
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Representing and Learning Grammars in Answer Set Programming
Mark Law

Imperial College London, UK
mark.law09@imperial.ac.uk

Alessandra Russo
Imperial College London, UK

a.russo@imperial.ac.uk

Elisa Bertino
Purdue University, USA

bertino@purdue.edu

Krysia Broda
Imperial College London, UK

k.broda@imperial.ac.uk

Jorge Lobo
ICREA - Universitat Pompeu Fabra

jorge.lobo@upf.edu

Abstract

In this paper we introduce an extension of context-free gram-
mars called answer set grammars (ASGs). These grammars
allow annotations on production rules, written in the lan-
guage of Answer Set Programming (ASP), which can express
context-sensitive constraints. We investigate the complexity
of various classes of ASG with respect to two decision prob-
lems: deciding whether a given string belongs to the language
of an ASG and deciding whether the language of an ASG is
non-empty. Specifically, we show that the complexity of these
decision problems can be lowered by restricting the subset of
the ASP language used in the annotations. To aid the applica-
bility of these grammars to computational problems that re-
quire context-sensitive parsers for partially known languages,
we propose a learning task for inducing the annotations of an
ASG. We characterise the complexity of this task and present
an algorithm for solving it. An evaluation of a (prototype)
implementation is also discussed.

Introduction
All computational problems can be characterised as the task
of recognising a language. Many of these languages can be
captured by grammars. For example, finite state automata
can be characterised by regular grammars, pushdown au-
tomata by context-free grammars (CFGs), linear bounded
automata by context-sensitive grammars and Turing ma-
chines by unrestricted grammars. Grammars are useful in
many situations where the problem to solve is that of recog-
nising the sentences of a language. For instance, grammars
are useful to automatically generate parsers of programming
languages. Typically, the problem of parser generation is,
roughly speaking, done in two steps: firstly a CFG is de-
fined and secondly either the grammar, or the parser gener-
ated by the grammar, is annotated or modified to capture the
language; e.g. a CFG is used, together with annotations, as
input to YACC (Johnson 1975) in order to generate parsers.

Parsers are used in many situations. However, in practice
there are situations where a parser’s grammar may be un-
known or a parser’s implementation does not match its spec-
ification. For instance, in the context of automatic test gen-
eration for program debugging, known as fuzzing (Sutton,

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Greene, and Amini 2007), hand written grammars may con-
tain errors, meaning automatically generated test instances
may fail in the programs parser (Godefroid, Peleg, and Singh
2017). Another example arises in the domain of signature-
based intrusion detection systems. Signatures of attacks are
specified as regular expressions. Writing these signatures is
difficult, and the definitions are usually incomplete: there are
attacks that are not detected by the signature and strings that
are classified as attacks when they are not, e.g. (Alnabulsi,
Islam, and Mamun 2014). This is also the case in automatic
classification of logs, where signatures are used and speci-
fied as regular expressions to parse the logs into classes, and,
as in the case of intrusion detection, often there are incorrect
classifications, e.g. (Tang, Tao, and Chang-Shing 2011).

The contribution of this paper is twofold. Firstly, a class of
grammars, called Answer Set Grammars (ASG) is defined.
These grammars are CFGs with annotations, which go be-
yond CFGs and are able to express some context-sensitive
languages, including some which are not polynomially de-
cidable. Secondly, a framework that given an ASG and two
sets of strings, E+ and E−, learns a target ASG that has the
same context-free component as the input grammar, and ev-
ery string in E+ (resp. E−) is accepted (resp. rejected) by
the target grammar. This framework is intended as a first step
towards addressing problems such as the three described
above, by automatically modifying the grammars.

ASG annotations are expressed as Answer Set Programs
(ASP). They are inspired by extensions of CFGs, such as
attribute grammars (Knuth 1968) and definite clause gram-
mars (Pereira and Warren 1980), which are capable of ex-
pressing context-sensitive conditions. The former extend
CFGs with attributes and production rules with assignments
to these attributes and constraints on the values that these at-
tributes can take. The latter extend CFGs with variables that
can be passed up and down the parse tree. ASGs differ from
both attribute grammars and DCGs in that the annotations
are purely declarative and are not subject to procedural con-
straints. ASGs have a high degree of expressiveness and by
restricting the fragment of ASP used by the ASG, languages
of different complexities can be characterised.

The insight of using ASP annotations allows recent ad-
vances in learning ASP (Law, Russo, and Broda 2015a) to
be used to learn the annotations of ASGs. Our proposed
learning framework is able to learn the ASP part of an

2919

ASG that preserves the context-free component of the input
grammar. This can be interpreted in many cases as learn-
ing semantic constraints of a language when its syntax is al-
ready known. This is indeed the case of automatic modifica-
tion of grammars, common to the three problems described
above. Our framework differs from existing approaches
of grammar induction (Angluin 1987; Javed et al. 2004;
Fredouille et al. 2007), where the task is instead to learn the
entire grammar of a language from a set of positive and neg-
ative examples of strings in that language. As shown by our
evaluation results, learning only the annotations of an ASG
makes the computational task easier than learning the whole
grammar. In what follows we present: (1) the formalisation
of our notion of ASGs; (2) results on the computational com-
plexity of deciding whether a given string is a member of the
language of a given ASG and deciding whether the language
of a given ASG is non-empty; (3) the formalisation of the
task of learning annotations of ASGs; and (4) a characteri-
sation of the complexity of this learning task, and an algo-
rithm that solves the learning task. We begin by recalling the
relevant notation in the next section, and then present each
contribution in turn. We conclude the paper with discussions
of related and future work.

Notation and Terminology
In this section we introduce notions and terminologies used
throughout the paper. Given atoms h, b1, . . . bn, c1, . . . , cm,
a normal rule is h : - b1, . . . , bn, not c1, . . . , not cm,
where h is the head and b1, . . . , bn, not c1, . . . , not cm
(collectively) is the body of the rule, and “not” repre-
sents negation as failure. Rules of the form : - b1, . . . , bn,
not c1, . . . , not cm are called constraints. A variable in a
rule is said to be safe if it occurs in at least one positive lit-
eral (i.e. the bi’s in the above rule) in the body of the rule.
In this paper, we assume an ASP program to be a set of nor-
mal rule and constraints. The Herbrand Base of a program
P , denoted HBP , is the set of variable free (ground) atoms
that can be formed from predicates and constants in P . The
subsets of HBP are called (Herbrand) interpretations of P .

Given a program P and an interpretation I ⊆ HBP , the
reduct P I is constructed from the grounding of P in 3 steps:
firstly, remove rules whose bodies contain the negation of an
atom in I; secondly, remove all negative literals from the re-
maining rules; and finally, replace the head of any constraint
with ⊥ (where ⊥ /∈ HBP). Any I ⊆ HBP is an answer set
of P if it is the minimal model of the reduct P I . We denote
the set of answer sets of a program P with AS(P). Given
an answer set A ∈ AS(P), a ground normal rule of P is
satisfied by A if the head is in A or the body is not satisfied
by A. A ground constraint is satisfied when the body is not
satisfied. A constraint therefore has the effect of eliminating
all answer sets of P that satisfy the body of the constraint. A
program P is stratified if it can be partitioned into (disjoint)
strata P1, . . . , Pn such that for each predicate p, if p occurs
positively (resp. negatively) in the body of a rule in Pi then
every rule in P with p in the head is in P1, . . . , Pi (resp.
P1, . . . , Pi−1). The notation ++ denotes list concatenation
(e.g. [1, 2, 3]++[4, 5] = [1, 2, 3, 4, 5]).

Answer Set Grammars
This section formalises Answer Set Grammars (ASGs). We
first recall the definition of a CFG (Sipser 1997).

Definition 1. A context-free-grammar GCF is a tuple
〈GN , GT , GPR, GS〉 where GN is a (finite) set of non-
terminal nodes, GT is a (finite) set, disjoint from GN , of
terminal nodes, GPR is a set of production rules of the form
n0 → n1 . . . nk, where n0 ∈ GN and each ni ∈ GN ∪GT .
GS ∈ GN is the start node of GCF .

Terminal nodes correspond to the characters of the alphabet
that appear in the strings generated by the grammar. So, for
each node n ∈ GT , we say that n yields the string “n”.
Production rules are used to generate all possible strings in
the formal language formalised as the context-free grammar.
So, for any production rule n0 → n1 . . . nk in GPR, if for
each i ∈ [1, k], ni yields the string si then we say that n0

yields the string “s1 . . . sk”. A string s is said to be in the
language of a grammar G, denoted as L(G), if and only if
the start node GS of the grammar yields the string s. We can
now define the notion of a parse tree for a CFG.

Definition 2. Let GCF = 〈GN , GT , GPR, GS〉 be a CFG.
A parse tree PT of GCF consists of a node node(PT) in
GT ∪GN , a list of parse trees, denoted children(PT), and
if node(PT) ∈ GN , a rule rule(PT) ∈ PR, such that

1. If node(PT) ∈ GT , then children(PT) is empty.
2. If node(PT) ∈ GN , then rule(PT) is of the form

node(PT) → n1 . . . nk where each ni is equal to
node(children(PT)[i]) and |children(PT)| = k.

For any parse tree PT we define str(PT) as: (1) node(PT)
if node(PT) ∈ GT ; and (2) str(PT1) . . . str(PTn) oth-
erwise (where [PT1, . . . , PTn] = children(PT)). A parse
tree PT of GCF is a parse tree for a string s if node(PT) =
GS and s = str(PT).1

We can represent each node n in a parse tree by its trace,
trace(n), through the tree. The trace of the root is the empty
list []; the ith child of the root is [i]; the jth child of the ith

child of the root is [i, j], and so on.

Example 1. Consider the CFG given in Figure 1. Note that
we give each production rule a unique integer identifier.
There is exactly one2 parse tree PT of GCF for the string
ac, which is given by the table in Figure 1.

An Answer Set Grammar extends a context-free grammar
(CFG) by expressing semantic conditions, written in ASP,
on the production rules. To allow the semantic conditions to
refer to the structure of the CFG, we use the notion of anno-
tated ASP programs. These are programs whose atoms have
annotations that refer to nodes of the parse tree of a CFG.
Specifically, an annotated ASP program is an ASP program

1Note that in the case that a string is empty, all nodes of the tree
will correspond to non-terminals. The leaf nodes of the tree will be
non-terminals with an empty list of children. For “” to be accepted,
it is therefore necessary for at least one production rule to have no
terminal or non-terminal symbols on the right hand side.

2In fact, this grammar is unambiguous, meaning that each string
that is accepted by the grammar has a unique parse tree.

2920

1: start -> as bs cs
2: as -> "a" as
3: as ->
4: bs -> "b" bs
5: bs ->
6: cs -> "c" cs
7: cs ->

(a)

trace node rule
[] start 1
[1] as 2

[1, 1] a
[1, 2] as 3
[2] bs 5
[3] cs 6

[3, 1] c
[3, 2] cs 7

(b)

Figure 1: A CFG for aibjck and the parse tree for ac.

where some atoms have been annotated with a ground term.
For instance, the annotated atom a(1)@2 represents the atom
a(1) with the annotation 2. When computing the answer sets
of an annotated program, annotated atoms are treated as or-
dinary atoms, where a@k, a@l and a are distinct atoms. We
can now define the notion of annotated production rules.

Definition 3. An annotated production rule is of the form
n0 → n1 . . . nk P where n0 → n1 . . . nk is an ordinary
CFG production rule and P is an annotated ASP program,
where every annotation is an integer between 1 and k.

Definition 4. An answer set grammar G is a tuple
〈GN , GT , GPR, GS〉 where GN is a (finite) set of non-
terminal nodes, GT is a (finite) set, disjoint from GN of ter-
minal nodes, GPR is a set of annotated production rules and
GS ∈ GN is the start node of G.

Note that a CFG can be represented as an ASG where all
production rules are unannotated (i.e. the annotation of every
production rules is empty). Given any ASG G, we denote
with GCF the context-free part of the grammar; i.e. the CFG
constructed from G by removing the ASP programs from
each production rule. Example 2 presents an example ASG,
and explains the intuition of an ASGs semantics, which is
then formalised for general ASGs in Definitions 5 and 6.

Example 2. The following is an example of an ASG G.

1: start -> as bs cs {
:- size(X)@1, not size(X)@2.
:- size(X)@1, not size(X)@3.

}
2: as -> "a" as { size(X+1) :- size(X)@2. }
3: as -> { size(0). }
4: bs -> "b" bs { size(X+1) :- size(X)@2. }
5: bs -> { size(0). }
6: cs -> "c" cs { size(X+1) :- size(X)@2. }
7: cs -> { size(0). }

The language L(G) of the above ASG is a subset of the lan-
guage L(GCF) of the CFG in Example 1, which represents
aibjck. The above ASG G captures the language anbncn,
where n ≥ 0. The intuition of the annotations is that in each
production rule from 2-7, size represents the size of the cur-
rent string. The atom size(X)@2 in production rule 2 means
that the size of the string represented by the second child of
the current node (as) is X. The constraints in production rule
1 enforce that the number of a’s, b’s and c’s are equal.

A parse tree PT of an ASG G for a string s is defined
similarly to the context-free case (with the difference that
production rules are annotated production rules). We can use
a parse tree of an ASG to construct an annotated ASP pro-
gram, which allows us to test whether the parse tree con-
forms to the semantic conditions of the ASG.
Definition 5. Let G be an ASG and PT be a parse
tree. G[PT] is the program {rule(n)@trace(n)|n ∈ PT},
where for any production rule n0 → n1 . . . nk P , and any
trace t, PR@t is the program constructed by replacing all
annotated atoms a@i with the atom a@(t++[i]) and all
unannotated atoms a with the atom a@t.
Definition 6. Let G be an ASG and str be a string of ter-
minal nodes. str ∈ L(G) if and only if there is a parse tree
PT of G for str such that G[PT] is satisfiable.
To check, for instance, whether ac ∈ L(G), where G is the
ASG given in Example 2, we need to check whether G[PT]
is satisfiable. For the string ac, the unique parse tree is that
given in Figure 1. Therefore the G[PT] is the program:
:- size(X)@[1], not size(X)@[2].
:- size(X)@[1], not size(X)@[3].
size(X+1)@[1] :- size(X)@[1, 2].
size(0)@[1, 2].
size(0)@[2].
size(X+1)@[3] :- size(X)@[3, 2].
size(0)@[3, 2].

This program is clearly unsatisfiable, as size(1)@[1] is
guaranteed to be true in all answer sets and size(1)@[2]
is guaranteed to be false in all answer sets, meaning that the
first constraint is guaranteed to be violated. If we instead
check the string abc, this leads to the program:
:- size(X)@[1], not size(X)@[2].
:- size(X)@[1], not size(X)@[3].
size(X+1)@[1] :- size(X)@[1, 2].
size(0)@[1, 2].
size(X+1)@[2] :- size(X)@[2, 2].
size(0)@[2, 2].
size(X+1)@[3] :- size(X)@[3, 2].
size(0)@[3, 2].

This program has exactly one answer set: {size(0)@[1, 2],
size(1)@[1], size(0)@[2, 2], size(1)@[2], size(0)@[3, 2],
size(1)@[3]} meaning that abc ∈ L(G). This answer set
actually reflects the size of the substring in each node of the
parse tree (other than the root and the terminal nodes, which
do not define size), as shown in the following table.

trace node size
[] start -
[1] as 1

[1, 1] a -
[1, 2] as 0
[2] bs 1

[2, 1] b -
[2, 2] bs 0
[3] cs 1

[3, 1] c -
[3, 2] cs 0

For any ASG G, we say that G accepts a string str at depth
d iff there is a parse tree PT of G for str of depth less than

2921

or equal to d such that G[PT] is satisfiable. We denote the
set of all strings that are accepted by G at depth d as Ld(G).

Answer Set Grammar Induction
In this section, we formalise our framework for learning an-
swer set grammars. Informally, our framework takes as input
an ASG G (or even simply a CFG), and two sets of strings,
E+ and E−, and learns an ASG G

′
such that G

′

CF is the
same as GCF , and every string in E+ (resp. E−) is accepted
(resp. rejected) by G

′
. The framework enables learning the

ASP part of an ASG. We are not learning the “context-free”
part of the grammar, but only the semantic conditions, as-
suming therefore that the syntax of the target language is
known, but the semantics is unknown. To perform the learn-
ing, our framework uses recent advances in Inductive Learn-
ing of ASP (ILASP) from (Law, Russo, and Broda 2015a).

Similarly to most ILP techniques, our framework includes
a notion of a hypothesis space, which defines the set of
rules that can form possible learned outcomes, referred to
as possible hypotheses. For convenience, hypothesis spaces
are often characterised by a set of mode declarations (Mug-
gleton 1995). We use a similar approach, but in order to
give the flexibility that some predicates may only be used
in some production rules, we add a parameter called the
scope of a mode declaration. We build upon the notion of
ILASP mode declarations given in (Law, Russo, and Broda
2014), allowing declarations specifying which atoms can ap-
pear in the head and body of rules in the hypothesis space
(#modeh’s and #modeb’s, respectively) whose arguments
may be placeholders for variables and constants of given
types (denoted var(t) and const(t), respectively). For in-
stance the mode declaration #modeb(p(var(t)), [1, 2, 3])
means that p(X), for any variable X of type3 t, may occur in
the body of rules which are used to annotate production rules
1–3. An ASG hypothesis space is a set of pairs of the form
〈PRid, R〉, where PRid is an identifier for a production rule
and R is an annotated ASP rule. Each pair 〈PRid, R〉 in a
hypothesis space means that R can be added to the annota-
tion of PR. Given any ASG G and any hypothesis (a subset
of the hypothesis space) H , G :H is the ASG constructed by
adding R to the annotation of PR for each 〈PRid, R〉 in H .

As with any other form of grammar induction, to learn an
ASG we also need examples of strings that should, or should
not, be accepted by the final grammar. For instance, if we
were aiming to learn the grammar anbncn, we might give
examples like “abc” and “aabbcc”, as strings that should
be accepted, and “aabcc” as a string that should not be ac-
cepted. Definition 7 formalises the ASG learning task.

Definition 7. An ASG learning task T is of the form
〈G,SM , E+, E−〉, where G is an ASG called the existing
grammar, SM is an ASG hypothesis space and E+ and E−

are sets of strings called the positive and negative examples,

3The only restriction imposed by types is that no
variable can appear twice in the same rule with dif-
ferent types. For example, given mode declarations
{#modeh(p(var(t1)), [1]),#modeb(q(var(t2)), [1])}, we
cannot add p(X) : - q(X) to the annotation of production rule 1.

Horn Stratified Unstratified
Propositional NP NP NP

First-order EXP EXP NEXP

Table 1: Complexity classes for propositional and first-order
ASGs (each element of the table is the class for which BAM
and BAS are both complete).

respectively. An inductive solution of T at depth d is a hy-
pothesis H ⊆ SM such that (1) ∀s ∈ E+, s ∈ Ld(G : H);
and (2) ∀s ∈ E−, s 6∈ Ld(G : H). ILP d

ASG(T) denotes the
set of all inductive solutions of T at depth d.

Note that the existing grammar of an ASG learning task may
or may not contain annotations on some or all of the produc-
tion rules. The annotations that are present constitute what
is known as background knowledge in conventional ILP, as
they encode knowledge that is already known. In the ex-
treme, this knowledge can all be learned (this is the case
when the existing grammar is a pure CFG), but as shown
in our evaluation, when semantic conditions are known, in-
cluding them in the existing grammar can reduce the number
of examples and time needed to learn the correct grammar.

Computational Complexity
We consider two classes of decision problem. The first ad-
dresses the complexity of existing ASGs, and the second the
complexity of the learning task. Our results are presented in
terms of a bound on the depth of parse trees, i.e. there is a
fixed bound d on the depth of parse trees in this section.

Grammar Decision Problems
• Bounded-ASG-membership (BAM) is the problem of de-

ciding whether an ASG accepts a string.

• Bounded-ASG-satisfiability (BAS) is the problem of de-
ciding whether an ASG has a non-empty language.

The results are summarised in Table 1. An ASG G is un-
stratified if there is at least one parse tree PT of G such
that G[PT] is unstratified. Results in the second row are for
function free first-order ASP annotations.

Propositional results. In proving the complexity results
we make use of two chains of reductions: (1) Horn BAS to
Horn BAM to stratified BAM to unstratified BAM to unstrat-
ified BAS; and (2) Horn BAS to stratified BAS to unstratified
BAS. Note that all but the first and last reductions of chain
(1) hold trivially, so it remains to show these two non-trivial
cases, which are special cases of Theorems 1 and 2.

Theorem 1. For any fragment F of ASP, F BAS reduces to
F BAM.

Proof. Let G be an ASG using some fragment F of ASP.
Let G′ be the ASG constructed by removing all terminal
symbols from G (and accordingly adjusting all annotations
in the ASP of G). “” ∈ Ld(G′) iff Ld(G) 6= ∅. As G′ is an
F ASG, F BAS reduces to F BAM.

2922

Theorem 2. For any fragment F of ASP that contains con-
straints and negation as failure, F BAM reduces to F BAS.

The proof of Theorem 2 (omitted4) shows that given a
string s and an ASG G, we can extend G using stratified
normal rules and constraints to yield a grammar G′ that is
satisfiable at depth d iff s is in Ld(G′). Due to the chains of
reductions, to show the results in the first row of Table 1 (for
both decision problems), it remains to show that Horn BAS
is NP-hard and unstratified BAS is in NP.

Theorem 3. Propositional Horn BAS is NP-hard.

Proof. We reduce satisfiability of a set of propo-
sitional clauses C to propositional Horn BAS. Let
V = {v1, . . . , vn} be the set of atoms in C.
For any clause c ∈ C, constraint(c) represents
an annotated constraint form of c (e.g. v1 ∨ ¬v2 ∨
¬v3 is represented as : - not v@1, v@2, v@3.). Con-
sider the ASG G consisting of the production rule
start→ a1 . . . an {constraint(c)|c ∈ C} and for each i ∈
[1, n] the production rules ai →{v.} and ai →{not v.}.

Note that C is satisfiable iff there is an interpretation
I ⊆ V such that {v@i.|vi ∈ I} ∪ {not v@i.|vi 6∈ I} ∪
{constraint(c)|c ∈ C} is satisfiable. There is one parse tree
of G corresponding to each I ⊆ V ; hence there is a parse
tree PT of G st G[PT] is satisfiable iff C is satisfiable.

Theorem 4. Propositional unstratified BAS is in NP.

The proof of Theorem 4 (omitted), reduces propositional
unstratified BAS to the satisfiability of an ASP program con-
sisting of propositional normal rules and constraints, which
is in NP (Leone et al. 2006).

First order results. Theorems 1 and 2 show two chains
of reductions in the first-order case: (1) Horn BAS to Horn
BAM to stratified BAM to stratified BAS; and (2) unstrati-
fied BAS to unstratified BAM to unstratified BAS. Thus, to
prove the remaining results in Table 1, it suffices to show
that Horn BAS is EXP-hard, stratified BAS is in EXP and
unstratified BAS is both in NEXP and NEXP-hard. We first
show the two hardness results.

Theorem 5. First order Horn BAS is EXP-hard.

Proof. We reduce an arbitrary EXP-hard problem D to first
order Horn BAS. As EXP is closed under complement, D̄
(the complement of D) must also be in EXP. Hence, as cau-
tious entailment of (function-free) first order Horn programs
is EXP-complete (Leone et al. 2006), there is a first order
Horn program P and a ground atom a such that P |=c a iff
D̄ returns yes. Hence, P ∪ {: - a.} is satisfiable iff D̄ returns
no, which is the case iff D returns yes. Consider the ASG G
with a single production rule start→ P ∪{: - a.}. Note that
Ld(G) is non-empty iff P ∪ {: - a.} is satisfiable, which is
the case iff D returns yes.

Theorem 6. First order unstratified BAS is NEXP-hard.
4All proofs omitted from the paper can be found at https://www.

doc.ic.ac.uk/∼ml1909/AAAI19 proofs.pdf.

Horn Stratified Unstratified
Bounded-verification DP DP DP
Bounded-satisfiability ΣP

2 ΣP
2 ΣP

2

Table 2: Complexity results for learning propositional
ASGs. Each entry in the table is the complexity class for
which the given decision problem is complete.

Proof. Let P be an arbitrary (function-free) first order un-
stratified ASP program and a be an atom. Deciding whether
P |=b a is NEXP-hard (Leone et al. 2006). Hence, it suf-
fices to reduce deciding whether P |=b a to deciding the
satisfiability of a first order unstratified-ASG G. Consider
the ASG G that contains a single production rule start →
P ∪ {: - not a.}. Ld(G) is non-empty iff P ∪ {: - not a.}
is satisfiable, which is the case iff P |=b a.

It remains to show that first order stratified BAS is in EXP
and first order unstratified BAS is in NEXP.

Theorem 7. First order stratified BAS is in EXP.

The proof of Theorem 7 (omitted) reduces the decision
problem to deciding the satisfiability of a stratified first-
order (function free) ASP program, which is in EXP (Leone
et al. 2006).

Theorem 8. First order unstratified BAS in NEXP.

The proof of Theorem 8 (omitted) reduces the deci-
sion problem to deciding the satisfiability of an unstrati-
fied first-order (function free) ASP program, which is in
NEXP (Leone et al. 2006).

One observation to make is that for all the hardness proofs
one can use grammars that generate finite languages. Hence,
the complexity of the context-free part of the grammar has
no effect on the complexity of the ASG. Nevertheless, the
grammar is needed to get the lower bound of the classes of
ASGs since Horn ASP alone is in P. The results also show
that we would need first order Horn to capture CSGs. How-
ever, it is an open question whether there is a class of ASGs
exactly capturing CSGs since they are PSPACE-complete.

Learning Decision Problems
The results in this section are all for propositional learning
tasks5. We consider the following decision problems:

• Bounded-verification (BV) is the problem of deciding if a
given hypothesis is a solution of a given learning task.

• Bounded-task-satisfiability (BTS) is the problem of decid-
ing whether a given learning task has any solutions.

Complexity results for learning are summarised in Table 2.
As there are trivial reductions from Horn to stratified to un-
stratified BV, the following two theorems suffice to show the
completeness results for BV.

Theorem 9. Horn BV is DP-hard.

Theorem 10. Unstratified BV is in DP.

5Our implementation is able to learn first-order ASGs.

2923

Problems in DP can be reduced to a pair of decision prob-
lems, one in NP and one in co-NP, such that the original
decision problem returns yes iff both of the new decision
problems return yes. The (omitted) proof of Theorem 9 re-
duces the DP-complete problem of deciding whether one set
of propositional clauses is satisfiable and another is unsatis-
fiable to Horn BV. Similarly, we prove the unstratified case
is in DP by reducing it to this DP-complete problem.

Again due to the trivial reductions from Horn to stratified
to unstratified BTS, the next two theorems suffice to show
the remaining completeness results in Table 2.
Theorem 11. Horn BTS is ΣP

2 -hard.
The (omitted) proof reduces deciding the validity of a re-

stricted form of quantified boolean formula (a known ΣP
2 -

complete problem) to Horn BTS. It remains to show that
unstratified BTS is in ΣP

2 .
Theorem 12. Unstratified BTS is in ΣP

2 .

Proof. We show that a non-deterministic Turing Machine
(NDTM) with access to an NP oracle could check satisfi-
ability of any ASG learning task T = 〈G,SM , E+, E−〉
in polynomial time. An NDTM can have |SM | choices to
make (corresponding to selecting each pair in the hypoth-
esis space as part of the hypothesis). As unstratified BV is
in DP (by Theorem 10), this hypothesis can then be verified
in polynomial time using an NP oracle, with two queries,
answering yes iff the first query returns yes and the second
query returns no. Such an NDTM terminates answering yes
iff the task is satisfiable (as there is a path through the Turing
Machine which answers yes iff there is a hypothesis in SM

which is an inductive solution of the task).

A key observation to make is that the complexities for
BV and BTS under propositional ASP are identical to the
complexities for verification and satisfiability of ILP context

LAS
tasks (Law, Russo, and Broda 2018). These equivalences
provided a strong hint that we could solve any ASG learning
task by encoding it as an ILP context

LAS task, and use the exist-
ing ILASP (Law, Russo, and Broda 2015a) system to solve
the ASG learning task. We show in the next section how this
can be done. Furthermore, we show that, with some restric-
tions, stratified BTS is in NP. The complexity of the learning
task for the function-free first order case is an open question.

Learning ASGs with ILASP
This section describes our method for solving ASG learn-
ing tasks. We use the ILASP (Inductive Learning of Answer
Set Programs) system (Law, Russo, and Broda 2015a), as
a black box. We transform our task into a task that can be
solved by ILASP. For completeness, we summarise existing
notions that are key for the learning tasks solved by ILASP.
Definition 8. ((Law, Russo, and Broda 2016)) A context-
dependent partial interpretation (CDPI) is a pair e =
〈〈einc, eexc〉, ectx〉, where 〈einc, eexc〉 is pair of sets of
atoms and ectx is an ASP program, called a context. A pro-
gram P is said to accept e iff there is an answer set A of
P ∪ ectx such that einc ⊆ A and eexc ∩A = ∅.
An ILP context

LAS learning task can be defined as follows.

Definition 9. An ILP context
LAS task is a tuple T =

〈B,SM , 〈E+, E−〉〉 where B is an ASP program, SM is the
set of rules allowed in the hypotheses and E+ and E− are
finite sets of CDPIs called, respectively, positive and nega-
tive examples. A hypothesis H ⊆ SM is an inductive solu-
tion of T (written H ∈ ILP context

LAS (T)) if and only if: (1)
∀e+ ∈ E+, B ∪H accepts e+; and (2) ∀e− ∈ E−, B ∪H
does not accept e−.

Definition 9 is a simplified version of the full ILP context
LOAS

framework presented in (Law, Russo, and Broda 2016).
To define the transformation of an ASG learning task into
an ILP context

LAS task, we use the following notation. For
any ASP rule R, RX(PRid) denotes the rule constructed
from R in two steps: (1) replacing each annotated atom
a@[t1, . . . , tn] with the atom ann(a, X++[t1, . . . , tn]); and
(2) adding the atom pr(PRid, X) to the body of the rule.6
The mapping in Definition 10 translates each rule R that
occurs (resp. could occur) in the annotation of each pro-
duction rule PR to RX(PRid) putting it in the background
knowledge (resp. hypothesis space) of the ILP context

LAS task.
The intuition is that for any ILP context

LAS hypothesis H
and any parse tree G[PT] (for some string s), B ∪ H ∪
{pr(rule(n)id, trace(n)).|n ∈ PT} is satisfiable if and
only if (G : H ′)[PT] is satisfiable (where H ′ is the ASG hy-
pothesis represented by H). Contexts of the positive (resp.
negative) examples ensure that for each positive (resp. neg-
ative) string example there is at least one7 (resp. no) parse
tree of G such that (G : H ′)[PT] is satisfiable.

Definition 10. Let d be a positive integer and T =
〈G,SM , E+, E−〉 be an ASG learning task. LAS(T, d) is
the ILP context

LAS task 〈B,SLAS
M , E+

LAS , E
−
LAS〉, where the in-

dividual components are defined as follows.

• B =

{
RX(PRid)

∣∣∣∣∣ PR ∈ GPR,
PR = n→ n1 . . . nk P,

R ∈ P

}
• SLAS

M = {RX(PRid)|〈PRid, R〉 ∈ SM}
• E+

LAS contains one CDPI 〈〈∅, ∅〉, C〉 for each string s ∈
E+, where given {PT1, . . . , PTm}, the set of parse trees
of s for GCF at depth d, C = {1{pt1, . . . , ptm}1.} ∪
{pr(rule(n)id, trace(n)) : - pti.|i ∈ [1,m], n ∈ PTi}

• E−LAS is the set of CDPIs of the form 〈〈∅, ∅〉,
{pr(rule(n)id, trace(n)).|n ∈ PT}〉, where PT is a
parse tree of a string in E− for GCF .

Given any hypothesis H ⊆ SLAS
M , we write HASG to de-

note the hypothesis {〈PRid, R〉 ∈ SM | RX(PRid) ∈ H}.
Theorem 13 shows that we can use the mapping in Def-

inition 10 to translate any ASG learning task T and depth
d, and use ILASP to find the solutions in ILP d

ASG(T). The
proof of Theorem 13 is omitted.

Theorem 13. Let T be an ASG learning task.
ILP d

ASG(T) =
{
HASG | H ∈ ILP context

LAS (LAS(T, d))
}

6Lists are represented as pairs (for example, X++[t1, . . . , t3] is
represented as (((X, t1), t2), t3)).

7The context of each positive example has a choice rule that
means the program checks for the existence of such a parse tree.

2924

Learning Stratified ASGs
Deciding satisfiability for a general ILP context

LAS task is ΣP
2

complete (in the propositional case); however, if there are
no negative examples then the complexity is only NP -
complete. ILASP tasks with no negative examples tend to
run faster in ILASP than equivalent tasks with negative ex-
amples, so when it is possible to modify the representation
to eliminate negative examples it is often advantageous to
do so. When ASGs are stratified, the representation in Def-
inition 10 can be modified to use only positive examples.
This can be achieved by representing each constraint : - body
as the rule vio : - body (where vio is a new atom that in-
dicates that at least one constraint has been violated). The
positive CDPI examples in LAS(T, d) are then extended to
indicate that the unique answer set of the (stratified) pro-
gram should not prove vio (which is equivalent to saying
that none of the constraints should be violated). The nega-
tive examples in LAS(T, d) are represented similarly (again
as positive examples), but indicating that the unique answer
set of the (stratified) program must contain vio. This means
that the unique answer set must violate at least one constraint
to cover the example. If each example string has only a poly-
nomial number of parse trees then this task is polynomial in
size of the ASG learning task8. Hence propositional strati-
fied BTS is in NP, provided that each example string has a
polynomial number of parse trees.

Evaluation
This section summarises experimental results of using our
approach to induce ASGs. The approach was evaluated
on several context-sensitive languages, including some lan-
guages drawn from a related paper targeting learning mildly
context-sensitive (MCS) languages represented as linear in-
dexed grammars (LIGs) (Nakamura and Imada 2011). The
languages learned in this section are:
• The copy language: ww, where w is a non-empty string of
a’s and b’s. The input language was a CFG corresponding
to the language w1w2 where w1 and w2 are both non-empty
strings of a’s and b’s.

• The language anbncm, n ≤ m: the input language was a
CFG corresponding to the language aibjck and the task
was to learn annotations expressing that i = j ≤ k.

• The language anbncn. We considered four different learn-
ing tasks for this language:
– A: the input language was a CFG representing aibjck.

The task was to learn in the annotations that i = j = k.
– B: the input language was a CFG representing anbncm.

The task was to learn in the annotations that n = m.
– C: the input language was an ASG G such that GCF

represents aibjck, but the existing annotations corre-
spond to i = j. The task was to extend the annotations

8The mapping can be converted to a propositional mapping by
replacing RX with RT for each trace [t1, . . . , ti], where i ∈ [0, d]
and each tj ∈ [1, max k], where max k is the number of terminal
and non-terminal nodes in the body of the longest production rule.
There are a polynomial number of such traces, so this “grounding”
of the problem is still polynomial in the size of the input problem.

to express that i = k. There is slightly less to learn in
this task than in anbncn B, as some of the annotations
necessary to express that i = k are already present (i.e.
definition of size in the as production rules); however
the hypothesis space is larger in this task, as there are
more production rules which could be annotated.

– D: the input language was a CFG representing the lan-
guage (a|b|c)∗. The task was to learn annotations ex-
pressing that all a’s occur before all b’s, which occur
before all c’s, and that the number of a’s, b’s and c’s
are equal. Essentially this task corresponds to learning
both the CFG and the ASG annotations, as the input
ASG represents the full language of a’s, b’s and c’s.

• The language anbmcndm: the input language was a CFG
corresponding to the language aibjckdl and the task was
to learn annotations expressing that i = k and j = l.

• The subset-sum language: the input language was a
CFG corresponding to the language of sets of integers be-
tween −5 and 5 (e.g. {−5, 4, 1}). The task was to learn
annotations expressing that at least one non-empty subset
of the integers in the string sums to 0. Note that this lan-
guage is not MCS – for a language to be MCS, its mem-
bership decision problem must be in P , but deciding if at
least one non-empty subset of a set of integers sums to 0
is NP-complete (Garey and Johnson 1979).

• The graph-col language: the input language was an
ASG representing the language anbm where each a is an
integer in [0, 3], representing the nodes of a graph, and
each b is a pair of integers representing a directed edge
(only those integers used as nodes could be used in edges).
To avoid equivalent strings we enforced that the nodes
and edges were ordered lexicographically. The task was
to learn to restrict the language to 3-colourable graphs.
We tested this with two ASGs representing the same in-
put language:

– A: the input ASG had no “duplicate” production rules,
meaning that the only way to express 3-colourability
was to learn an unstratified ASG using a loop to simu-
late the choice of colour for each node.

– B: the input ASG had 3 “duplicate” production rules
for node, meaning that the learned ASG could express
the choice of colour by using one production rule for
each choice of colour. In this case, we restricted the
hypothesis space to only Horn clauses.

For each language, we evaluated our framework using an
iterative approach. In the first iteration the learner started
with the initial language detailed above. In each subsequent
iteration the learner’s current language was checked against
the target language for a counterexample (either a positive
example of a string not in the learner’s language that was in
the target language, or a negative example for the reverse sit-
uation). If such a counterexample existed, the shortest such
example was added to the learning task at the next itera-
tion. The iterations, and therefore the learning, terminated
when no such counterexamples existed. Note that as check-
ing whether two CFGs are equivalent is undecidable, this is

2925

Language Final
Time

Total
Time

E+ E− SM

copy 174.6s 404.8s 3 10 55
anbncm, n ≤ m 1.0s 6.4s 2 8 45
anbncn A 1.1s 5.1s 1 7 45
anbncn B 0.3s 1.3s 1 3 28
anbncn C 0.5s 1.4s 1 2 45
anbncn D 1004.0s 13314.9s 1 45 66
anbmcndm 1.8s 12.1s 2 10 64
subset-sum 336.9s 657.5s 3 9 479
graph-colA 90.1s 256.9s 4 4 297
graph-col B 11.5s 23.8s 2 2 117

Table 3: A summary of the results of our evaluation. Final
Time and Total Time show the learning time (on an Ubuntu
14.04 desktop machine with a 3.4 GHz Intel R© CoreTM i7-
3770 processor and 16GB RAM) taken in the final itera-
tion and the total learning time, respectively. |E+| and |E−|
show the number of positive and negative examples needed
to learn the target language in each case. |SM | is the num-
ber of rules in the hypothesis space. Note that a hypothesis
space of n rules leads to 2n potential hypotheses.

also the case for ASGs. Therefore, when computing coun-
terexamples we put an upper bound on the depth of parse
trees to make the computation feasible. In each case the
bound was high enough that the final grammar was equiv-
alent to the target grammar (this was manually checked).

Table 3 summarises the results of our evaluation. The
four anbncn examples show the effect of narrowing (in the
case of B and C) and widening (in the case of D) the ini-
tial language. In the case of D, essentially the CFG needed
to be learned, in addition to the constraints represented
by the original ASG annotations (in A). In general, the
more specific the initial language, the fewer examples are
needed to learn the constrained target language. In each case,
fewer positive examples were needed than negative exam-
ples, which is to be expected as the task is to constrain the
initial language (of which the target language is a subset).
The graph colouring experiment shows that by restricting a
learning task to the Horn case, fewer examples (and signifi-
cantly less time) may be needed. However, it should be noted
that constructing the input language for the graph-col B
task required prior knowledge of how many duplicate pro-
duction rules were needed and that the level of choice is
therefore not learned, but is given as background knowledge.
On the other hand, the graph-col A task may have taken
longer and required more examples, but it did not require
such prior knowledge. This is an indication that in real set-
tings if the required level of choice is known a priori then
inputting it in the initial language will save time, but in cases
where it is unknown then unstratified ASGs are necessary.

(Nakamura and Imada 2011) evaluate their LIG learner
on each of the above languages other than subset-sum,
graph-col and the variations of anbncn. LIGs make no
distinction between the context-free part of the grammar so
in their case the entire LIG was learned from scratch. As
expected, our own running times are significantly shorter

in most cases. We are slower for the copy language and
the D variation of anbncn. The copy language has a much
more natural representation in LIG, which allows the use
of a stack to “store” the copied string, whereas ASP does
not have a natural efficient representation of lists or stacks.
The D variation of anbncn takes significantly longer in our
case (1004s compared to 18s) as our ASG learner was not
designed to learn the full language of an ASG, but to re-
strict an existing context-free language. As shown in the
other three cases, when starting from a more restricted CFG,
our approach is able to use the existing grammar to find the
complete ASG much faster than either method can learn the
entire grammar from scratch. As LIGs are MCS, the ap-
proach in (Nakamura and Imada 2011) could not learn the
subset-sum or graph-col languages.

Our evaluation assumed an oracle giving counterexam-
ples. This is not uncommon in grammar induction (e.g. (An-
gluin 1987; Sakakibara 1990)). Induction from randomly
observed examples is more challenging and in general we
cannot be sure that the learned hypothesis is correct (it may
only be correct on the seen examples). In practice, this
means that the learner should be deployed incrementally,
with the option to relearn on seeing a new counterexample.
The hypothesis spaces in our evaluation were constructed
from the target hypotheses, allowing predicates to be used in
the head/body if they occurred there in the target hypothesis.
In practice, when the target hypotheses are unknown, larger
hypothesis spaces must be used, which may mean that more
examples are required to learn the correct grammar.

Related Work
Context-sensitive grammars are often used in specifying the
semantics of programming languages. For instance, attribute
grammars (Knuth 1968; 1990) are used in tools for gener-
ating parsers and compilers (for example, YACC (Mason
and Brown 1990) and ANTLR (Parr and Quong 1995)). At-
tribute grammars are defined in terms of synthesised and in-
herited attributes, which are passed up and down (respec-
tively) the parse tree of a CFG. Each atom in the Herbrand
Base of an ASP program in an ASG can be thought of as a
boolean attribute. These attributes can be defined in terms of
the values of parent nodes (similarly to inherited attributes)
by using rules in the production rule of the parent node to
pass attributes to the child – this is achieved using rules with
annotated atoms in the head. Synthesised attributes, on the
other hand, can be simulated by using rules with annotations
in the body – this causes attribute values to be “passed” from
the child to the parent. Through first order representations,
ASGs can simulate attributes of non-boolean types; e.g. in
the anbncn, the predicate size is used to record the (inte-
ger) size of the string.

There are several differences between attribute grammars
and ASGs. Firstly, ASGs are not defined in terms of at-
tributes which are passed in a single direction along the parse
tree. This is because they are not procedural, but are instead
purely declarative. At a conceptual level, the child nodes and
parent nodes are all evaluated simultaneously, and attributes
can in fact be both inherited and synthesised at the same
time. There can even be recursion between two nodes.

2926

Example 3. Consider the following ASG, which corre-
sponds to conjunctions in ASP. For simplicity, we assume
there are production rules defining literals whose ASP rules
define the predicate uses var(V), which is true if and only
if the literal uses the variable V, and the atom positive
which is true if and only if the literal is positive. The ASP
programs in the production rules check whether the conjunc-
tion is safe, i.e. whether every variable that occurs in the
conjunction occurs in at least one positive literal in the con-
junction. The start node of the grammar is conjunction.

conjunction -> literal {
safe(V):- uses_var(V)@1, positive@1.
:- uses_var(V)@1, not safe(V).

}
conjunction -> conjunction "," literal {

safe(V):- safe(V)@1. safe(V)@1:- safe(V).
safe(V):- safe(V)@3. safe(V)@3:- safe(V).

}

In the second production rule, safe/1 acts as both a syn-
thesised attribute and an inherited attribute. As ASP uses
the closed world assumption, there must be some external
support for safe(V) to be satisfied – i.e. at least one of the
nodes in the first production rule must prove safe(V). This
means that for each node of the parse tree corresponding to
a conjunction, safe(V) holds iff there is at least one pos-
itive literal in the conjunction that uses the variable V.

Note that although annotated head atoms allow more
declarative representations, they do not affect the complexity
results presented earlier in the paper – if we were to consider
a new class of “strictly stratified” ASGs, where annotations
could only appear in the body, the hardness proofs would
still apply as they do not make use of annotated head atoms.

An additional advantage of using a logic programming
formalism to express the semantic conditions is that there
is a large amount of work on Inductive Logic Program-
ming (for example, (Muggleton 1991; 1995; Ray 2009;
Sakama and Inoue 2009; Corapi, Russo, and Lupu 2010;
Muggleton et al. 2012; Law, Russo, and Broda 2015b)).
This means that we can delegate the learning of the ASP
programs to an existing ILP system for learning ASP pro-
grams (Law, Russo, and Broda 2015a).

There has been a lot of work on Grammar Induction (for
example, (Angluin 1987; Wyard 1993)). In (Fredouille et
al. 2007; Muggleton et al. 2014), various ILP approaches
have been used to learn CFGs in the form of DCGs. There
is also some work on learning CSGs (e.g. (Oates et al. 2006;
Yoshinaka 2009; Imada and Nakamura 2010; Nakamura and
Imada 2011)), but we are not aware of any work on learning
attribute grammars, or learning semantic conditions on top
of an existing CFG. Such a task is useful to provide practical
solutions to the problems of parser corrections described in
the introduction, as it is faster to learn to restrict the existing
grammar than to learn the whole grammar from scratch.

Conclusion
In this paper we have presented a method for learning
context-sensitive constraints on an existing CFG, expressed
in ASP. Grammars have been previously used to encode

more typical AI problems such as scheduling constraints in
(Kadioglu and Sellmann 2008; Drescher and Walsh 2011).
By extending CFGs with ASP we cover a larger class of
problems through the added context-sensitive constraints.
Our second contribution is more foundational, expanding
the results on automatic generation of finite state controllers
(Bonet, Palacios, and Geffner 2010; Hu and De Giacomo
2013), and the more recent results on automatic genera-
tion of hierarchical controllers and CFGs (Segovia-Aguas,
Jiménez, and Jonsson 2016), by providing a better under-
standing of the complexity of learning more complex au-
tomata, e.g. the ones captured by some CSGs.

In the general case, the complexity of verification and sat-
isfiability is the same as the equivalent complexity results for
the ASP learning task, but we have shown that by restrict-
ing the language of ASP that is allowed in the grammar, the
complexity of these decision problems can be significantly
lowered. We have shown that in such special cases, a more
efficient representation of the learning task can be used.

Just as it is interesting to consider the implications of us-
ing different classes of ASP program to annotate production
rules, it is also possible to consider using other formalisms
in the production rule annotations, such as Constraint Sat-
isfaction Problems (CSP) or Satisfiability Modulo Theories
(SMT). It may be that other formalisms allow more expres-
sive languages to be captured or that the complexity of de-
cision problems for grammars annotated using other for-
malisms is lower than for ASGs. Our choice of ASP in this
paper allowed us to delegate the learning of the annotations
to an existing ASP learner.

The ASG learning task presented in this paper takes an
initial grammar as input, which allows known concepts to
be given as background knowledge, aiding the learning pro-
cess. Our assumption that the CFG is known at the beginning
means that this method is appropriate for tasks where the un-
derlying syntax of the language is known, but (some of) the
semantic constraints are unknown.

Acknowledgements
This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agree-
ment Number W911NF-16-3-0001. The views and conclu-
sions contained in this document are those of the authors and
should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Army Research Lab-
oratory, the U.S. Government, the U.K. Ministry of Defence
or the U.K. Government. The U.S. and U.K. Governments
are authorized to reproduce and distribute reprints for Gov-
ernment purposes notwithstanding any copyright notation
hereon. It was also partially supported by the Spanish Min-
istry of Economy and Competitiveness under Grant Num-
bers TIN-2016-81032-P & MDM-2015-0502.

References
Alnabulsi, H.; Islam, M. R.; and Mamun, Q. 2014. Detecting
SQL injection attacks using SNORT IDS. In Asia-Pacific World
Congress on Computer Science and Engineering, 1–7.
Angluin, D. 1987. Learning regular sets from queries and coun-
terexamples. Information and computation 75(2):87–106.

2927

Bonet, B.; Palacios, H.; and Geffner, H. 2010. Automatic deriva-
tion of finite-state machines for behavior control. In AAAI.
Corapi, D.; Russo, A.; and Lupu, E. 2010. Inductive logic program-
ming as abductive search. In LIPIcs-Leibniz International Proceed-
ings in Informatics, volume 7. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.
Drescher, C., and Walsh, T. 2011. Modelling grammar constraints
with answer set programming. In LIPIcs-Leibniz International
Proceedings in Informatics, volume 11. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.
Fredouille, D. C.; Bryant, C. H.; Jayawickreme, C. K.; Jupe, S.; and
Topp, S. 2007. An ILP refinement operator for biological grammar
learning. In Muggleton, S.; Otero, R.; and Tamaddoni-Nezhad, A.,
eds., Inductive Logic Programming, 214–228. Berlin, Heidelberg:
Springer Berlin Heidelberg.
Garey, M., and Johnson, D. 1979. Computers and Intractability: A
Guide to the Theory of NP-Completeness. Freeman, San Francisco,
CA.
Godefroid, P.; Peleg, H.; and Singh, R. 2017. Learn&fuzz: Ma-
chine learning for input fuzzing. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software En-
gineering, 50–59. IEEE Press.
Hu, Y., and De Giacomo, G. 2013. A generic technique for syn-
thesizing bounded finite-state controllers. In ICAPS.
Imada, K., and Nakamura, K. 2010. Search for minimal and semi-
minimal rule sets in incremental learning of context-free and defi-
nite clause grammars. IEICE TRANSACTIONS on Information and
Systems 93(5):1197–1204.
Javed, F.; Bryant, B. R.; Črepinšek, M.; Mernik, M.; and Sprague,
A. 2004. Context-free grammar induction using genetic program-
ming. In Proceedings of the 42nd annual Southeast regional con-
ference, 404–405. ACM.
Johnson, S. C. 1975. Yacc: Yet Another Compiler Compiler. Mur-
ray hill, New Jersey, USA: Bell Laboratories.
Kadioglu, S., and Sellmann, M. 2008. Efficient context-free gram-
mar constraints. In AAAI, 310–316.
Knuth, D. E. 1968. Semantics of context-free languages. Mathe-
matical Systems Theory 2(2):127–145.
Knuth, D. E. 1990. The genesis of attribute grammars. In Proceed-
ings of the International Conference on Attribute Grammars and
Their Applications, WAGA, 1–12. New York, NY, USA: Springer-
Verlag New York, Inc.
Law, M.; Russo, A.; and Broda, K. 2014. Inductive learning of
answer set programs. In Fermé, E., and Leite, J., eds., Proceed-
ings of the Fourteenth European Conference on Logics in Artificial
Intelligence, 2014, Funchal, Madeira, Portugal, September 24-26,
2014., volume 8761 of Lecture Notes in Computer Science, 311–
325. Springer.
Law, M.; Russo, A.; and Broda, K. 2015a. The ILASP system for
learning answer set programs. https://www.doc.ic.ac.uk/∼ml1909/
ILASP.
Law, M.; Russo, A.; and Broda, K. 2015b. Learning weak con-
straints in answer set programming. Theory and Practice of Logic
Programming 15(4-5):511–525.
Law, M.; Russo, A.; and Broda, K. 2016. Iterative learning of
answer set programs from context dependent examples. Theory
and Practice of Logic Programming 16(5-6):834–848.
Law, M.; Russo, A.; and Broda, K. 2018. The complexity and
generality of learning answer set programs. Artificial Intelligence
259:110–146.

Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri, S.;
and Scarcello, F. 2006. The dlv system for knowledge represen-
tation and reasoning. ACM Transactions on Computational Logic
(TOCL) 7(3):499–562.
Mason, T., and Brown, D. 1990. Lex & Yacc. Sebastopol, CA,
USA: O’Reilly & Associates, Inc.
Muggleton, S.; De Raedt, L.; Poole, D.; Bratko, I.; Flach, P.; Inoue,
K.; and Srinivasan, A. 2012. ILP turns 20. Machine Learning
86(1):3–23.
Muggleton, S. H.; Lin, D.; Pahlavi, N.; and Tamaddoni-Nezhad,
A. 2014. Meta-interpretive learning: Application to grammatical
inference. Machine Learning 94(1):25–49.
Muggleton, S. 1991. Inductive logic programming. New Genera-
tion Computing 8(4):295–318.
Muggleton, S. 1995. Inverse entailment and Progol. New Genera-
tion Computing 13(3-4):245–286.
Nakamura, K., and Imada, K. 2011. Towards incremental learning
of mildly context-sensitive grammars. In Machine Learning and
Applications and Workshops, 2011 10th International Conference
on, volume 1, 223–228. IEEE.
Oates, T.; Armstrong, T.; Bonache, L. B.; and Atamas, M. 2006.
Inferring grammars for mildly context sensitive languages in
polynomial-time. In Sakakibara, Y.; Kobayashi, S.; Sato, K.;
Nishino, T.; and Tomita, E., eds., Grammatical Inference: Algo-
rithms and Applications, 137–147. Berlin, Heidelberg: Springer
Berlin Heidelberg.
Parr, T. J., and Quong, R. W. 1995. ANTLR: A predicated-LL (k)
parser generator. Software: Practice and Experience 25(7):789–
810.
Pereira, F. C. N., and Warren, D. H. D. 1980. Definite clause gram-
mars for language analysis - a survey of the formalism and a com-
parison with augmented transition networks. Artificial Intelligence
13:231–278.
Ray, O. 2009. Nonmonotonic abductive inductive learning. Jour-
nal of Applied Logic 7(3):329–340.
Sakakibara, Y. 1990. Learning context-free grammars from struc-
tural data in polynomial time. Theoretical Computer Science 76(2-
3):223–242.
Sakama, C., and Inoue, K. 2009. Brave induction: A logical frame-
work for learning from incomplete information. Machine Learning
76(1):3–35.
Segovia-Aguas, J.; Jiménez, S.; and Jonsson, A. 2016. Hierarchical
finite state controllers for generalized planning. In International
Joint Conference on Artificial Intelligence.
Sipser, M. 1997. Introduction to the Theory of Computation. PWS
Publishing.
Sutton, M.; Greene, A.; and Amini, P. 2007. Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley Professional.
Tang, L.; Tao, L.; and Chang-Shing, P. 2011. Logsig: Generat-
ing system events from raw textual logs. In Proceedings of the
20th ACM International Conference on Information and Knowl-
edge Management, 785–794. ACM.
Wyard, P. 1993. Context free grammar induction using genetic
algorithms. In Grammatical Inference: Theory, Applications and
Alternatives, IEE Colloquium on, P11–1. IET.
Yoshinaka, R. 2009. Learning mildly context-sensitive languages
with multidimensional substitutability from positive data. In In-
ternational Conference on Algorithmic Learning Theory, 278–292.
Springer.

2928

