance, we
use techniques from neural network quantization (Jacob et
al. 2017) to learn accurate models with nontrivial general-
ization bounds for the extended MNIST (EMNIST) digit
classification task (Cohen et al. 2017).

Contributions. To summarize, the primary technical con-
tributions of this paper are as follows:

• We present MLCERT (§§ 3 and 4), the first system for
learning executable classifiers with certified generalization
guarantees, bounding with mechanical proof in a theorem
prover the expected error of machine-learned models.

• MLCERT certifies generalization of the resulting classi-
fiers, not of the training process, and thus is parametric in,
and therefore compatible with, deep learning frameworks
such as TensorFlow and PyTorch (Paszke et al. 2017). We

2662

demonstrate by proving generalization guarantees for quan-
tized neural networks trained using TensorFlow (§ 5), for
the EMNIST digit classification task (§ 6).

• Our implementation of MLCERT is open source online.1

Limitations. The formal generalization guarantees we
prove in this paper, that expected error on an underlying
distribution D is close to training or test error on a sample
S drawn from D, do not preclude adversaries that poison
the training data, thus distorting our view of the underlying
distribution D; or interfere with sampling, thus invalidating
assumptions like independence; or shift the distribution from
which examples are drawn during deployment (so-called dis-
tribution drift (Papernot et al. 2016)).

Because we use statistical techniques such as Chernoff
bounds, our approach also requires that training and test
data are large relative to model size, which is unrealistic
for models like those deep neural networks that have many
more parameters than training and test examples. Our cur-
rent best generalization bounds from training error for EM-
NIST (Section 6) are still quite loose (77%). Our best bounds
from test error on EMNIST are better (94%) but require
many test examples (40k), which is unrealistic for some
data sets. Nevertheless, by proving generalization bounds in
Coq, we do get (probabilistic) guarantees – assuming suf-
ficient training or test data – of the absence of overfitting
errors. Our approach is also extensible to stochastic neural
networks (Hinton and Van Camp 1993; McAllester 1999;
Langford and Caruana 2002) for which researchers have
recently achieved reasonably tight bounds even for large net-
works (Dziugaite and Roy 2017). We plan to apply MLCERT
to stochastic nets in future work.

Why Prove Generalization? Machine learning practition-
ers ensure that a model generalizes by evaluating its perfor-
mance on a holdout test set. Why should one care, then,
whether a model is proved to generalize? By bounding ex-
pected error from training error, one no longer needs a test set,
which can be useful – at least for very small model classes
– when data is scarce. Using a test set also requires that one
make additional independence assumptions (parameters are
selected independently from the holdout set), which have
been confounded by practices like p-hacking (Head et al.
2015). By certifying generalization bounds in Coq, we build
proof artifacts that can be disseminated and checked with
high assurance, facilitating replicable science.

From the perspective of the designer of high assurance
software, generalization is useful in another way, as a natural
specification of classifiers that increasingly form components
of larger verified systems. For example, one might show,
from bounded expected error of a neural network approxi-
mating a control law, that a brake controller will with high
probability apply enough force to safely brake a car. Spec-
ifying and proving generalization bounds within a theorem
prover facilitates the proof of end-to-end results such as these
– the brake controller safely halts the car – with very high
assurance. Certified generalization bounds may have appli-
cation in scientific computing as well, to confirm with high

1http://MLCert.org

assurance error bounds on, e.g., models for background noise
classification in the Higgs boson LHC experiments (Baldi,
Sadowski, and Whiteson 2014).

Trusted Computing Base. Our prototype currently as-
sumes the following two textbook results as axioms: Pinsker’s
inequality, stating that the relative entropy of two distribu-
tions is bounded by a function of their total variation dis-
tance; and Gibb’s inequality, stating that the relative entropy
of two distributions is nonnegative. We axiomatize vector
and floating point types and operations, as well as cardinality
lemmas for vectors and floating point numbers. Our results
also depend, as is typical of mechanized developments in the
Coq theorem prover, on the correctness of tools in the Coq
ecosystem such as the Coq proofchecker and Coq extraction.

2 Background
Theorem Proving. Theorem provers such as Coq (Bertot
and Castéran 2013) enable programmers to build software
and to prove its correctness all within the same programming
environment. In this work, we use Coq for program proof –
to validate with high assurance that implementations of learn-
ing procedures generalize – but also to manage the details
of proofs of mathematical theorems, such as Hoeffding’s
inequality, upon which the software correctness arguments
depend. Proofs in Coq proceed interactively: the programmer
constructs a correctness argument in dialog with the proof
management system, which displays a representation of the
proof state at each point. Once the programmer completes a
proof in Coq, it is checked by Coq’s proof checker, a small
kernel implementing Coq’s internal dependent type theory.
Correctness arguments in Coq therefore have small trusted
computing bases: their correctness depends on the correct-
ness of the Coq proof checker (and any assumed axioms) but
not on that of the rest of the proof management system.

Learning Theory. The goal of supervised learning is to
find a hypothesis h ∈ H : X → Y , for some class H
mapping X’s to labels Y , that minimizes a metric like ex-
pected error E(h(x), y) (or equivalently, maximizes a met-
ric like expected accuracy A(h(x), y)) when presented with
a previously unseen example (x, y) drawn from a distribu-
tion D. Because D is unknown, h is learned from a training
set T = [(x1, y1), . . . , (xm, ym)] of examples, typically as-
sumed to be drawn iid from D.

A hypothesis h has low generalization error if its expected
accuracy E(x,y)∼D [A(h(x), y)] is not too far from its average
empirical accuracy on training set T :
Definition 1 (Generalization Error).∣∣∣∣∣∣E(x,y)∼D [A(h(x), y)]− 1

|T |
∑

(x,y)∈T

A(h(x), y)

∣∣∣∣∣∣
If the generalization error of a hypothesis h is high, then h has
overfit to the training set T , which can occur when the size of
the hypothesis class H is large (or infinite) relative to the size
of the training set T . Likewise, if H is small relative to the
number of training examples, it is unlikely that a hypothesis
h ∈ H will overfit to T , an intuition that is formalized in a
broad category of results called Chernoff bounds.

2663

Listing 1: Statement of Corollary 1 in Coq
Theorem chernoff : ∀(ε:R)(eps gt0:0<ε),
probOfR (prodR m D) [pred T : training set |
let p := learn T in expVal D Acc p + ε < empVal Acc T p]
≤ |Params| ∗ exp (−2 ∗ ε2 ∗ m).

As a reminder of one commonly used Chernoff bound,
called Hoeffding’s inequality, consider m iid random vari-
ables X1, . . . , Xm in the range [0, 1] such that each Xi com-
putes, for instance, the accuracy of a hypothesis h on sample
(xi, yi) drawn from distribution D. Hoeffding’s inequality
states that the expected value of Xi (indeed, of all the Xi’s –
the random variables are identically distributed) is whp not
too much smaller than the empirical average of X1, . . . , Xm,
assuming m is large enough. More precisely:
Theorem 1 (Hoeffding’s Inequality). Given m iid random
variables Xi ∈ [0, 1] over D and ε ∈ (0, 1−E[X]),

Pr

[
E [X] + ε <

1

m

∑
i

Xi

]
≤ e−2ε

2m

For any fixed hypothesis h chosen independently of a data
set T , Theorem 1 gives a bound on h’s generalization error
that decreases exponentially in the number m of examples
(let Xi equal h’s accuracy on example (xi, yi)).2

To bound the probability that any hypothesis h ∈ H has
high generalization error, including ones learned from T , one
can combine Theorem 1 with a union bound to prove:
Corollary 1. Given a training set T of m samples (xi, yi)
drawn iid from D and any hypothesis h (which may be
learned from T),

Pr

[
E [A(h)] + ε <

1

m

∑
i

A(h(xi), yi))

]
≤ |H|e−2ε

2m

E [A(h)] is shorthand for expected accuracy of h on an
example–label pair (x, y). The right-hand side of the bound
is small if the number of examplesm is large relative to |H|.3
Likewise, the probability that expected accuracy is more than
ε less than empirical accuracy grows smaller as ε increases.

Learning Theory in Coq. To make use of Theorem 1 and
Corollary 1 in proofs about software, we must first translate
into Coq. Listing 1 gives the Coq statement, for example, of
Corollary 1. The term expVal D Acc p defines the expected
accuracy of hypothesis p on a sample drawn from D, with:

Def Acc (p:Params) (i:[0,m)) (xy : X∗Y) : R :=
let (x,y) := xy in if predict p x == y then 1 else 0.

2A two-sided bound on absolute error yields right-hand side
2exp(−2ε2m). We prove this bound in Coq but do not use it here.

3Corollary 1 assumes H is finite but can be applied to infinite H
using VC-dimension or Rademacher complexity theory, though we
have not yet done so in this work. In execution settings, |H| <∞
is nearly always valid (except in symbolic algebra, implementations
use fixed-width floating-point numbers). VC-dimension theory or
Rademacher complexity could, however, yield tighter bounds for
some hypothesis classes.

Listing 2: Generic Learners
Record Learner (X Y Hypers Params : Type) : Type :=
mkLearner {

predict : Hypers→ Params→ X → Y ;
update : Hypers→ X × Y → Params→ Params }.

mapping parameters p and examples (x, y) to 1 or 0 depend-
ing on whether predict p x equals y. The probability on the
left-hand side of Corollary 1 is computed by the Coq function
probOfR, which returns the probability, with respect to the
product distribution prodR m D of m example–label pairs
drawn from D, of the predicate beginning [pred T | . . .].

The function predict : Params→ X → Y is a parameter
(we instantiate it later, in § 3 and § 4, to particular predic-
tion functions). The argument i : [0,m) turns Acc into a
family of functions, one for each of the m samples. Term
empVal Acc T p gives the empirical accuracy of p on training
set T . The hypothesis p is the result of a function learn map-
ping training sets to parameters. We elide two hypotheses
in Listing 1: (1) the random variables defined by Acc are
mutually independent for all p, which follows from mutual
independence of the m samples, and (2) expected accuracy
is strictly between 0 and 1.

3 MLCERT By Example
Section 2 illustrated the translation of concentration bounds
into mechanized form in Coq. Here we put the pieces together
by applying these results to a case study (Perceptron).

We define learners generically (Listing 2) as pairs of func-
tions: predict, which maps hyperparameters, parameters, and
examples X to labels Y ; and update, which maps hyperpa-
rameters, examples, and parameters to updated parameters
of type Params. At this level of abstraction, the functions
predict and update and their types are all generic.

Listing 3: Linear Threshold Classifiers
Variable n : nat. (∗The dimensionality∗)
X := float32 arr n. (∗Examples: n−arrays of floats∗)
Y := bool. (∗Boolean labels∗)
Weights := float32 arr n. (∗Params: weights, bias∗)
Bias := float32.
Params : Type := Weights×Bias.
Def predict (p : Params) (x : X) : Y :=

let (w, b) := p in f32 dot w x + b > 0.

As an example of how one might instantiate the generic
predict function of Listing 2, consider MLCERT’s definition
of linear threshold classifiers (Listing 3). Such prediction
rules are parameterized by a natural number n, the dimen-
sionality of the example space. We define the example space
X as size-n arrays of 32-bit floats and Y as bool. The param-
eter space is defined as Params := Weights×Bias, the type
of pairs of weights and biases. The prediction rule extracts
a weight vector w and bias term b from p, then returns the
result of evaluating w · x+ b > 0.

2664

Figure 2: Model learned by certified Perceptron of Listing 4

Listing 4: Perceptron Learner (Specializes Listing 2 and
Listing 3)
Variable n : nat. (∗The dimensionality∗)
Hypers := { α:float32 }. (∗Learning rate∗)
Def update (h:Hypers) (xy:(X n)∗Y) (p:Params n)

: Params n :=
let (x, y) := xy, (w, b) := p in
if predict p x == y then p
else (f32 map2 (λwi xi ⇒ wi + α∗y∗xi) w x, b + y).

Def PerceptronLearner
: Learner (X n) Y Hypers (Params n) :=
mkLearner (λ h:Hypers⇒ predict) update.

Listing 4 defines a further specialization to Perceptron
learning. The variable n : nat again indicates that the learner
is parameterized by the dimensionality of the learning prob-
lem. The new type Hypers defines a record with a named
field: α for learning rate. The function update defines how
parameters p are updated when presented with a new example
(x, y). Perceptron is error driven: if p correctly predicts x’s
label (using the generic linear threshold prediction rule of
Listing 3) then update returns p unchanged. When predict p x
mispredicts y, update returns the new weight vector in which
each weight wi equals wi + α∗y∗xi (MLCERT implicitly co-
erces the Boolean label y to {−1, 1}). The higher-order func-
tion f32 map2 produces a new vector component-wise from
w and x according to the anonymous function beginning
λwi xi. The overall result is a pair of the new weight
vector (defined by f32 map) and the new bias term (b + y).

To execute the Perceptron learner, we use Coq to automati-
cally extract it to Haskell and then compile it against a small
unverified shim (also in Haskell) that produces a training set.
As illustration, consider the plot of Figure 2, which depicts
the model learned by our MLCERT Perceptron on random
linearly separable 3-dimensional data. To generate this plot,
we instrumented our Haskell shim to print both the training
set and model, which we then plotted using matplotlib.

4 Generalization Bounds
In Section 3, we outlined the use of MLCERT to build a
simple Perceptron learner. In this section, we demonstrate
the use of MLCERT to prove – with high assurance in Coq
– that the implementations of learning procedures such as
Perceptron generalize to unseen examples. The core of our
proof strategy is to view learning procedures as probabilistic
programs in the style of (Kozen 1985) and (Gordon et al.

2014), in which a program is understood mathematically, as
in the denotational semantics of Figure 3, as the expected
value of a function f over its results. To express bounds on
the expected behavior of learning procedures, we use an ob-
servation command, observe, to filter only those executions
that satisfy a particular postcondition, such as “model p fails
to generalize”. We express generalization results as bounds
on the probability mass of these filtered executions (the proba-
bility of observing a nongeneralizing model should be small).
Equivalently, one can think of our results as bounds on the
expected value of the identity function in the subdistribution
of program runs observed to produce models that fail to gen-
eralize. Our semantics, like that of (Gordon et al. 2014), is
naturally unnormalized due to the presence of observe.

Listing 5: Generic Probabilistic Learners
Def main (D:X∗Y→ R) (m:nat) (ε:R) (init:Params) :=
T ← sample m D; (∗Draw m examples from D.∗)
p← learn init T ; (∗Learn model p.∗)
observe(post D m ε)(p,T).(∗Observe postcondition.∗)

Listing 5 illustrates the general structure of probabilistic
programs, main, that learn models from sampled training sets,
and whose executions are then observed. The parameters
of main are the underlying distribution D from which the
training set is drawn, the number of training examples m,
and the initial parameters init. The function first samples the
training set T , then learns model p from init and T . The
resulting model p and training set T are observed to satisfy a
particular postcondition, post, which has the effect of filtering
away those probabilistic executions that fail to satisfy post.
In the context of MLCERT, we instantiate post to:

Def post D (m:nat) (ε:R) (pT :Params×training set m) :=
let (p, T) := pT in expVal D Acc p + ε < empVal Acc T p.

which, when specialized to sample size m, distribution D,
and value ε, yields a postcondition expressing that p does not
generalize well: the expected accuracy of p is more than ε
lower than p’s empirical accuracy on the training set T .

To demonstrate that the probability of seeing such an exe-
cution is low, we prove in Coq the following theorem:

Theorem main bound : ∀D (m > 0) (ε > 0) (init:Params),
main D m ε init (λ ⇒ 1) ≤ |Params| ∗ exp (−2 ∗ ε2 ∗ m).

stating that the subdistribution of executions that satisfy
post, and therefore fail to generalize, has mass less than
|Params|∗exp(−2∗ε2∗m), exactly the bound of Corollary 1.
This theorem additionally assumes, as does Listing 1, the two
hypotheses explained in the final paragraph of Section 2.

Holdouts. Theorem main bound assumes that hypothesis
p was learned from the same data set on which we evaluated
empirical error. Assuming access to a holdout data set not
used to learn p, we can apply MLCERT to prove tighter gen-
eralization bounds that scale, by Theorem 1, as exp(−2ε2m)
rather than |Params| · exp(−2ε2m). To model the holdout
protocol, we define in our Coq development a second prob-
abilistic program, called main holdout, which learns p on a
sampled data set Ttrain but evaluates empirical error on an
independently chosen Ttest. We use the observe command to

2665

Syntax and Type System Commands c : com A

sample m D : com (training set m)
learn h e init T : com Params

observe (P : pred A) (a :A) : com A
x← (c1 : com A); composition
(c2 : A→ com B) : com B

Denotational Semantics Jc : com AK(f : A→ R) : R

Jsample m DK(f) :=
∑
T (prodRmD)(T)·f(T)

Jlearn h e init T K(f) := f(learn′ h e init T)
JobserveP (a :A)K(f) := if P (a) then f(a) else 0

Jx← c1; c2K(f) := Jc1K(λx.Jc2(x)K(f))

Figure 3: Learners: Syntax and Probabilistic Semantics

limit executions to those in which ε < 1−expVal D Acc p, a
precondition of Theorem 1. We then prove a theorem in Coq
just like main bound but with main holdout on the left-hand
side and the tighter bound exp (−2 ∗ ε2 ∗ m) on the right.

Denotational Semantics. We give the denotational seman-
tics that enables us to state Theorem main bound in Figure 3.
The upper part of the figure defines the syntax of commands
c used in main, along with each command’s type. The nota-
tion c : com A is read “c is a command with an outcome of
type A”. For example, sample(m, D) : com (training set m)
is a command, parameterized by a natural number m and dis-
tribution D, that has as outcome a training set of m examples.
Command learn, likewise, takes hyperparameters h, the num-
ber of epochs e, the initial parameters init, and training set
T and has as outcome a learned model, of type Params. We
discussed observe briefly in the previous section: It takes a
predicate P over values of type A and values a of type A and
filters out executions in which a does not satisfy P . The final
command composes commands c1 and c2 in sequence, where
c1 has type com A and c2 has type A→ com B, notation for
a function that takes an A as argument and returns a com B
as result. The effect of sequencing is to first run c1, resulting
in an outcome x with which we instantiate and run c2.

The lower part of the figure defines the denotational se-
mantics of commands. Given a function f mapping A’s out-
comes to R, the interpretation function Jc : com AK(f) maps
commands c to R. Intuitively, f is a valuation function, the
expected value of which we would like to compute in the
distribution on outcomes generated by the interpretation of
command c. As example, consider command sample(m, D).
Its interpretation is

∑
T (prodR m D)(T) · f(T), exactly

f ’s expected value over the product distribution of m ex-
amples drawn from D. In the case of sample, f has type
training set m→ R (function from training sets to R). How-
ever, f ’s type may differ from command to command.

As a second example, consider the interpretation of com-
mand Jobserve P aK(f), defined as f(a) when a satisfies
predicate P and 0 otherwise. The effect is to remove from
the support of the valuation function f all those values a
that fail to satisfy P . In the general case, in which a is pro-
duced by some computation c as in the program fragment

	
 𝑥# 	
 𝑥$ 	
 𝑥%&

	
 𝑛# 	
 𝑛$ 	
 𝑛(

	
 𝑜# 	
 𝑜$ 	
 𝑜*+,

	
 	
 𝑟# 	
 	
 𝑟$ 	
 	
 𝑟(

NIn

NComb

NReLU

NComb

…

…

…

…

shift#, scale#

𝑠ℎ𝑖𝑓𝑡#, 𝑠𝑐𝑎𝑙𝑒#shift$, scale$

Figure 4: Structure of a network elaborated from Listing 7

Listing 6: Coq ReLU Networks
Inductive net : Type :=
| NIn : input var→ net (∗A net is (1) an input var∗)
| NReLU : net→ net (∗or (2) a ReLU activation node∗)
| NComb : list (param var×net)→ net.
(∗or (3) a linear combination of nets.∗)

a← c; observe a P , the result is to set to 0 the mass of all
executions of c producing outcomes that do not satisfy P .

The two commands whose interpretations we have not
yet discussed are learn and composition (x← c1; c2). We
implement learn by applying f to the result of an auxiliary
function learn′, which is defined as:

Def learn′ h e (init:Params) (T :training set m) : Params :=
fold (λ epoch pepoch ⇒ (∗for each epoch in [0, e):∗)

fold (λ xy p⇒ (∗for each xy in T :∗)
update h xy p)) (∗update parameters p∗)

pepoch T) init (enum [0, e)).

The auxiliary function is implemented in the context of a
learning procedure, as in Listing 2, that defines the func-
tion update. It iterates over an outer and an inner loop (ex-
pressed as functional folds), the outer of which performs the
inner loop e times, where e is the number of epochs. The
inner loop repeatedly calls update on each xy example in the
training set, producing new parameters p in each iteration.
We interpret command composition x← c1; c2 as the func-
tion composition of the interpretations of c1 and c2, namely:
Jc1K(λx.Jc2(x)K(f)). In other words, we first interpret c1,
then pass its outcome, called x, to c2(x), which is then inter-
preted with respect to the overall evaluation function f .

5 From TensorFlow To Coq
In this section we describe our representation of neural net-
work architectures in Coq as well as our workflow for import-
ing models trained using external tools like TensorFlow.

For logical consistency, functions in Coq must be proved
terminating. To define network evaluation as a structurally
recursive (and therefore terminating) function in Coq, we
represent neural networks as (forests of) well-founded trees,
as defined by type net in Listing 6. This datatype definition,
built using Coq’s user-defined inductive datatypes mecha-
nism, says that a neural network (type net) is defined recur-
sively as either (1) an input (input var), (2) a ReLU activa-
tion function applied to a net, or (3) a linear combination of
nets and weights, represented as a list of parameter weights
(param var) paired with nets.

2666

Listing 7: Coq Network Kernels: One Hidden Layer. Kernels
are parametric in the type T of weight parameters, the type S
of shift/scale parameters, the number of hidden nodes N , the
dimensionality IN of the input space, and the number OUT
of network outputs.
Def Layer1Payload := AxVec IN T .
Def Layer1 := AxVec N Layer1Payload.
Def Layer2Payload := AxVec N T .
Def Layer2 := AxVec OUT Layer2Payload.
Record kernel:=
{ ss1:S×S; ss2:S×S; layer1:Layer1; layer2:Layer2 }.

As an example, consider the tree in Figure 4 rooted at node
o1. We represent this tree as the following net:

x1:= NIn i1; . . .; xIN:= NIn iIN
n1:= NComb [(p{1,1}, x1); (p{1,2}, x2); . . .; (p{1,IN}, xIN)], . . .
nN := NComb [(p{N,1}, x1); (p{N,2}, x2); . . .; (p{N,IN}, xIN)]
r1:= NReLU n1, . . ., rN := NReLU nN

o1:= NComb [(p1,r1); (p2,r2); . . .; (pN ,rN)]

in which p variables are parameters and i variables define
inputs (neither of which are shown explicitly in Figure 4). A
net with multiple outputs is a forest of inductive nets (with
sharing of nodes so the forest forms a DAG). For example,
the complete network of Figure 4 is represented as the forest
containing as roots the nodes o1, o2, . . ., oOUT. This network
representation, while specialized to ReLU nodes, could be
generalized to support other kinds of activation functions.

Kernels. The right-hand side of main bound (§ 4) scales
in the cardinality of the parameter space. To represent the
parameter spaces of neural networks compactly, while also
facilitating cardinality proofs, we use a data structure called a
kernel (Listing 7). A kernel completely determines a function
in the parameter space (the space itself being fixed by the
network architecture), and can be automatically elaborated
to a DAG like the one in Figure 4 for execution from Coq.
The kernels of Listing 7 are specialized to fully connected
networks with one N -node hidden layer (Layer1). Layer2 de-
fines the network’s outputs, an OUT-length vector in which
the entries, of type Layer2Payload, are N -vectors of weights
of type T , one per hidden node. The type AxVec size type de-
fines axiomatized size-vectors containing values of type type .
To import an external model to Coq, we use a Python script
to generate a Coq source file containing a kernel, which can
then be reasoned about in Coq and automatically extracted to
OCaml or Haskell for execution.

To reduce the size of parameter spaces at the cost of a slight
decrease in accuracy, we support quantization in kernels by
associating with each layer a pair of shift and scale values,
called ss1 and ss2 in Listing 7 for layers 1 and 2 respectively.
During elaboration to an executable net, networks with low
precision weights are converted to a higher precision format,
then shifted and scaled by the values for each layer. This
transformation enables low precision weights to take on a
wide range of possible values. The sharing of shift and scale
values among weights in a layer prevents blowup in the car-
dinality of the parameter space while still allowing sufficient
representation flexibility. If the model being imported does

not use quantized weights, we set default values of 0 and 1
for shift and scale respectively, to nullify their effect.

Generalization. We prove generalization of kernels in
much the same way we proved generalization of Perceptron
in Section 3, by bounding the mass of a probabilistic program
that samples a training set, learns a network, then observes
executions in which the learned classifier fails to generalize:

Variable oracle : ∀m:nat, training set m→ Params.
Def oracular main (D:X∗Y→ R) (m:nat) (ε:R) :=
T ← sample m D; (∗Draw m examples from D.∗)
p← ret (oracle m T); (∗Return external model p.∗)
observe (post D m ε) (p,T). (∗Observe postcondition.∗)

The primary difference to Listing 5 is that we now assume an
external learning procedure, Variable oracle, that produces
models (type Param) from training sets, modeling the training
of neural networks in an external tool like TensorFlow.

Because our generalization theorems result from statistical
properties of the training set and hypothesis space, we prove
generalization bounds even of external training procedures,
such as oracle, about which we make no assumptions.

Theorem oracular main bound : ∀D (m > 0) (ε > 0),
oracular main D m ε (λ ⇒1) ≤ |Params|∗exp(−2∗ε2∗m).

This bound has the same right-hand side as that of Section 4
(main bound); only the left-hand side is updated to include
the oracular version of main. Our Coq development proves a
second theorem, oracular main holdout bound, limiting gen-
eralization error to the tighter exp(−2∗ε2∗m) when empirical
error is evaluated on an independent test set. Both bounds
additionally assume the two hypotheses of Listing 1, as elu-
cidated at the end of Section 2.

6 Experiments
The generalization bounds of Sections 4 and 5 are most use-
ful when they are reasonably tight, within a few percentage
points of test error. In this section, we evaluate tightness by
using TensorFlow to train two models on the EMNIST Dig-
its data set (Cohen et al. 2017), which we then import into
MLCERT. In our experiments, we used a fully connected
network architecture with a single hidden layer consisting of
10 ReLU units. We trained on a dataset of 240, 000 examples
(EMNIST’s training and validation sets) with 40, 000 exam-
ples set aside as holdout (EMNIST’s test set). The holdout
procedure, in which hypotheses are evaluated on an inde-
pendent test set, yields reasonably tight bounds (∼ 1.5%)
while the union-bound procedure, in which empirical error is
evaluated as in oracular main on the same data set on which
a hypothesis was trained, yields much looser bounds, from
∼15−43%. Our best union bound results required quantiza-
tion to 2-bit weights, drastically decreasing the size of the
parameter space but slightly decreasing accuracy.

To train quantized models, we inserted fake quantization
operations from tf.contrib.quantize into the net-
work computation graph, which simulated the quantization
of weights while still allowing full 32-bit precision for effec-
tive numerical optimization. After training, we serialized the
model weights to disk. Once a model was trained and stored,
the weights were loaded by a Python script that generated a

2667

Table 1: Experiments
W Params. Train Test Bound(ε)

(Bits) Union Holdout
2 15,944 0.925 0.926 77%(0.152) 91%(0.016)

16 127,104 0.958 0.957 53%(0.429) 94%(0.016)

Coq source file containing the definition of a network kernel,
as in Figure 7. The kernel was then elaborated to a forest
in Coq, as in Figure 6, then extracted to executable code.
To evaluate the accuracy of each model, we used a small
unverified shim to load and feed batches of examples to the
network, and to print the number of correct predictions in
each batch. Then we used a Python script to compute the
average number of correct predictions across all batches.

Results. Table 1 lists the accuracy of, and generalization
bounds proved for, the two neural networks we trained using
TensorFlow on the EMNIST data set. W is the quantiza-
tion scheme: either 2-bit quantized weights or 16-bit float-
ing point with no quantization. “Params.” is the size in bits
of the parameter space for each network (log2 |H|). “Train”
and “Test” are training- and test-set accuracy respectively.
In “Bound(ε)”, we report ε at confidence 1−10−9. To calcu-
late “Union” bounds, we subtract ε from training error. To
calculate “Holdout” bounds, we substract ε from test error.

In the “Union” case, the 2-bit quantized network has the
tighter generalization bound, at 0.925− 0.152(=ε) = 77.3%
expected accuracy. While the 16-bit network achieved higher
training-set accuracy (0.958), its generalization bound was
looser, though still nontrivial, at 53%. Neither bound is very
tight (for both networks, accuracy on a holdout set of 40, 000
examples is within a percentage point of training set accu-
racy). Nevertheless, there are optimizations we have yet to
perform, all of which could further tighten bounds. One is
to use a sparse representation of the kernel of Figure 7 (that
is, only implicitly represent the 0 weights, and use regu-
larization methods like those from (Srinivas, Subramanya,
and Babu 2016) to encourage 0 weights during training).
Another is to prove PAC-Bayes bounds for stochastic net-
works (McAllester 1999), using techniques from (Dziugaite
and Roy 2017) to explicitly optimize bounds during training.
This would require additional work in Coq to implement and
prove the correctness of sampling from stochastic nets and to
extend our mechanized Chernoff bounds to PAC-Bayes.

In the “Holdout” case, we get much tighter bounds, from
91% for the 2-bit quantized network to 94% for the 16-bit net-
work. The value of ε = 0.016 is the same for both networks
because the holdout bound of (our mechanization of) Theo-
rem 1 does not depend on model size. These bounds could
likely be improved to close to 1.6% of the state-of-the-art test
error on EMNIST by translating into Coq a state-of-the-art
network for MNIST (e.g., (Wan et al. 2013)).

From Networks to Proofs. For the networks in Table 1,
our Python script automatically generates statements and
proofs, as corollaries of theorems oracular main bound and
oracular main holdout bound of Section 5, of generalization

bounds specific to the network. For example, here is the
“Union” bound we prove of the 2-bit network of Table 1:

Theorem tf main bound (ε > 0) init :
tf main D m ε init (λ ⇒ 1) ≤
2ˆ(4∗16 + 784∗10∗2 + 10∗10∗2) ∗ exp (−2 ∗ ε2 ∗ m).

The number 4∗16+784∗10∗2+10∗10∗2 (15, 944) is the size
of the parameter space in bits. The sample size m is 240, 000.
Function tf main specializes oracular main of Section 5 to
the 2-bit quantized kernel we learned using TensorFlow. As
when we first presented our generic generalization bound
(Listing 1), we elide two assumptions: mutual independence
and the bound on the range of expected accuracy.

7 Related Work
Recent results in ML verification already span a number of
points in the design space. We survey the most relevant here.

Machine learning in interactive theorem provers. (Sel-
sam, Liang, and Dill 2017) uses the Lean interactive the-
orem prover (de Moura et al. 2015) to formally verify the
correctness of programs (e.g., Auto-Encoding Variational
Bayes (Kingma and Welling 2013)) for optimized sampling
of stochastic computation graphs. Rather than extracting such
programs to a compilable representation, as we do in ML-
CERT, (Selsam, Liang, and Dill 2017) use Lean’s symbolic
execution engine to interpret models interactively, executing
numerically intensive tensor operations by calling out to an
unverified high-performance library. (Selsam, Liang, and Dill
2017) also focus on only one particular model (stochastic
computation graphs) and one particular specification (that
backpropagation over computation graphs correctly com-
putes gradients) while MLCERT is more general, supporting
arbitrary parameter spaces and learning algorithms, and in-
tegration of external tools such as TensorFlow. On the other
hand, MLCERT verifies that learning procedures generalize,
not that each iteration of a learning procedure correctly com-
putes gradients. Thus it is possible for an MLCERT procedure
to, e.g., fail to quickly converge to low training error, while
still having a tight generalization bound.

Stability analysis of probabilistic programs. We prove
generalization bounds in this work by appeal to statistical
results such as Chernoff bounds, which do not depend on
the details of implementations of learning procedures. An
alternative approach by (Barthe et al. 2017) bounds general-
ization error by proving that learning procedures are stable
(on only slightly different training sets, they produce only
slightly different models). Because the (Barthe et al. 2017)
approach reasons about properties of implementations of
learning procedures, it is less easily integrated than MLCERT
with external tools such as TensorFlow (one would have to
prove stability of core TensorFlow libraries, including opti-
mizations, a daunting task). On the other hand, proofs from
stability yield bounds that are independent of the size of the
parameter space, and could therefore sometimes be tighter
than those achievable using Chernoff inequalities.

Automated verification of neural network robustness.
Recent work on adversarial examples (e.g., (Szegedy et al.
2013)) has spurred a series of results (e.g., (Katz et al. 2017;
Huang et al. 2017; Kolter and Wong 2017)) in automated

2668

analysis of the robustness of neural networks: how much
do model outputs differ when input examples are perturbed?
Although robustness is distinct from algorithmic stability (the
former applies to learned models while the latter applies to
the learning process), robustness, like stability, is also deeply
tied to generalization (cf. (Xu and Mannor 2012)). One goal
of future work is to investigate whether the generalization
bounds we prove in MLCERT can be applied to do analysis
and proof of neural network (expected) robustness.

8 Conclusion
This paper describes MLCERT, the first system for building
executable machine-learned models with generalization guar-
antees certified in a theorem prover. MLCERT is compatible
with externally trained tools such as TensorFlow, which we
use to prove nontrivial generalization guarantees for quan-
tized neural networks trained on EMNIST.

Acknowledgments
We thank Razvan Bunescu, Cindy Marling, Anindya Baner-
jee, and the AAAI anonymous reviewers for providing help-
ful comments on an earlier draft. We also thank Samuel
Merten, who mechanized a lemma, and William Kanieski,
who provided a paper-and-pencil proof. This material is based
upon work supported by the NSF under Grant No. CCF-
1657358 and by the Ohio Federal Research Network (OFRN).
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF or of OFRN.

References
Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean,
J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. 2016.
Tensorflow: A system for large-scale machine learning. In
OSDI, volume 16, 265–283.
Baldi, P.; Sadowski, P.; and Whiteson, D. 2014. Searching
for exotic particles in high-energy physics with deep learning.
Nature communications 5:4308.
Barthe, G.; Espitau, T.; Grégoire, B.; Hsu, J.; and Strub, P.-Y.
2017. Proving expected sensitivity of probabilistic programs.
Proceedings of the ACM on Prog. Lang. 2(POPL):57.
Bertot, Y., and Castéran, P. 2013. Interactive theorem proving
and program development: Coq’Art: the calculus of inductive
constructions. Springer Science & Business Media.
Cohen, G.; Afshar, S.; Tapson, J.; and van Schaik, A. 2017.
EMNIST: an extension of MNIST to handwritten letters.
arXiv preprint arXiv:1702.05373.
de Moura, L.; Kong, S.; Avigad, J.; Van Doorn, F.; and von
Raumer, J. 2015. The Lean theorem prover (system descrip-
tion). In CADE, 378–388. Springer.
Dziugaite, G. K., and Roy, D. M. 2017. Computing nonvac-
uous generalization bounds for deep (stochastic) neural net-
works with many more parameters than training data. arXiv
preprint arXiv:1703.11008.
Gordon, A. D.; Henzinger, T. A.; Nori, A. V.; and Rajamani,
S. K. 2014. Probabilistic programming. In Future of Software
Engineering, 167–181. New York, NY, USA: ACM.

Head, M. L.; Holman, L.; Lanfear, R.; Kahn, A. T.; and
Jennions, M. D. 2015. The extent and consequences of
p-hacking in science. PLoS biology 13(3):e1002106.
Hinton, G. E., and Van Camp, D. 1993. Keeping the neural
networks simple by minimizing the description length of the
weights. In Proceedings of the sixth annual conference on
Computational Learning Theory, 5–13. ACM.
Huang, X.; Kwiatkowska, M.; Wang, S.; and Wu, M. 2017.
Safety verification of deep neural networks. In International
Conference on Computer Aided Verification, 3–29. Springer.
Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; and
Bengio, Y. 2016. Quantized neural networks: Training neural
networks with low precision weights and activations. CoRR
abs/1609.07061.
Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard,
A.; Adam, H.; and Kalenichenko, D. 2017. Quantization and
training of neural networks for efficient integer-arithmetic-
only inference. arXiv preprint arXiv:1712.05877.
Katz, G.; Barrett, C.; Dill, D. L.; Julian, K.; and Kochen-
derfer, M. J. 2017. Reluplex: An efficient smt solver for
verifying deep neural networks. In International Conference
on Computer Aided Verification, 97–117. Springer.
Kingma, D. P., and Welling, M. 2013. Auto-Encoding Varia-
tional Bayes. arXiv preprint arXiv:1312.6114.
Kolter, J. Z., and Wong, E. 2017. Provable defenses against
adversarial examples via the convex outer adversarial poly-
tope. arXiv preprint arXiv:1711.00851.
Kozen, D. 1985. A probabilistic PDL. Journal of Computer
and System Sciences 30(2):162–178.
Langford, J., and Caruana, R. 2002. (Not) Bounding the True
Error. In NIPS, 809–816.
McAllester, D. A. 1999. PAC-Bayesian model averaging. In
Proceedings of the twelfth annual conference on Computa-
tional Learning Theory, 164–170. ACM.
Papernot, N.; McDaniel, P.; Sinha, A.; and Wellman, M. 2016.
Towards the science of security and privacy in machine learn-
ing. arXiv preprint arXiv:1611.03814.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer, A.
2017. Automatic differentiation in PyTorch.
Selsam, D.; Liang, P.; and Dill, D. L. 2017. Developing
bug-free machine learning systems with formal mathematics.
In Precup, D., and Teh, Y. W., eds., Proceedings of the 34th
ICML, volume 70, 3047–3056.
Srinivas, S.; Subramanya, A.; and Babu, R. V. 2016. Training
sparse neural networks. CoRR abs/1611.06694.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.;
Goodfellow, I. J.; and Fergus, R. 2013. Intriguing properties
of neural networks. CoRR abs/1312.6199.
Wan, L.; Zeiler, M.; Zhang, S.; Le Cun, Y.; and Fergus, R.
2013. Regularization of neural networks using DropConnect.
In ICML, 1058–1066.
Xu, H., and Mannor, S. 2012. Robustness and generalization.
Machine learning 86(3):391–423.

2669

