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Abstract

The seminaı̈ve algorithm can be used to materialise all conse-
quences of a datalog program, and it also forms the basis for
algorithms that incrementally update a materialisation as the
input facts change. Certain (combinations of) rules, however,
can be handled much more efficiently using custom algo-
rithms. To integrate such algorithms into a general reasoning
approach that can handle arbitrary rules, we propose a mod-
ular framework for computing and maintaining a materialisa-
tion. We split a datalog program into modules that can be han-
dled using specialised algorithms, and we handle the remain-
ing rules using the seminaı̈ve algorithm. We also present two
algorithms for computing the transitive and the symmetric–
transitive closure of a relation that can be used within our
framework. Finally, we show empirically that our framework
can handle arbitrary datalog programs while outperforming
existing approaches, often by orders of magnitude.

1 Introduction
Datalog (Abiteboul, Hull, and Vianu 1995) is a prominent
rule language whose popularity is mainly due to its ability to
express recursive definitions such as transitive closure. Dat-
alog captures OWL 2 RL (Motik et al. 2009) ontologies with
SWRL rules (Horrocks et al. 2004), so it supports query an-
swering on the Semantic Web. It has been implemented in
many systems, including but not limited to WebPIE (Urbani
et al. 2012), VLog (Urbani, Jacobs, and Krötzsch 2016), Or-
acle’s RDF Store (Wu et al. 2008), OWLIM (Bishop et al.
2011a), and RDFox (Nenov et al. 2015).

Datalog reasoning is often realised by precomputing and
storing all consequences of a datalog program and a set of
facts; this process and its output are both called material-
isation. A materialisation must be updated when the input
facts change, but doing so ‘from scratch’ can be inefficient
if changes are small. To minimise the overall work, incre-
mental maintenance algorithms have been developed. These
include the well-known Delete/Rederive (DRed) (Gupta,
Mumick, and Subrahmanian 1993; Staudt and Jarke 1996)
and Counting (Gupta, Mumick, and Subrahmanian 1993)
algorithms, and the more recent Backward/Forward (B/F)
(Motik et al. 2015), DRedc, and B/Fc (Hu, Motik, and Hor-
rocks 2018b) algorithms.
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Materialisation and all aforementioned incremental algo-
rithms compute rule consequences using seminaı̈ve evalua-
tion (Abiteboul, Hull, and Vianu 1995). The main benefit of
this approach is that each applicable inference is performed
exactly once. However, all consequences of certain rules or
rule combinations can actually be computed without con-
sidering every applicable inference. For example, consider
applying a program that axiomatises a relation R as sym-
metric and transitive to input facts that describe a connected
graph consisting of n vertices. In Section 3 we show that
computing all consequences using seminaı̈ve evaluation in-
volves O(n3) rule applications, whereas a custom algorithm
can achieve the same goal using only O(n2) steps. Since
incremental maintenance algorithms are based on the sem-
inaı̈ve algorithm, they can suffer from similar deficiencies.

Approaches that can maintain the closure of specific dat-
alog programs have already been considered in the lit-
erature. For example, maintaining transitive closure of a
graph has been studied extensively (Ibaraki and Katoh 1983;
La Poutre and van Leeuwen 1987; King 1999; Demetrescu
and Italiano 2000). Subercaze et al. (2016) presented an al-
gorithm for the materialisation of the transitive and symmet-
ric properties in RDFS-Plus. Dong, Su, and Topor (1995)
showed that insertions into a transitively closed relation can
be maintained by evaluating four nonrecursive first-order
queries. However, these approaches can only handle datalog
programs for which they have been specifically developed—
that is, the programs are not allowed to contain any addi-
tional rules. The presence of other rules introduces addi-
tional complexity since updates computed by specialised al-
gorithms must be propagated to the remaining rules and vice
versa. Moreover, many of these approaches cannot handle
deletion of input facts, which is a key problem in incremen-
tal reasoning. Thus, it is currently not clear whether and how
customised algorithms can be used in general-purpose dat-
alog systems that must handle arbitrary datalog rules and
support incremental additions and deletions.

To address these issues, in this paper we present a mod-
ular framework for materialisation computation and incre-
mental materialisation maintenance that can integrate spe-
cialised reasoning algorithms with the seminaı̈ve evaluation.
The framework partitions the rules of a datalog program into
disjoint subsets called modules. For each module, four plug-
gable functions are used to compute certain consequences
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of the module’s rules; there are no restrictions on how these
functions are implemented, as long as their outputs satisfy
certain conditions. Moreover, if no specialised algorithm for
a module is available, the four functions can be implemented
using seminaı̈ve evaluation. Thus, our framework can effi-
ciently handle certain combinations of rules, but it can also
handle arbitrary rules while avoiding repeated inferences.

We then examine a module that axiomatises the transi-
tive closure, and a module that axiomatises the symmetric–
transitive closure. These modules capture node reachabil-
ity in directed and undirected graphs, respectively, both of
which frequently occur in practice and are thus highly rel-
evant. We present the functions necessary to integrate these
modules into our framework and show that they satisfy the
properties needed for correctness. We also discuss the kinds
of input that are likely to benefit from modular reasoning.

We have implemented our algorithms and compared them
on several real-life and synthetic datasets. Our experiments
illustrate the potential benefits of the proposed solution:
our approach often outperforms state-of-the-art algorithms,
sometimes by orders of magnitude. Our system and test data
are available online.1 All proofs of our results are given in a
technical report (Hu, Motik, and Horrocks 2018a).

2 Preliminaries
We now introduce datalog with stratified negation. A term is
a constant or a variable. An atom has the form P (t1, . . . , tk),
where P is a k-ary predicate with k ≥ 0, and each ti,
1 ≤ i ≤ k, is a term. A fact is a variable-free atom, and a
dataset is a finite set of facts. A rule r has the form

B1 ∧ · · · ∧Bm ∧ notBm+1 ∧ · · · ∧ notBn → H,

where 0 ≤ m ≤ n, and Bi and H are atoms. For r a rule,
h(r) = H is the head, b+(r) = {B1, . . . , Bm} is the set of
positive body atoms, and b−(r) = {Bm+1, . . . , Bn} is the
set of negative body atoms. Each rule r must be safe—that
is, each variable occurring in r must occur in at least one
positive body atom. A program is a finite set of rules.

A stratification λ of a program Π maps each predicate
occurring in Π to a positive integer such that, for each
rule r ∈ Π with predicate P in its head, λ(P ) ≥ λ(R)
(resp. λ(P ) > λ(R)) holds for each predicate R occur-
ring in b+(r) (resp. b−(r)). Such r is recursive w.r.t.
λ if λ(P ) = λ(R) holds for some predicate R occurring
in b+(r); otherwise, r is nonrecursive w.r.t. λ. Program
Π is stratifiable if a stratification λ of Π exists. For s
an integer, the stratum s of Π is the program Πs con-
taining each rule r ∈ Π whose head predicate P satisfies
λ(P ) = s. Moreover, let Πs

r and Πs
nr be the recursive and

the nonrecursive subsets, respectively, of Πs. Finally, let
Os = {P (c1, . . . , cn) | λ(P ) = s and ci are constants}.

A substitution σ is a mapping of finitely many variables
to constants. For α a term, an atom, a rule, or a set thereof,
ασ is the result of replacing each occurrence of a variable x
in α with σ(x), provided that the latter is defined.

If r is a rule and σ is a substitution mapping all variables
of r to constants, then rule rσ is an instance of r. For I

1http://krr-nas.cs.ox.ac.uk/2018/modular/

Algorithm 1 MAT(Π, λ, E)

1: I ··= ∅
2: for each stratum index s with 1 ≤ s ≤ S do
3: ∆ ··= (E ∩ Os) ∪Πs

nr

[
I
]

4: while ∆ 6= ∅ do
5: I ··= I ∪∆
6: ∆ ··= Πs

r

[
I ···∆

]
\ I

a dataset, we define the set Π
[
I
]

of all facts obtained by
applying a program Π to I as

Π
[
I
]

=
⋃
r∈Π

{h(rσ) | b+(rσ) ⊆ I and b−(rσ) ∩ I = ∅}.

Let E be a dataset (called explicit facts) and let λ be a strat-
ification of Π with maximum stratum index S. Then, let
I0
∞ = E; for each s ≥ 1, let Is0 = Is−1

∞ , let

Isi = Isi−1 ∪Πs
[
Isi−1

]
for i > 0, and let Is∞ =

⋃
i≥0

Isi .

Set IS∞ is the materialisation of Π w.r.t.E and λ. It is known
that IS∞ does not depend on λ, so we write it as mat(Π, E).

3 Motivation
In this section we show how custom algorithms can handle
certain rule combinations much more efficiently than sem-
inaı̈ve evaluation. We consider here only materialisation, but
similar observations apply to incremental maintenance algo-
rithms as most of them use variants of seminaı̈ve evaluation.

3.1 Seminaı̈ve Evaluation
The seminaı̈ve algorithm (Abiteboul, Hull, and Vianu 1995)
takes as input a set of explicit facts E, a program Π, and a
stratification λ of Π, and it computes mat(Π, E). To apply
each rule instance at most once, in each round of rule ap-
plication it identifies the ‘newly applicable’ rule instances
(i.e., instances that depend on a fact derived in the previ-
ous round) as shown in Algorithm 1. For each stratum, the
algorithm initialises ∆, the set of newly derived facts, by
combining the explicit facts in the current stratum (E ∩ Os)
with the facts derivable from previous strata via nonrecur-
sive rules (Πs

nr

[
I
]
). Then, in lines 4–6 it iteratively computes

all consequences of ∆. To this end, in line 6 it uses operator
Π
[
I ···∆

]
, which extends Π

[
I
]

to allow identifying ‘newly
applicable’ rule instances. Specifically, given datasets I and
∆ ⊆ I , operator Π

[
I ···∆

]
returns a set containing h(rσ) for

each rule r ∈ Π and substitution σ such that b+(rσ) ⊆ I
and b−(rσ) ∩ I = ∅ hold (i.e., rule instance rσ is applicable
to I), but also b+(rσ) ∩∆ 6= ∅ holds (i.e., a positive body
atom of rσ occurs in the set of facts ∆ derived in the pre-
vious round of rule application). It is not hard to see that
the algorithm computes I = mat(Π, E), and that it consid-
ers each rule instance rσ at most once.

3.2 Problems with the Seminaı̈ve Evaluation
Although seminaı̈ve evaluation does not repeat derivations,
it always considers each applicable rule instance. However,
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facts are often derived via multiple, distinct rule instances;
this is particularly common with recursive rules, but it can
also occur with nonrecursive rules only. We are unaware of
a general technique that can prevent such derivations. We
next present two programs for which materialisation can be
computed without considering all applicable rule instances,
thus showing how seminaı̈ve evaluation can be suboptimal.
Example 1. Let Π be the program containing rule (1) and
let E = {R(ci, ci+1) | 0 ≤ i ≤ n}.

R(x, y) ∧R(y, z)→ R(x, z) (1)
Clearly, I = mat(Π, E) = {R(ci, cj) | 0 ≤ i < j ≤ n}, so
each rule instance of the form

R(ci, cj) ∧R(cj , ck)→ R(ci, ck) (2)
with 1 ≤ i < j < k ≤ n is applicable to I . Algorithm 1 con-
siders all of these O(n3) rule instances.

We next present an outline of an approach that is still cu-
bic in general, but on this specific input runs in O(n2) time.
The key is to distinguish the set X of ‘external’ facts given
to Π as input from the ‘internal’ facts derived by Π. We can
transitively close R by iteratively considering pairs of facts
R(u, v) ∈ X and R(v, w). That is, we require the first fact
to be in X , but place no restriction on the second fact. (We
could have equivalently required the second fact to be inX .)
In our example, we haveX = E, so the algorithm considers
only rule instances of the form

R(ci, ci+1) ∧R(ci+1, ck)→ R(ci, ck) (3)

for 0 ≤ i < k ≤ n, of which there are O(n2) many. Intu-
itively, this is analogous to replacing the predicate R in all
explicit facts with X , and using a linear rule

X(x, y) ∧R(y, z)→ R(x, z) (4)
instead of rule (1). In our approach, however, other rules can
derive R-facts so the set X is not fixed; thus, rule (1) can-
not be simply replaced with (4). Our approach ‘simulates’
such linearisation, and it can be expected to perform well
whenever the other rules derive fewer facts than rule (1).
Example 2. Let Π consist of rules (1) and (5), and let
E = {R(ci, ci+1) | 1 ≤ i < n} ∪ {R(cn, c1)}.

R(x, y)→ R(y, x) (5)
Now I = mat(Π, E) = {R(ci, cj) | 1 ≤ i, j ≤ n}, so each
instance of the form (2) with 1 ≤ i, j, k ≤ n is applicable to
I . Algorithm 1 considers all of these O(n3) rule instances.

However, we can view any relation R as an undirected
graph with n vertices. To compute the symmetric–transitive
closure of R, we first compute the connected components of
R, and, for each connected component C, we enumerate all
u, v ∈ C and derive R(u, v). The first step is linear in the
size of R and the second step requires O(n2) time, so the
algorithm runs in O(n2) time on any R.

4 Framework
In this section we present a general framework for materi-
alisation and incremental reasoning that can avoid the de-
ficiencies outlined in Section 3 for certain rule combina-
tions. Our framework focuses on recursive rules only: non-
recursive rules Πs

nr are evaluated just once in each stratum,

which is usually efficient. In contrast, the recursive part Πs
r

of each stratum Πs must be evaluated iteratively, which is a
common source of inefficiency. Thus, our framework splits
Πs

r into n(s) mutually disjoint, nonempty programs Πs,i
r ,

1 ≤ i ≤ n(s), called modules. (We let n(s) = 0 if Πs
r = ∅.)

Our notion of modules should not be confused with ontol-
ogy modules: the latter are subsets of an ontology that are
semantically independent from each other in a well-defined
way, whereas our modules are just arbitrary program sub-
sets. Each module is handled using ‘plugin’ functions that
compute certain consequences of Πs,i

r . These functions can
be implemented as desired, as long as their results satisfy
certain properties that guarantee correctness. We present our
framework in two steps: in Section 4.1 we consider mate-
rialisation, and in Section 4.2 we focus on incremental rea-
soning. Then, in Sections 5 and 6 we discuss how to realise
these ‘plugin’ functions for certain common modules.

Before proceeding, we generalise operator Π
[
I ···∆

]
as

follows. Given datasets Ip, In, ∆p, and ∆n where ∆p ⊆ Ip
and ∆n ∩ In = ∅, let

Π
[
Ip, In ···∆p,∆n

]
=
⋃

r∈Π{h(rσ) |
b+(rσ) ⊆ Ip and b−(rσ) ∩ In = ∅, and
b+(rσ) ∩∆p 6= ∅ or b−(rσ) ∩∆n 6= ∅}.

When the condition in the last line is not required, we simply
write Π

[
Ip, In

]
. Moreover, we omit In when Ip = In, and

we omit ∆n when ∆n = ∅. Intuitively, this operator com-
putes the consequences of Π by evaluating the positive and
the negative body atoms in Ip and In, respectively, while en-
suring in each derivation that either a positive or a negative
body atom is true in ∆p or ∆n, respectively. Our incremen-
tal algorithm uses this operator to identify the consequences
of Π that are affected by the changes to the facts matching
the positive and the negative body atoms of the rules in Π.
For example, if the facts in ∆p are added to (resp. removed
from) the materialisation, then Π

[
Ip ···∆p

]
contains the con-

sequences of the rule instances that start (resp. cease) to be
applicable because a positive body atom matches to a fact
in ∆p. The set ∆n is used to analogously capture the conse-
quences of the negative body atoms of the rules in Π.

4.1 Computing the Materialisation
Our modular materialisation algorithm uses a ‘plugin’ func-
tion Adds,i for each module Πs,i

r . The function takes as argu-
ments datasets Ip, In, and ∆ such that ∆ ⊆ Ip, and it closes
Ip with all consequences of Πs,i

r that depend on ∆. Each in-
vocation of these functions must satisfy the following prop-
erties in order to guarantee correctness of our algorithm.

Definition 3. Function Add captures a datalog program
Π on datasets Ip, In, and ∆ with ∆ ⊆ Ip if the result
of Add[Ip, In,∆] is the smallest dataset J that satisfies
Π
[
Ip ∪ J, In ···∆ ∪ J

]
⊆ Ip ∪ J .

For brevity, in the rest of the paper we often say just ‘Add
captures Π’ without specifying the datasets whenever the
latter are clear from the context. In the absence of a cus-
tomised algorithm, Add can always be realised using the
seminaı̈ve evaluation strategy as follows:
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Algorithm 2 MAT-MOD(Π, λ, E)

7: I ··= ∅
8: for each stratum index s with 1 ≤ s ≤ S do
9: ∆1 ··= · · · ··= ∆n(s) ··= ∅

10: ∆ ··= (E ∩ Os) ∪Πs
nr

[
I
]

11: while ∆ 6= ∅ do
12: I ··= I ∪∆
13: for each i with 1 ≤ i ≤ n(s) do
14: ∆i ··= Adds,i[I, I,∆ \∆i]

15: ∆ ··= ∆1 ∪ · · · ∪∆n(s)

• let ∆0 = ∆ and J0 = ∅,
• for i starting with 0 onwards, if ∆i = ∅, stop and return
Ji; otherwise, let ∆i+1 = Π

[
Ip ∪ Ji, In ···∆i

]
\ (Ip ∪ Ji)

and Ji+1 = Ji ∪∆i+1 and proceed to i+ 1.
However, a custom implementation of Add will typically not
examine all rule instances from the above computation in
order to optimise reasoning with certain modules.

Algorithm 2 formalises our modular approach to data-
log materialisation. It takes as input a program Π, a strat-
ification λ of Π, and a set of explicit facts E, and it com-
putes mat(Π, E). The algorithm’s structure is similar to Al-
gorithm 1. For each stratum of Π, both algorithms first ap-
ply the nonrecursive rules, and then they apply the recursive
rules iteratively up to a fixpoint. The main difference is that,
given a set of facts ∆ derived from the previous iteration,
Algorithm 2 computes the consequences of ∆ for each mod-
ule independently using Adds,i (line 14); note that each ∆i

is closed under Πs,i
r , which is key to the performance of our

approach. The algorithm then combines the consequences of
all modules (line 15) before proceeding to the next iteration.

If each Adds,i function is implemented using seminaı̈ve
evaluation as described earlier, then the algorithm does not
consider a rule instance more than once. This is achieved
by passing ∆ \∆i to Adds,i in line 14: only facts derived
by other modules in the previous iteration are considered
‘new’ for Adds,i, which is possible since the facts in ∆i have
been produced by the ith module in the previous iteration.
Theorem 4 captures these properties formally.
Theorem 4. Algorithm 2 computes I as mat(Π, E) if func-
tion Adds,i captures Πs,i

r in each of its calls. Moreover, if
all Adds,i use the seminaı̈ve strategy, each applicable rule
instance is considered at most once.

4.2 Incremental Updates
Our modular incremental materialisation maintenance algo-
rithm is based on the DRedc algorithm by Hu, Motik, and
Horrocks (2018b), which is a variant of the well-known
DRed algorithm (Gupta, Mumick, and Subrahmanian 1993).
For each fact, DRedc maintains two counters that track the
number of nonrecursive and recursive derivations of the fact.
The algorithm proceeds in three steps. During the deletion
phase, DRedc iteratively computes the consequences of the
deleted facts, similar to DRed, while adjusting the coun-
ters accordingly. However, to optimise overdeletion, dele-
tion propagation stops on facts with a nonzero nonrecursive

counter. In the one-step rederivation phase, DRedc identifies
the facts that were overdeleted but can be rederived from the
remaining facts in one step by simply checking the recursive
counters: if the counter is nonzero, then the corresponding
fact is rederived. In the insertion phase, DRedc computes
the consequences of the rederived and the inserted facts us-
ing seminaı̈ve evaluation, which we have already discussed.

Our modular incremental algorithm handles nonrecursive
rules in the same way as DRedc. Thus, the nonrecursive
counters, which record the number of nonrecursive deriva-
tions of each fact, can be maintained globally just as in
DRedc. In contrast, as discussed in Section 3, custom algo-
rithms for recursive modules will usually not consider all
applicable rule instances, so counters of recursive deriva-
tions cannot be maintained globally. Nevertheless, certain
modules can maintain recursive counters internally (e.g., the
module based on the seminaı̈ve evaluation can do so).

In addition to function Adds,i from Section 4.1, our mod-
ular incremental reasoning algorithm uses three further func-
tions: Diffs,i, Dels,i, and Reds,i. Definition 5 captures the re-
quirements on Diffs,i. Intuitively, Diffs,i[Ip,∆p,∆n] identi-
fies the consequences of Πs,i

r affected by the addition of the
facts in ∆p and removal of the the facts ∆n, respectively,
with both sets containing facts from earlier strata.

Definition 5. Function Diff captures a datalog program Π
on datasets Ip, ∆p, and ∆n where ∆p ⊆ Ip, ∆n ∩ Ip = ∅,
and both ∆p and ∆n do not contain predicates occurring in
rule heads in Π if Diff [Ip,∆p,∆n] = Π

[
Ip ···∆p,∆n

]
.

Function Dels,i captures overdeletion: if the facts in ∆ are
deleted, then Dels,i[Ip, In,∆, Cnr] returns the consequences
of Πs,i

r that must be overdeleted as well. The function can
use the nonrecursive counters Cnr in order to stop overdele-
tion as in DRedc. We do not specify exactly what the func-
tions must return: as we discuss in Section 6, computing the
smallest set that needs to be overdeleted might require con-
sidering all rule instances as in DRedc, which would miss
the point of modular reasoning. Instead, we specify the re-
quired output in terms of a lower bound Jl and an upper
bound Ju. Intuitively, Jl and Ju contain facts that would be
overdeleted in DRedc and DRed, respectively.

Definition 6. Function Del captures a datalog program Π
on datasets Ip, In, ∆ with ∆ ⊆ Ip, and a mapping Cnr of
facts to integers if Jl ⊆ Del[Ip, In,∆, Cnr] ⊆ Ju where

• the lower bound Jl is the smallest dataset such that,
for each F ∈ Π

[
Ip, In ···∆ ∪ Jl

]
, either F ∈ ∆ ∪ Jl or

Cnr(F ) > 0 holds, and
• the upper bound Ju is the smallest dataset that satisfies

Π
[
Ip, In ···∆ ∪ Ju

]
⊆ ∆ ∪ Ju.

Finally, function Reds,i captures rederivation: if facts in
∆ are overdeleted, then Reds,i[Ip, In,∆] returns all facts in
∆ that can be rederived from Ip \∆ and Πs,i

r in one or more
steps. This is different from DRed and DRedc, which both
perform only one-step rederivation. This change is impor-
tant in our framework because, as we shall see in Section 6,
Reds,i provides the opportunity for a module to adjust its
internal data structures after deletion.
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Definition 7. Function Reds,i captures a datalog pro-
gram Π on datasets Ip, In, ∆ with ∆ ⊆ Ip if the result
of Red[Ip, In,∆] is the smallest dataset J that satisfies
Π
[
(Ip \∆) ∪ J, In

]
∩∆ ⊆ J .

Algorithm 3 formalises our modular approach to incre-
mental maintenance. The algorithm takes as input a program
Π, a stratification λ of Π, a set of explicit facts E, the ma-
terialisation I = mat(Π, E), the sets of facts E− and E+ to
delete from and add to E, and a map Cnr that records the
number of nonrecursive derivations of each fact. The algo-
rithm updates I to mat(Π, (E \ E−) ∪ E+). We next de-
scribe the two main steps of the algorithm.

In the overdeletion phase, the algorithm first initialises the
set of facts to delete ∆ as the union of the explicitly deleted
facts (E−∩Os) and the facts affected by changes in previous
strata (lines 22 and 23). Then, in lines 26–30 the algorithm
computes all consequences of ∆. In each iteration, function
Dels,i is called for each module to identify the consequences
of Πs,i

r that must be overdeleted due to the deletion of ∆

(line 28). As in Algorithm 2, the third argument of Dels,i

is ∆ \∆i, which guarantees that the function will not be
applied to its own consequences.

In the second step, the algorithm first identifies the red-
erivable facts by calling Reds,i for each module (lines 33–
35). Then, the consequences of the rederived facts, the ex-
plicitly added facts (E+ ∩ Os), and the facts added due
to changes in previous strata are computed in the loop of
lines 36–40 analogously to Algorithm 2. Although Reds,i

rederives facts in one or more steps as opposed to the one-
step rederivation in DRed and DRedc, this extra effort is not
repeated during insertion since Adds,i is not applied to the
consequences of module i. Theorem 8 states that the algo-
rithm is correct.
Theorem 8. Algorithm 3 updates I from mat(Π, E) to
mat(Π, (E \ E−) ∪ E+) if functions Adds,i, Dels,i, Diffs,i,
and Reds,i capture Πs,i

r in all of their calls.

5 Transitive Closure
We now consider a module consisting of a single rule (1)
axiomatising a relation R as transitive. Following the ideas
from Example 1, we distinguish the ‘internal’ facts pro-
duced by rule (1) from the ‘external’ facts produced by
other rules. We keep track of the latter in a global set
XR that is initialised to the empty set. A key invariant of
our approach is that each fact R(a0, an) is produced by
a chain {R(a0, a1), . . . , R(an−1, an)} ⊆ XR of ‘external’
facts. Thus, we can transitively close R by considering pairs
of R-facts where at least one of them is contained in XR,
which can greatly reduce the number of inferences. A simi-
lar effect could be achieved by rewriting the input program:
we introduce a fresh predicate XR, and we replace by XR

each occurrence of R in the head of a rule, as well as one
of the two occurrences of R in the body of rule (1). Such an
approach, however, introduces the facts containing the aux-
iliary predicate XR into the materialisation and thus reveals
implementation details to the users. Moreover, the rederiva-
tion step can be realised very efficiently in our approach.

Algorithm 3 DREDc-MOD(Π, λ, E, I, E−, E+, Cnr)

16: D ··= A ··= ∅, E− = (E− ∩ E) \ E+, E+ = E+ \ E
17: for each stratum index s with 1 ≤ s ≤ S do
18: OVERDELETE
19: REDERIVE-INSERT
20: E ··= (E \ E−) ∪ E+, I ··= (I \D) ∪A

21: procedure OVERDELETE
22: ∆1 ··= · · · ··= ∆n(s) ··= ∅
23: ∆ ··= (E−∩Os)∪Πs

nr

[
I ···D \A,A\D

]
and update Cnr

24: for each i with 1 ≤ i ≤ n(s) do
25: ∆ ··= ∆ ∪ Diffs,i[I,D \A,A \D]

26: while ∆ 6= ∅ do
27: for each i with 1 ≤ i ≤ n(s) do
28: ∆i ··= Dels,i[I \ (D \A), I ∪A,∆ \∆i, Cnr]

29: D ··= D ∪∆
30: ∆ ··= ∆1 ∪ · · · ∪∆n(s)

31: procedure REDERIVE-INSERT
32: ∆ ··= (E+ ∩ Os) ∪Πs

nr

[
(I \D) ∪A ···A \D,D \A

]
and update Cnr

33: for each i with 1 ≤ i ≤ n(s) do
34: ∆i ··= Reds,i[I, (I \D) ∪A,D \A]
35: ∆ ··= ∆ ∪∆i ∪ Diffs,i[(I \D) ∪A,A \D,D \A]

36: while ∆ 6= ∅ do
37: A ··= A ∪∆
38: for each i with 1 ≤ i ≤ n(s) do
39: ∆i ··= Adds,i[(I \D)∪A, (I \D)∪A,∆ \∆i]

40: ∆ ··= ∆1 ∪ · · · ∪∆n(s)

Based on the above idea, function Addtc(R), shown in Al-
gorithm 4, essentially implements seminaı̈ve evaluation for
rule (4): the loops in lines 42–43 and 44–47 handle the two
delta rules derived from (4). For Difftc(R), note that sets
A \D and D \A in lines 25 and 35 of Algorithm 3 al-
ways contain facts with predicates that do not occur in Πs,i

r
in rule heads; thus, since R occurs in the head of rule (1),
these sets contain facts whose predicate is different from
R, so Difftc(R) can simply return the empty set. Function
Deltc(R), shown in Algorithm 5, implements seminaı̈ve eval-
uation for rule (4) analogously to Addtc(R). The main differ-
ence is that only facts whose nonrecursive counter is zero
are overdeleted, which mimics overdeletion in DRedc. As a
result, not all facts processed in lines 50 and 53 are added
to J so, to avoid repeatedly considering such facts, the al-
gorithm maintains the set S of ‘seen’ facts. Finally, function
Redtc(R), shown in Algorithm 6, identifies for each source
vertex u all vertices reachable by the external facts in XR.
Theorem 9. In each call in Algorithms 2 and 3, functions
Addtc(R), Deltc(R), Difftc(R), and Redtc(R) capture a data-
log program that axiomatises relation R as transitive.

6 Symmetric–Transitive Closure
We now consider a module consisting of two rules, (1) and
(5), axiomatising a relation R as transitive and symmetric.
As in Example 2, we can view relation R as an undirected
graph. To compute the materialisation, we extract the set CR
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Algorithm 4 Addtc(R)[Ip, In,∆]

41: J ··= ∅, Q ··= ∆, XR ··= XR ∪∆
42: for each R(u, v) ∈ ∆ and each R(v, w) ∈ Ip \∆ do
43: add R(u,w) to Q and J

44: while Q 6= ∅ do
45: remove an arbitrarily chosen fact R(v, w) from Q
46: for each R(u, v) ∈ XR such that R(u,w) 6∈ Ip ∪ J do
47: add R(u,w) to Q and J

48: return J

Algorithm 5 Deltc(R)[Ip, In,∆, Cnr]

49: J ··= ∅, Q ··= S ··= ∆, XR ··= XR \∆
50: for each R(u, v) ∈ ∆ and each R(v, w) ∈ Ip \ S do
51: add R(u,w) to Q and S
52: if Cnr(R(u,w)) = 0 then add R(u,w) to J

53: while Q 6= ∅ do
54: remove an arbitrarily chosen fact R(v, w) from Q
55: for each R(u, v) ∈ XR such that R(u,w) ∈ Ip \ S do
56: add R(u,w) to Q and S
57: if Cnr(R(u,w)) = 0 then add R(u,w) to J

58: return J \∆

Algorithm 6 Redtc(R)[Ip, In,∆]

59: J ··= ∅
60: for each u such that there exist v with R(u, v) ∈ ∆ do
61: for each w reachable from u via R facts in XR do
62: add R(u,w) to J

63: return J ∩∆

of connected components—that is, each U ∈ CR is a set of
mutually connected vertices in the symmetric–transitive clo-
sure of R; finally, we derive R(u, v) for all u and v in each
component U ∈ CR. Set CR is global and is initially empty.

Based on this idea, function Addstc(R), shown in Algo-
rithm 7, uses an auxiliary function CLOSEEDGES to in-
crementally update the set CR by processing each fact
R(u, v) ∈ ∆ in lines 67–75: if either u or v does not oc-
cur in a component in CR, then the respective component
is created in CR (lines 69 and 71); and if u and v belong to
distinct components U and V , then U and V are merged into
a single component and all R-facts connecting U and V are
added (lines 72–75). For the same reasons as in Section 5,
function Difftc(R) can simply return the empty set. Function
Delstc(R), shown in Algorithm 8, simply overdeletes all facts
R(u′, v′) whose nonrecursive counter is zero and where both
u′ and v′ belong to a component U containing both ver-
tices of a fact R(u, v) in ∆. Those facts R(u′, v′) for which
the nonrecursive counter is nonzero will hold after overdele-
tion, so they are kept in an initially empty global set YR so
that they can be used for rederivation later. Finally, function
Redstc(R), shown in Algorithm 9, simply closes the set YR
in the same way as during addition, and it empties the set
YR. While this creates a dependency between Delstc(R) and
Redstc(R), the order in which these functions are called in
Algorithm 3 ensures that the set YR is maintained correctly.

Algorithm 7 Addstc(R)[Ip, In,∆]

64: return CLOSEEDGES(∆) \ Ip

65: function CLOSEEDGES(∆)
66: J ··= ∅
67: for each R(u, v) ∈ ∆ do
68: if no U ∈ CR exists such that u ∈ U then
69: add {u} to CR, and R(u, u) to J

70: if no V ∈ CR exists such that v ∈ V then
71: add {v} to CR, and R(v, v) to J

72: if u and v belong to distinct U, V ∈ CR, resp. then
73: remove U and V from CR, and add U ∪V to CR

74: for each u′ ∈ U and each v′ ∈ V do
75: add R(u′, v′) and R(v′, u′) to J

76: return J

Algorithm 8 Delstc(R)[Ip, In,∆, Cnr]

77: J ··= ∅
78: for each U ∈ CR where ∃R(u, v) ∈ ∆ s.t. {u, v} ⊆ U do
79: for each u′ ∈ U and each v′ ∈ U do
80: if Cnr(R(u′, v′)) = 0 then add R(u′, v′) to J
81: else add R(u′, v′) to YR

82: remove U from CR

83: return J \∆

Algorithm 9 Redstc(R)[Ip, In,∆]

84: J ··= CLOSEEDGES(YR) ∩∆
85: YR ··= ∅
86: return J

Theorem 10. In each call in Algorithms 2 and 3, functions
Addstc(R), Delstc(R), Diffstc(R), and Redstc(R) capture a dat-
alog program that axiomatises R as symmetric–transitive.

7 Evaluation
We have implemented our modular materialisation and in-
cremental maintenance algorithms, as well as the seminaı̈ve
materialisation and the DRedc algorithms, and we have com-
pared their performance empirically.

Test Benchmarks We used the following real-world and
synthetic benchmarks in our tests. LUBM (Guo, Pan, and
Heflin 2005) is a well-known benchmark that models in-
dividuals and organisations in a university domain. Claros
describes archeological artefacts. We used the LUBM and
Claros datasets with the lower bound extended (-LE) pro-
grams by Motik et al. (2014); roughly speaking, we con-
verted a subset of the accompanying OWL ontologies into
datalog and manually extended them with several ‘difficult
rules’. DBpedia (Lehmann et al. 2015) contains structured
information extracted from Wikipedia. DBpedia represents
Wikipedia categories using the SKOS vocabulary (Miles and
Bechhofer 2009), which defines several transitive proper-
ties. We used the datalog subset of the SKOS RDF schema.
Moreover, the materialisation of DBpedia-SKOS is too large
to fit into the memory of our test server, so we used a ran-
dom sample of the DBpedia dataset consisting of five mil-

2864



Benchmark |E| |I| S |Πnr| |Πr| |TC| |STC| Mat-Mod Mat
Claros-LE 18.8 M 533.3 M 11 1031 306 27 2 733.55 3593.32
LUBM-LE 133.6 M 332.6 M 5 85 22 1 2 291.90 1100.22

DBpedia-SKOS 5.0 M 97.0 M 5 26 15 2 1 103.23 3623.37
DAG-R 0.1 M 22.9 M 1 1 1 1 0 29.60 3238.86

Table 1: Running times for materialisation computation (seconds)

Benchmark Small Deletions Small Insertions Large Deletions
DRedc-Mod DRedc DRedc-Mod DRedc DRedc-Mod DRedc

Claros-LE 0.93 1035.28 0.17 0.80 314.33 3616.93
LUBM-LE 0.32 3.87 0.01 0.01 182.93 1369.77

DBpedia-SKOS 21.77 691.32 0.20 2.78 111.28 3826.87
DAG-R 64.92 3005.11 14.56 116.78 62.48 4316.71

Table 2: Running times for incremental maintenance (seconds)

lion facts. Finally, DAG-R is a synthetic benchmark consist-
ing of a randomly generated dataset containing a directed
acyclic graph with 10k nodes and 100k edges, and a pro-
gram that axiomatises the path relation as transitive. Table 1
shows the numbers of explicit facts (|E|), derived facts (|I|),
strata (S), nonrecursive rules (|Πnr|), recursive rules (|Πr|),
transitivity modules (|TC|), and symmetric–transitive mod-
ules (|STC|) for each benchmark.

Test Setup and Results We conducted all experiments on
a Dell PowerEdge R730 server with 512 GB RAM and two
Intel Xeon E5-2640 2.6 GHz processors running Fedora 27,
kernel version 4.17.6. For each benchmark, we loaded the
test data into our system and then compared the performance
of our modular algorithms with the seminaı̈ve and DRedc
algorithms using the following methodology.

We first computed the materialisation and measured the
wall-clock time. The results are shown in Table 1. We then
conducted two groups of incremental reasoning tests.

In the first group, we tested the performance of our incre-
mental algorithms on small changes. To this end, we used
uniform sampling to select ten subsets Ei ⊆ E, 1 ≤ i ≤ 10,
each consisting of 1000 facts from the input dataset. We
deleted and then reinsertedEi for each iwhile measuring the
wall-clock times, and then we computed the average times
for deletion and insertion over the ten samples. The results
are shown in the ‘Small Deletions’ and ‘Small Insertions’
columns of Table 2, respectively.

In the second group, we tested the performance of incre-
mental algorithms on large deletions. To this end, we used
uniform sampling to select a subset E− ⊆ E containing
25% of the explicit facts, and we measured the wall-clock
time needed to delete E− from the materialisation. The re-
sults are shown in the ‘Large Deletions’ column of Table 2.
We did not consider large insertions because our algorithms
handle insertion in the same way as materialisation, so the
relative performance of our algorithms should be similar to
the performance of materialisation shown in Table 1.

Discussion Mat-Mod significantly outperformed Mat on
all test inputs. For example, Mat-Mod was several times
faster than Mat on Claros-LE and LUBM-LE. The programs

of both benchmarks contain transitivity and symmetric–
transitivity modules, which are efficiently handled by our
custom algorithm. The performance improvement is even
more significant for DBpedia-SKOS and DAG-R: Mat-Mod
is more than 30 times faster than Mat on DBpedia-SKOS,
and the difference reaches two orders of magnitude on DAG-
R. In fact, DBpedia contains long chains/cycles over the
skos:broader relation (Bishop et al. 2011b), which is ax-
iomatised as transitive in SKOS. Mat-Mod outperforms Mat
in this case since our custom algorithm for transitivity skips
a large number of rule instances. The same observation ex-
plains the superior performance of DAG-R.

Similarly, DRedc-Mod considerably outperformed DRedc
on small deletions: the performance speedup ranges from
around ten times on LUBM-LE to three orders of magni-
tude on Claros-LE. The program of Claros-LE contains a
symmetric–transitive closure module for the predicate relat-
edPlaces, and the materialisation contains large cliques of
constants connected to each other via this predicate. Thus,
when a relatedPlaces(a,b) fact is deleted, DRedc can end up
considering up to n3 rule instances where n is the number
of constants in the clique containing a and b. In contrast,
our custom algorithm for this module maintains a connected
component for the clique and requires only up to n2 steps. It
is worth noticing that, while DRedc-Mod significantly out-
performs DRedc on DAG-R, the incremental update times
for small deletion were larger than both the update times
for large deletions and even for the initial materialisation.
This is because deleting one thousand edges from the graph
(‘Small Deletion’) caused a large part of the materialisation
to be overdeleted and rederived again. In contrast, when 25%
of the explicit facts are deleted (‘Large Deletion’), a larger
propertion of the materialisation is overdeleted, but only a
few facts are rederived. For DRedc the situation is similar,
but rederivation in DRedc benefits from a global recursive
counter (at the expense of considering each applicable rule
instance), which makes small deletion still faster than large
deletion and initial materialisation. Finally, as shown in Ta-
ble 2, DRedc-Mod scaled well and maintained its advantage
over DRedc on large deletions.

Incremental insertions are in general easier to handle than
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deletions since during insertion the algorithms can rely on
the whole materialisation to prune the propagation of facts
whereas during deletion the algorithms can only rely on the
nonrecursive counters of facts to do the same. This is clearly
reflected in Table 2. Nevertheless, in our tests for small in-
sertions, DRedc-Mod was several times faster than DRedc in
all cases but LUBM-LE, for which both algorithms updated
the materialisation instantateously.

8 Conclusion
We have proposed a modular framework for the computation
and maintenance of datalog materialisations. The framework
allows integrating custom algorithms for specific types of
rules with standard datalog reasoning methods. Moreover,
we have presented such custom algorithms for programs ax-
iomatising the transitive and the symmetric–transitive clo-
sure of a relation. Finally, we have shown empirically that
our algorithms typically significantly outperform then exist-
ing ones, sometimes by orders of magnitude. In future, we
plan to extend our framework also to the B/Fc algorithm,
which eliminates overdeletion by eagerly checking alterna-
tive derivations. This could potentially be useful in cases
such as DBpedia-SKOS and DAG-R, where overdeletion is
a major source of inefficiency.
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