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Department of Computer Science

University of Oxford, UK

Abstract

Querying inconsistent ontological knowledge bases is an im-
portant problem in practice, for which several inconsistency-
tolerant query answering semantics have been proposed, in-
cluding query answering relative to all repairs, relative to
the intersection of repairs, and relative to the intersection of
closed repairs. In these semantics, one assumes that the in-
put database is erroneous, and the notion of repair describes a
maximally consistent subset of the input database, where dif-
ferent notions of maximality (such as subset and cardinality
maximality) are considered. In this paper, we give a precise
picture of the computational complexity of inconsistency-
tolerant (Boolean conjunctive) query answering in a wide
range of Datalog± languages under the cardinality-based ver-
sions of the above three repair semantics.

Introduction
In many ontology-based applications in practice, such as
ontology-based data extraction from the Web, or ontology-
based integration of different data sources, it is very likely
that the data are inconsistent with the ontology, and thus
inconsistency-tolerant semantics for ontology-based query
answering are urgently needed. Among the most prominent
ontology languages are description logics (DLs) and exis-
tential rules from the context of Datalog±.

The most widely accepted semantics for querying incon-
sistent ontological knowledge bases is perhaps consistent
query answering, which was first developed for relational
databases (Arenas, Bertossi, and Chomicki 1999) and then
generalized as the ABox repair (AR) semantics for several
DLs (Lembo et al. 2010). Consistent query answering is
based on the concept of repair, which is a maximal consis-
tent subset of the input database. A fact/query is entailed
by an ontological knowledge base in consistent query an-
swering, if it is (classically) entailed by all the repairs (un-
der the ontology). Several other repair semantics for query-
ing inconsistent ontological knowledge bases have recently
been developed as alternatives to consistent query answer-
ing (Lembo et al. 2010; Bienvenu 2012; Lukasiewicz, Mar-
tinez, and Simari 2012; Bienvenu and Rosati 2013). In par-
ticular, in (Lembo et al. 2010), besides consistent query an-
swering, three other inconsistency-tolerant query answering
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semantics are proposed, including the intersection of repairs
(IAR) semantics, in which an answer is considered to be
valid, if it can be inferred from the intersection of the re-
pairs (and the ontology). The intersection of closed repairs
(ICR) (Bienvenu 2012) is another semantics, in which an an-
swer is valid, if it can be inferred from the intersection of the
closure of the repairs (and the ontology).

There are several reasons for the practical relevance of the
IAR and the ICR semantics, and thus for motivating an in-
depth analysis of their computational properties. First, they
are two natural semantics that identify “surer” answers than
consistent query answering, and so they can also be seen as
under-approximations of the latter. Investigating their com-
plexity helps to understand whether such approximations
have actually lower complexities, which is the case for dif-
ferent languages and one complexity measure considered in
this paper. Second, recent work on explanations in the con-
text of inconsistency-tolerant query answering shows that
explanations are much easier to define and compute for the
IAR semantics (Bienvenu, Bourgaux, and Goasdoué 2016).
Third, a crucial advantage of the IAR and the ICR semantics
is that their intersection of (closed) repairs can be materi-
alized, while the consistent query answering semantics ex-
ists only virtually (the intersection of (closed) repairs can be
computed offline, and then standard querying algorithms can
be employed online)—indeed, this has been used to imple-
ment the IAR semantics (Lembo et al. 2015), and for ICR, it
has been remarked in (Bienvenu and Bourgaux 2016).

The complexity of consistent query answering when
the ontology is described via one of the main DLs is
well-understood. Rosati (2011) studied the data and com-
bined complexity for a wide spectrum of DLs, while Bien-
venu (2012) identified cases for simple ontologies (within
the DL-Lite family) for which tractable data complexity re-
sults can be obtained. In (Lukasiewicz, Martinez, and Simari
2012; 2013; Lukasiewicz et al. 2015), the data and differ-
ent types of combined complexity of consistent query an-
swering have been studied for ontologies described via exis-
tential rules and negative constraints, and such investigation
has recently been extended to the IAR and ICR semantics
in (Lukasiewicz, Malizia, and Molinaro 2018a).

Alternative notions of maximality for repairs, how-
ever, such as cardinality-maximal repairs (Lopatenko and
Bertossi 2007), rather than subset-maximal ones, have been
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explored less. Bienvenu, Bourgaux, and Goasdoué (2014)
analyzed the data and the combined complexity of query an-
swering under the AR and IAR semantics over the language
DL-LiteR for different notions of maximal repairs, among
which the notion of maximum cardinality repairs.

This paper continues this line of research on cardinality-
maximal consistent query answering, and we analyze the
complexity of the above three inconsistency-tolerant query
answering semantics for a wide range of Datalog± lan-
guages and for several different complexity measures:

B We consider different popular inconsistency-tolerant se-
mantics, namely, the AR, the IAR, and the ICR semantics,
with maximum cardinality database repairs.

B We consider the most popular Datalog± languages: lin-
ear, guarded, sticky, and acyclic existential rules, along
with “weak” generalizations, as well as full (i.e., non-
existential) restrictions, and full rules in general.

B We analyze the data, fixed-program combined, bounded-
arity combined, and combined complexity.

Detailed proofs are given in a forthcoming extended paper.

Preliminaries
We now briefly recall some basics on Datalog± (Calı̀, Gott-
lob, and Lukasiewicz 2012) and the complexity classes that
we will encounter in our analysis in this paper.
General. We assume sets C, N, and V of constants, labeled
nulls, and variables, respectively. A term t is a constant, null,
or variable. We also assume a set of predicates, each with
an arity, i.e., a non-negative integer. An atom has the form
p(t1, . . . , tn), where p is an n-ary predicate, and t1, . . . , tn
are terms. Conjunctions of atoms are often identified with
the sets of their atoms. An instance I is a (possibly infinite)
set of atoms p(t), where t is a tuple of constants and nulls. A
database D is a finite instance without nulls. A homomor-
phism is a mapping h : C ∪ N ∪ V → C ∪ N ∪ V that
is the identity on C and maps N to C ∪N. A conjunctive
query (CQ) Q has the form ∃Yφ(X,Y), where φ(X,Y)
is a conjunction of atoms without nulls. The answer to Q
over an instance I , denoted Q(I), is the set of all tuples
t over C for which there is a homomorphism h such that
h(φ(X,Y)) ⊆ I and h(X)=t. A Boolean CQ (BCQ) Q is
a CQ ∃Yφ(Y), i.e., all variables are existentially quantified;
Q is true over I , denoted I |= Q, if Q(I) 6= ∅, i.e., there is a
homomorphism h with h(φ(Y)) ⊆ I .
Dependencies. A tuple-generating dependency (TGD) σ is
a first-order formula ∀X∀Yϕ(X,Y)→ ∃Z p(X,Z), where
X ∪Y ∪ Z ⊆ V, ϕ(X,Y) is a conjunction of atoms, and
p(X,Z) is an atom, all without nulls; ϕ(X,Y) is the body
of σ, denoted body(σ), while p(X,Z) is the head of σ, de-
noted head(σ). For clarity, we consider single-atom-head
TGDs; however, our results can be extended to TGDs with a
conjunction of atoms in the head. An instance I satisfies σ,
written I |= σ, if the following holds: whenever there exists
a homomorphism h such that h(ϕ(X,Y)) ⊆ I , then there
exists h′ ⊇ h|X, where h|X is the restriction of h on X,
such that h′(p(X,Z)) ∈ I . A negative constraint (NC) ν is
a first-order formula ∀Xϕ(X) → ⊥, where X ⊆ V, ϕ(X)

is a conjunction of atoms without nulls, called the body of ν,
denoted body(ν), and⊥ denotes the truth constant false . An
instance I satisfies ν, written I |= ν, if there is no homomor-
phism h such that h(ϕ(X)) ⊆ I . Given a set Σ of TGDs and
NCs, I satisfies Σ, written I |= Σ, if I satisfies each TGD
and NC of Σ. For brevity, we omit the universal quantifiers
in front of TGDs and NCs, and use the comma (instead of
∧) for conjoining body atoms. Given a class of TGDs C, we
denote by C⊥ the formalism obtained by combining C with
arbitrary NCs. Finite sets of TGDs and NCs are also called
programs, and TGDs are also called existential rules.

Knowledge Bases. A knowledge base is a pair (D,Σ),
where D is a database, and Σ is a program. For programs Σ,
ΣT and ΣNC are the subsets of Σ containing the TGDs and
NCs of Σ, respectively. The set of models of KB = (D,Σ),
denoted mods(KB), is the set of instances {I | I ⊇ D, I |=
Σ}. We say that KB is consistent, if mods(KB) 6= ∅, oth-
erwise KB is inconsistent. The answer to a CQ Q rela-
tive to KB is the set of tuples ans(Q,KB) =

⋂
{Q(I) |

I ∈ mods(KB)}. The answer to a BCQ Q is true, denoted
KB |= Q, if ans(Q,KB) 6= ∅. The decision version of
the CQ answering problem is as follows: given a knowl-
edge base KB , a CQ Q, and a tuple of constants t, decide
whether t ∈ ans(Q,KB). Since CQ answering can be re-
duced in LogSpace to BCQ answering, we focus on BCQs.
Following Vardi (1982), the combined complexity of BCQ
answering considers the database, the set of dependencies,
and the query as part of the input. The bounded-arity com-
bined (or ba-combined) complexity assumes that the arity of
the underlying schema is bounded by an integer constant.
The fixed-program combined (or fp-combined) complexity
considers the sets of TGDs and NCs as fixed; the data com-
plexity also assumes the query fixed.

Decidability Paradigms. The main (syntactic) conditions
on TGDs that guarantee the decidability of BCQ answer-
ing are guardedness (Calı̀, Gottlob, and Kifer 2013), stick-
iness (Calı̀, Gottlob, and Pieris 2012), and acyclicity, each
having a “weak” counterpart: weak guardedness (Calı̀, Got-
tlob, and Kifer 2013), weak stickiness (Calı̀, Gottlob, and
Pieris 2012), and weak acyclicity (Fagin et al. 2005).

A TGD σ is guarded, if there exists an atom in the body
that contains (or “guards”) all the body variables of σ. The
class of guarded TGDs, denoted G, is the family of all possi-
ble sets of guarded TGDs. A key subclass of guarded TGDs
are linear TGDs with just one body atom (which is a guard),
and the corresponding class is denoted L. Weakly guarded
TGDs extend guarded TGDs by requiring only “harmful”
body variables to appear in the guard, and the associated
class is denoted WG. It is easy to verify that L ⊂ G ⊂WG.

Stickiness is inherently different from guardedness, and
its central property is as follows: variables that appear more
than once in a body (i.e., join variables) are always propa-
gated (or “stick”) to the inferred atoms. A set of TGDs with
the above property is sticky, and the corresponding class
is denoted S. Weak stickiness is a relaxation of stickiness
where only “harmful” variables are taken into account. A set
of TGDs that enjoys weak stickiness is weakly sticky, and the
associated class is denoted WS. Observe that S ⊂WS.
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A set Σ of TGDs is acyclic, if its predicate graph is
acyclic, and the underlying class is denoted A. Σ is weakly
acyclic, if its dependency graph enjoys a certain acyclicity
condition, which actually guarantees the existence of a fi-
nite canonical model; the associated class is denoted WA.
Clearly, A ⊂WA. Observe also that WA ⊂WS.

Another key fragment of TGDs which deserves our atten-
tion are the so-called full TGDs, i.e., TGDs without exis-
tentially quantified variables, and the corresponding class is
denoted F. If full TGDs enjoy linearity, guardedness, stick-
iness, or acyclicity, then we obtain the classes LF, GF, SF,
and AF, respectively. Observe that F ⊂WA and F ⊂WG.

For a summary of the complexity of (classical) BCQ an-
swering over these Datalog± languages, see Table 1.
Complexity Classes. The complexity class AC0 is the class
of all decision problems that can be solved by uniform fam-
ilies of Boolean circuits of polynomial size and constant
depth. PSPACE (resp., P, EXP, 2EXP) is the class of all prob-
lems that can be decided in polynomial space (resp., polyno-
mial time, exponential time, double exponential time) on a
deterministic Turing machine. NP and NEXP are the classes
of all problems that are decidable in polynomial and ex-
ponential time on a nondeterministic Turing machine, re-
spectively, and co-NP and co-NEXP are their complementary
classes, where ‘yes’ and ‘no’ instances are interchanged.
The class ΣP

2 is the class of all problems that can be decided
in nondeterministic polynomial time using an NP oracle,
and ΠP

2 is the complement of ΣP
2. The class ΘP

2 (resp., ΘP
3) is

the class of all problems that can be decided in polynomial
time by a deterministic Turing machine with either a loga-
rithmic number of calls to an NP (resp., ΣP

2) oracle, or (equiv-
alently) a constant number of rounds of polynomially many
parallel calls to an NP (resp., ΣP

2) oracle. PNEXP is the class of
all problems that are decidable in deterministic polynomial
time using a NEXP oracle. The above complexity classes and
their inclusion relationships (which are all currently believed
to be strict) are: AC0 ⊆ P ⊆ NP, co-NP ⊆ ΘP

2 ⊆ ΣP
2,Π

P
2 ⊆

ΘP
3 ⊆ PSPACE ⊆ EXP ⊆ NEXP, co-NEXP ⊆ PNEXP ⊆ 2EXP.

Inconsistency-Tolerant Semantics
In classical BCQ answering, for an inconsistent knowledge
base KB (i.e., mods(KB) = ∅), every query is entailed, as
everything follows from a contradiction. Clearly, the an-
swers obtained in such cases are not meaningful.

Several inconsistency-tolerant semantics have been pro-
posed. We now recall three prominent ones for ontology-
based query answering, namely, the ABox repair (AR),
the intersection of repairs (IAR), and the intersection of
closed repairs (ICR) semantics (Lembo et al. 2010; Bien-
venu 2012); all three are based on the notion of repair, which
is a maximal consistent subset of the given database. Be-
low we define these inconsistency-tolerant semantics for a
generic concept of repair maximality.

Given a knowledge base KB = (D,Σ), a selection D′ of
KB is a database such thatD′ ⊆ D. A selectionD′ of KB is
consistent, if mods((D′,Σ)) 6= ∅. Consistent selections of
knowledge bases can be ordered according to some criteria
to select the more desired ones. Given a preorder 4 over a set
S of databases, for two elements D′ and D′′ ∈ S, D′ ≺ D′′

denotes that D′ 4 D′′ and D′′ 64 D′. A database D ∈ S is
4-maximal in S iff there is no D′ ∈ S such that D ≺ D′.
Definition 1. A 4-repair of a knowledge base KB is a con-
sistent selection of KB that is 4-maximal in the set of all
the consistent selections of KB .

We now define the three different inconsistency-tolerant
semantics for BCQ answering. In what follows, Rep4(KB)
denotes the set of all 4-repairs of a knowledge base KB .
For a knowledge base KB = (D,Σ), the closure Cn(KB)
of KB is the set of all ground atoms, built from constants
in D and Σ, entailed by D and the TGDs of Σ.

Definition 2. Let KB be a knowledge base, letQ be a BCQ,
and let 4 be an order over the consistent selections of KB .

• KB entails Q under the ABox repair semantics and order
4 (4-AR), denoted by KB |=4-AR Q, if, for all D′ ∈
Rep4(KB), (D′,Σ) |= Q.

• KB entails Q under the intersection of repairs semantics
and order 4 (4-IAR), denoted by KB |=4-IAR Q, if
(D∗,Σ) |= Q, where D∗ =

⋂
{D′ | D′ ∈ Rep4(KB)}.

• KB entails Q under the intersection of closed repairs se-
mantics and order 4 (4-ICR), denoted by KB |=4-ICR

Q, if (DI ,Σ) |= Q, where DI =
⋂
{Cn((D′,Σ)) | D′ ∈

Rep4(KB)}.
Different orders over the set of consistent selections give

rise to different inconsistency-tolerant semantics for BCQ
answering, because they select different repairs.

Inclusion-maximal repairs have often been considered in
the literature. An interesting class of repairs are those se-
lected by the cardinality order ‘≤’ (Bienvenu, Bourgaux,
and Goasdoué 2014). In this order, consistent selections of
larger cardinality are preferred over ones of smaller cardi-
nality (without looking at inclusion-wise relationships be-
tween the selections: only the cardinality counts). Hence, a
≤-repair of a knowledge base KB is a consistent selection
of KB of maximum cardinality. In this paper, we consider
only the ‘≤’ order, therefore, we often call≤-repairs simply
repairs, and by Rep(KB), we mean Rep≤(KB).

Cardinality-maximal repairs are very appropriate when
it is known (or believed) that all the facts in the database
have the same (possibly small) probability of being erro-
neous. In these cases, larger repairs are preferred, because
fewer facts are dropped (Bienvenu, Bourgaux, and Goasdoué
2014). When facts in the database have different likelihoods
of being erroneous, then other concepts of repairs can also
be taken into consideration (Bienvenu 2012).

It can be shown that the following semantic relationships
hold between the above three different semantics.

Proposition 3. Let KB be a knowledge base, let Q a BCQ.
(KB |=≤-IARQ)⇒ (KB |=≤-ICRQ)⇒ (KB |=≤-ARQ).

Overview of Complexity Results
We give a precise picture of the complexity of BCQ an-
swering from existential rules under the ≤-AR, ≤-IAR,
and ≤-ICR inconsistency-tolerant semantics. Our results
are summarized in Tables 2 and 3, and they range from ΘP

2-
completeness to 2EXP-completeness.
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Data fp-comb. ba-comb. Comb.

L⊥, LF⊥, AF⊥ in AC0 NP NP PSPACE
G⊥ P NP EXP 2EXP
WG⊥ EXP EXP EXP 2EXP

S⊥, SF⊥ in AC0 NP NP EXP
F⊥, GF⊥ P NP NP EXP

A⊥ in AC0 NP NEXP NEXP
WS⊥, WA⊥ P NP 2EXP 2EXP

Table 1: Complexity of BCQ answering (Lukasiewicz et al.
2015). All non-“in” entries are completeness results.

Data fp-comb. ba-comb. Comb.

L⊥, LF⊥, AF⊥ ΘP
2

+* ΠP
2 ΘP

3 PSPACE
G⊥ ΘP

2
+* ΠP

2 EXP 2EXP
WG⊥ EXP EXP EXP 2EXP

S⊥, SF⊥ ΘP
2

+* ΠP
2 ΘP

3 EXP
F⊥, GF⊥ ΘP

2
+ ΠP

2 ΘP
3 EXP

A⊥ ΘP
2

+ ΠP
2 PNEXP PNEXP

WS⊥, WA⊥ ΘP
2

+* ΠP
2 2EXP 2EXP

Table 2: Complexity of ≤-AR BCQ answering. All entries
are completeness results. +Different proof of membership in
(Bienvenu, Bourgaux, and Goasdoué 2014). *Different proof
of hardness for L⊥, G⊥, S⊥, and WS⊥ in (Bienvenu, Bour-
gaux, and Goasdoué 2014).

Compared to (Lukasiewicz, Malizia, and Molinaro 2018a;
2018b), where subset maximality is considered for the
inconsistency-tolerant semantics, we observe that using the
maximum cardinality comes at a cost in several cases. This
increased cost is due to the computational effort needed to
evaluate the size of the largest consistent selections of the
database. This extra effort does not always influence the
overall complexity of the problem. Indeed, in some circum-
stances it is masked out by the complexity of classical BCQ
answering or the complexity associated with the evaluation
of the inconsistency-tolerant semantics.

In detail,≤-AR-BCQ answering (see Table 2) is complete
for ΘP

2 (resp., ΠP
2) in the data (resp., fp-combined) com-

plexity for all languages of existential rules, but for WG⊥,
where it is EXP-complete. In the data complexity, except for
the WG⊥ case, for which already classical BCQ answering
over consistent ontologies is EXP-complete, the complex-
ity of computing the size of the maximal-cardinality repairs
dominates the complexity of the task. For the fp-combined
complexity case, on the other hand, there is no increase in
the complexity compared to the case of AR semantics with
subset-maximal repairs (see Lukasiewicz et al. 2015).

The ba-combined complexity for ≤-AR-BCQ answering
is among ΘP

3 (for L⊥, LF⊥, AF⊥, S⊥, SF⊥, F⊥, and GF⊥),
EXP (for G⊥ and WG⊥), PNEXP (for A⊥), and 2EXP (for WS⊥
and WA⊥). If we compare these results with those for the
subset-maximal AR semantics, we observe that there is an
increase in the complexity only for the languages whose
classical reasoning in the ba-combined complexity is in NP

Data fp-comb. ba-comb. Comb.

L⊥, LF⊥, AF⊥ ΘP
2

+* ΘP
2 ΘP

3 PSPACE
G⊥ ΘP

2
+* ΘP

2 EXP 2EXP
WG⊥ EXP EXP EXP 2EXP

S⊥, SF⊥ ΘP
2

+* ΘP
2 ΘP

3 EXP
F⊥, GF⊥ ΘP

2
+ ΘP

2 ΘP
3 EXP

A⊥ ΘP
2

+ ΘP
2 PNEXP PNEXP

WS⊥, WA⊥ ΘP
2

+* ΘP
2 2EXP 2EXP

Table 3: Complexity of ≤-IAR and ≤-ICR BCQ answer-
ing. All entries are completeness results. +Different proof
of membership for IAR in (Bienvenu, Bourgaux, and Goas-
doué 2014). *Different proof of hardness for IAR for L⊥,
G⊥, S⊥, and WS⊥ in (Bienvenu, Bourgaux, and Goasdoué
2014).

(see, Lukasiewicz et al. 2015). Intuitively, in order to com-
pute the size of the largest consistent selections, we need to
perform a binary search asking an oracle to guess a selection
of convenient size and check that it is consistent. This re-
quires a ΣP

2 oracle, from which it follows that the overall pro-
cedure requires a computation in ΘP

3. The combined com-
plexity of≤-AR-BCQ answering is among PSPACE (for L⊥,
LF⊥, and AF⊥), EXP (for S⊥, SF⊥, F⊥, and GF⊥), PNEXP (for
A⊥), and 2EXP (for G⊥, WS⊥, WA⊥, and WG⊥). In these
cases, we do not observe any increase in the complexity of
the tasks, compared with the complexity AR semantics with
subset-maximal repairs (see, Lukasiewicz et al. 2015).

The complexity of ≤-IAR- and ≤-ICR-BCQ answering
(see Table 3) slightly drops to ΘP

2 in the fp-combined com-
plexity for all languages, but WG⊥. As we can see, the com-
plexity of IAR- and ICR-BCQ answering is the same when
cardinality-maximal repairs are considered, because either
the complexity of classical reasoning or the complexity of
computing the size of the biggest repairs dominate the com-
plexity of the task. For this reason, since there is no extra
computational cost for using ICR instead of IAR, in this
setting ICR has an advantage over IAR given that ICR is
finer approximation of AR than IAR.

Derivation of Complexity Results
In this section, we first derive the membership results and
then the hardness results of Tables 2 and 3.

Membership Results
The following theorem shows that if BCQ answering from
knowledge bases over some Datalog± language L is in C
in the data (resp., ba-combined and combined) complexity,
then ≤-AR-BCQ and ≤-IAR-BCQ answering from knowl-
edge bases overL can be done in polynomial time with loga-
rithmically many calls to an oracle for NPC in the data (resp.,
ba-combined and combined) complexity. This result holds
for ≤-ICR-BCQ answering as well, but only in the data and
ba-combined complexity. For the combined complexity case
of ≤-ICR-BCQ answering, we will need a different proof.
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Theorem 4. LetL be a Datalog± language. If BCQ answer-
ing from knowledge bases over L is in C in the data / ba-
combined / combined complexity (resp., data / ba-combined
complexity), then ≤-AR and ≤-IAR (resp., ≤-ICR) BCQ
answering from knowledge bases over L is in P with an ora-
cle for NPC[O(logn)] in the data / ba-combined / combined
complexity (resp., data / ba-combined complexity).

Proof. Let KB = (D,Σ) be a knowledge base over L, and
let q be a query. First, we compute the size max of the largest
consistent selections of KB . This can be done by a machine
in polynomial time calling, logarithmically many times, an
oracle in NPC. Indeed, we can perform a binary search in the
range [0, |D|] by asking the oracle whether there is a consis-
tent selection of size at least k. The oracle has to guess a
subset of size k of the database, and then check whether the
guess is consistent. Since we are assuming that classical rea-
soning in fragmentL is in C, the oracle can guess a selection
in NP and then check its consistency in C.

Then, we exploit the NPC oracle to decide whether the
BCQ q is entailed under the considered semantics. In par-
ticular, we ask the oracle whether the query is not entailed.
The way in which the oracle finds the answer depends on the
specific semantics, AR, IAR, or ICR, considered.

AR: The oracle guesses a consistent selection D′ of size
max , and checks that (D′,Σ) 6|= q.

IAR: The oracle guesses a database D? ⊆ D and checks
that: (1) (D?, Σ) 6|= q, and (2) there exist repairs D′α with
α 6∈ D′α, one for each α ∈ D \ D? (witnessing that the
intersection of the repairs is a subset of D?). Point (2) is
checked via additional guesses of the various D′α.

ICR: The oracle verifies the existence of a subset D′ of
Cn(KB) (the size of Cn(KB) is polynomial in the input,
because the program has, in the worst case, bounded arity)
such that: (i) for each atom α ∈ (Cn(KB) \D′), there is
a repair D′α such that α /∈ Cn(D′α); (ii) (D′,Σ) 6|= q.
The oracle can do this by first guessing such a set D′
along with the witnesses D′α, and second checking that
the various D′α are consistent, their size is max , and
α /∈ Cn(D′α), and that (D′,Σ) 6|= q. The existence of
the various repairs D′α with the properties above reported
guarantees that DI ⊆ D′, and (D′,Σ) 6|= q implies
(DI ,Σ) 6|= q by monotonicity.

As mentioned above, to characterize the combined com-
plexity of ≤-ICR-BCQ answering, we need a different
proof. Indeed, in a combined complexity scenario, the size
of Cn(KB) is exponential in the size of the input, and the
D′ ⊆ Cn(KB) needed to be guessed in the ICR case of the
proof above could be too big for an NP machine.

The next result proves all the upper bounds for ≤-ICR
BCQ answering in Table 3 for the combined complexity.

Theorem 5. ≤-ICR BCQ answering from knowledge bases
over Datalog± languages L in the combined complexity is
in the complexity classes shown in Table 3.

We next analyze the fp-combined complexity and show
that if BCQ answering from knowledge bases over some
Datalog± language L is in D (resp., C) in the data (resp.,

fp-combined) complexity, then≤-AR,≤-IAR, and≤-ICR,
BCQ answering from knowledge bases over L can be done
in polynomial time with logarithmically many calls to an or-
acle for NPD followed by a computation in co-NPC (for the
≤-AR) or a computation in C (for the ≤-IAR and ≤-ICR).
This is shown in a similar way as Theorem 4.
Theorem 6. If BCQ answering from knowledge bases over
a Datalog± language L is in D in the data complexity
and in C in the fp-combined complexity, then ≤-AR (resp.,
≤-IAR and≤-ICR) BCQ answering from knowledge bases
over L is possible by a computation in P with an oracle
for NPD[O(logn)], followed by a computation in co-NPC

(resp., C), in the fp-combined complexity.
As a corollary of the theorems above, we obtain all the

upper bounds for ≤-AR BCQ answering in Table 2, and all
the upper bounds for ≤-IAR and ≤-ICR BCQ answering
in Table 3. In particular, the ΘP

2 membership of ≤-AR and
≤-IAR BCQ answering in the data complexity for the lan-
guages whose BCQ reasoning is feasible in polynomial time
in the data complexity was already known (Bienvenu, Bour-
gaux, and Goasdoué 2014). The other results are new.
Corollary 7. ≤-AR (resp., ≤-IAR and ≤-ICR) BCQ an-
swering from knowledge bases over Datalog± languages L
in Table 2 (resp., Table 3) in the data, fp-combined, ba-
combined, and combined complexity belongs to the complex-
ity classes shown in Table 2 (resp., Table 3).

Hardness Results
The hardness results not explicitly proven follows from the
hardness of classical reasoning over consistent ontologies.

We now show that ≤-AR, ≤-IAR, and ≤-ICR BCQ an-
swering are ΘP

2-hard in the data complexity for all the Data-
log± languages considered.
Theorem 8. For every C ∈ {AR, IAR, ICR}, ≤-C BCQ
answering from knowledge bases over LF⊥, AF⊥, and SF⊥
(and hence also for L⊥, A⊥, S⊥, G⊥, GF⊥, F⊥, WS⊥, and
WA⊥) is ΘP

2-hard in the data complexity.

Proof. We use a reduction from the ΘP
2-complete problem

INALLMAXIS (Lopatenko and Bertossi 2007; 2016): given
a graph G and a vertex w, decide whether w belongs to all
the independent sets of G of maximum size.

Let (G,w) be an instance of INALLMAXIS, where G =
(V,E) and w ∈ V , and n = |V |. From (G,w) we build the
knowledge base KBMaxIS = (DMaxIS ,ΣMaxIS ) and the
query qMaxIS as follows.

For each vertex v ∈ V , there is a fact In(v) in DMaxIS .
For each edge (v1, v2) ∈ E, there are n facts Edge(v1, v2, i)
in DMaxIS , with 1 ≤ i ≤ n. DMaxIS contains also the
fact distinguished(w). The only dependency in ΣMaxIS is
the NC In(X) ∧ In(Y ) ∧ Edge(X,Y, Z) → ⊥. Finally,
qMaxIS = ∃X(In(X) ∧ distinguished(X)). Observe that
ΣMaxIS is vacuously linear, sticky, acyclic, and full.

We can show that (G,w) is a ‘yes’-instance of INALL-
MAXIS iff KBMaxIS entails qMaxIS under any ≤-C , for
C ∈{AR, IAR, ICR}. Intuitively, repairs contain all facts
Edge(v1, v2, i), distinguished(w) and a set of facts In(v)
corresponding to a maximum independent set of G.
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For ≤-AR BCQ answering, we show its ΠP
2-hard in the

fp-combined complexity, for all the Datalog± languages
considered. This follows from a reduction in (Lukasiewicz
et al. 2015), which also applies in the case of maximum car-
dinality. Note that also a simplification of the reduction used
here to prove Theorem 10 can be used to show this result.

Theorem 9. ≤-AR BCQ answering from knowledge bases
over LF⊥, AF⊥, and SF⊥ (and hence also for L⊥, A⊥,
S⊥, G⊥, GF⊥, F⊥, WS⊥, and WA⊥) is ΠP

2-hard in the fp-
combined complexity.

We now show that, for any C ∈ {AR, IAR, ICR}, ≤-C
BCQ answering is ΘP

3-hard in the ba-combined complexity,
already for the simplest languages here considered.

Theorem 10. For every C ∈ {AR, IAR, ICR}, ≤-C BCQ
answering from knowledge bases over LF⊥, AF⊥, and SF⊥
(and hence also for L⊥, S⊥, GF⊥, and F⊥) is ΘP

3-hard in the
ba-combined complexity.

Proof sketch. We prove the statement via a reduction from
the ΘP

3-complete problem COMP-VALID2, which is a gener-
alization of the problem COMP-SAT (Lukasiewicz and Mal-
izia 2016): given two sets A and B of quantified Boolean
formulas characterized by 2 alternating quantifiers, decide
whether the number of valid formulas inA is greater than the
number of valid formulas in B. The ΘP

3-hardness of COMP-
VALID2 holds even if the following restrictions are imposed
over the instances (Lukasiewicz and Malizia 2017):

• |A| = |B|;
• all formulas of A and B are of the kind (∀X)(∃Y )φ(X,
Y ), where φ(X,Y ) is a non-quantified 3CNF formula;

• all formulas of A and B have the same number of clauses
in the non-quantified part;

• all formulas of A and B have the same sets of universally
quantified variables and existentially quantified variables;

• sets A = {Φ1, . . . ,Φv} and B = {Ψ1, . . . ,Ψv} are such
that Φu+1 (resp., Ψu+1) being valid implies Φu (resp.,
Ψu) being valid as well, for any u (intuitively, all valid
formulas have the lowest indices in sets A and B).

From the last assumption it follows that (A,B) is a ‘yes’-
instance of COMP-VALID2 iff there is an index u such that
Φu ∈ A is valid and Ψu ∈ B is not valid.

Given the restrictions listed above, we can also assume,
without simplifying the computational complexity of the
problem, that all formulas of A and B are NQBF2,∀ ones
(Greco et al. 2009; 2011; Schaefer 2001). NQBF2,∀ for-
mulas are quantified Boolean formulas of the kind Φ =
(∀X)(∃Y )φ(X,Y ), in which X = {x1, . . . , xn} and Y =
{y1, . . . , yr} are two disjoint sets of Boolean variables, and
φ(X,Y ) = ci(1) ∧ ci(1) ∧ · · · ∧ ci(n) ∧ ci(n) ∧ c1 ∧ · · · ∧ cm
is a 3CNF formula, where each universally quantified vari-
able xk ∈ X occurs only in the two clauses ci(k) =
(xk ∨ ¬yk) and ci(k) = (¬xk ∨ yk)—intuitively, each vari-
able xk enforces the truth value of a corresponding variable
yk, which thus plays its role in the formula φ(X,Y ). In-
deed, a formula (∀X)(∃Y )c1 ∧ · · · ∧ cm can be replaced by
(∀X)(∃YX)(∃Y )ci(1)∧ci(1)∧· · ·∧ci(n)∧ci(n)∧c′1∧· · ·∧c′m,

where X = {x1, . . . , xn}, YX = {yx1 , . . . , yxn} and each c′i
is obtained by replacing every xj ∈ X by yxj ∈ YX in ci. We
will refer to the clauses c1, . . . , cm of an NQBF2,∀ formula
as the main clauses of the formula.

Let I = (A,B) be an instance of COMP-VALID2 sat-
isfying all the restrictions above. We denote by X and Y
the sets of the universally and existentially quantified vari-
ables, respectively. From I, we build the knowledge base
KBCV (I) = (DCV ,ΣCV ) and query qCV (I) as follows.
In what follows, the first two arguments of each fact ofDCV

specify the identifier of the set (i.e., whether the formula be-
longs to setA orB) and the numeric identifier of the formula
in the set, respectively. In this way, we can discriminate facts
referring to the different formulas in the two sets.

For each variable xi ∈ X , in DCV there are facts:

Val(s, u, xi, t , k) Val(s, u, xi, f , k)

where s ∈ {a, b} is a constant representing setsA andB, re-
spectively, u ∈ {1, . . . , v} is a numeric constant represent-
ing the index of the formula in the sets, xi is a constant rep-
resenting the respective variable, t and f are constants rep-
resenting Boolean values true and false , respectively, and
k ∈ {1, 2, 3} is a numeric constant (allowing us to have
three copies of the facts).

There are facts DCV that will be used to impose the con-
sistency of the assignments to the literals:

SimLit(s, u, t , t , k) OppLit(s, u, t , f , k)

SimLit(s, u, f , f , k) OppLit(s, u, f , t , k),

where s ∈ {a, b}, u ∈ {1, . . . , v}, t , f , and k ∈ {1, 2, 3},
are constants with the same meaning as above.

There are facts inDCV that will be used to select possible
ways of satisfying clauses in the formulas:

ClSat(s, u, f , t , t , k) ClSat(s, u, t , t , t , k),

ClSat(s, u, f , t , f , k) ClSat(s, u, t , t , f , k)

ClSat(s, u, f , f , t , k) ClSat(s, u, t , f , t , k)

ClSat(s, u, t , f , f , k)

where s ∈ {a, b}, u ∈ {1, . . . , v}, t , f , and k ∈ {1, 2, 3},
are constants with the same meaning as above.

SimLit , OppLit , and ClSat , are the structural facts, and
we denote by DSt

CV the sets of structural facts of DCV .
Finally, DCV also contains facts that will be used to sig-

nal the validity or the non-validity of the formulas:

NonValid(s, u, k) Valid(s, u),

where s ∈ {a, b}, u ∈ {1, . . . , v}, and k ∈ {1, 2}, are con-
stants with the same meaning as above. Note that we have
two copies for facts NonValid , and one copy for facts Valid .

In the program ΣCV , there is no TGD, and there are the
following NCs. For notational convenience, in the NCs be-
low, we will use the underscore ‘ ’ as a placeholder for a
fresh variable not appearing anywhere else in the NC.

The first negative constraint is

Val(S,U,X, t , ),Val(S,U,X, f , )→ ⊥.
Next, for each formula in sets A and B, there is an NC.

This NC is used to check the satisfiability of a formula once
an assignment for the variables in X has been provided.

2967



For simplicity in the exposition, let us assume that we are
considering the formula Φ1 = (∀X)(∃Y )φ1(X,Y ) belong-
ing to set A. The following construction for the NC can be
generalized to any formula of A or B. Since this NC is intri-
cate, we look at its various constituent pieces.

A first piece of the NC checks that at least one of the
copies of the structural facts is in the selection:

Config(a, 1) ≡
∧

p(a,1,c, )∈DSt
CV

p(a, 1, c, ).

By using a fresh variable as the last argument of all the
predicates in Config , the presence of just one copy of each
structural fact is enough to support the activation of Config .

A second piece of the NC “reads” the assignment on the
variables in X encoded in the selection of the database:

AssignX (a, 1) ≡
n∧
i=1

Val(a, 1, xi, Ti, ).

Below we use the following notation: lj,k is the kth literal
in the jth main clause, cj , and vj,k is the variable of lj,k.

A third piece of the NC aims at “copying” the assignment
on the variables in X onto the associated variables in Y :

Copy(a, 1) ≡
n∧
i=1

SimLit(a, 1, Ti, Tj,k, ),

where Tj,k is a variable for the Boolean value of the literal
lj,k for which vj,k = yi in φ1(X,Y ). Observe that, in order
for Copy to work properly, each variable yi must appear as
a positive literal in one of the main clauses of φ1(X,Y ) at
least once. This can be assumed without loss of generality,
because if yi always appears as a negative literal in all the
main clauses of φ1(X,Y ), then we can replace all the oc-
currences of the negative literal ¬yi with the positive literal
yi without altering the satisfiability properties of φ1(X,Y ).

A fourth piece of the NC forces that the facts selected to
simulate the assignment on the variables in Y are consistent.
In the notation below, `j,k ∼ `j′,k′ means that literals `j,k
and `j′,k′ are both positive or negative, while `j,k 6∼ `j′,k′
means that one literal is positive and the other is negative.

ConsistY (a, 1) ≡
∧

∀(`j,k,`j′,k′ )
s.t. vj,k=vj′,k′∧
`j,k∼`j′,k′

SimLit(a, 1, Tj,k, Tj′,k′ , )

∧
∀(`j,k,`j′,k′ )

s.t. vj,k=vj′,k′∧
`j,k 6∼`j′,k′

OppLit(a, 1, Tj,k, Tj′,k′ , ),

where Tj,k is a variable with the same meaning as above.
The last piece of the NC checks φ1(X,Y )’s satisfiability:

Satisfied(a, 1) ≡
m∧
j=1

ClSat(a, 1, Tj,1, Tj,2, Tj,3, ),

these predicates are only for the main clauses of φ1(X,Y ).

To conclude, the NC associated with Φ1 ∈ A is:

Config(a, 1),AssignX (a, 1),Copy(a, 1),

ConsistY (a, 1),Satisfied(a, 1),NonValid(a, 1, )→⊥.

The last NC is: NonValid(S,U, ),Valid(S,U)→ ⊥.
The query is:

qCV (I) = (∃U)(Valid(a, U),NonValid(b, U, )).

KBCV (I) has no TGDs, and bounded arity predicates.
It can be shown that I is a ‘yes’-instance of COMP-

VALID2 iff KBCV (I) entails qCV (I) under ≤-C seman-
tics, for any C ∈{AR, IAR, ICR}.

The following result shows that ≤-AR-BCQ ≤-IAR-
BCQ, and ≤-ICR-BCQ answering for A⊥ are PNEXP-hard in
the ba-combined complexity, proving all PNEXP-hardness re-
sults in Tables 2 and 3, including those for the more general
combined complexity.

Theorem 11. For any C ∈ {AR, IAR, ICR}, ≤-C BCQ
answering for A⊥ are PNEXP-hard in the ba-combined and
combined complexity.

Proof sketch. Intuitively, the reduction for the PNEXP-hard-
ness proof in (Eiter, Lukasiewicz, and Predoiu 2016) for
⊆-AR-BCQ answering for A⊥ in the ba-combined com-
plexity is already a reduction for ≤-AR-BCQ answering, as
maximal-cardinality consistent database subsets there coin-
cide with maximal-subset consistent database subsets. Fur-
thermore, since the reduction uses a ground atomic query,
this also shows the PNEXP-hardness of ≤-ICR-BCQ an-
swering for A⊥, as ≤-ICR-BCQ answering coincides with
≤-AR-BCQ answering for ground queries. Finally, the re-
duction for the PNEXP-hardness proof in (Eiter, Lukasiewicz,
and Predoiu 2016) for ⊆-AR-BCQ answering for A⊥ in
the ba-combined complexity is turned into a PNEXP-hardness
proof for ≤-IAR-BCQ answering in this case. There, one
encodes initial tiling assignments v1(Xi), . . . , vn(Xn) and
has a ground atomic query q, which we now also include
in the database along with a fresh ground atom nq and the
NC v1(Xi) ∧ . . . ∧ vn(Xn) ∧ q ∧ nq → ⊥. This intuitively
“forces” the atom q into the database.

The ΘP
2-hardness in the fp-combined complexity of

≤-IAR-BCQ and ≤-ICR-BCQ answering over all the lan-
guages considered follows from the ΘP

2-hardness in the data
complexity of ≤-IAR-BCQ answering.

Theorem 12. ≤-IAR and ≤-ICR BCQ answering is ΘP
2-

hard in the fp-combined complexity for L⊥, LF⊥, A⊥, AF⊥,
S⊥, SF⊥, G⊥, GF⊥, F⊥, WS⊥, and WA⊥ knowledge bases.

Summary and Outlook
We have given a precise picture of the complexity of
BCQ answering under different cardinality-maximal incon-
sistency-tolerant semantics, namely, the ABox repair, the in-
tersection of repairs (IAR), and the intersection of closed
repairs (ICR) semantics, for the most popular Datalog± lan-
guages and complexity measures. Note that these complex-
ity results can now also be used to derive further complexity
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results for other Datalog± languages. For example, for shy
Datalog± (Leone et al. 2012), by the results of this paper,
it is immediate that BCQ answering is complete for ΘP

2 and
EXP in the data and combined complexity, respectively.

Future research lines include considering other classes
of existential rules and defining other semantics for incon-
sistency-tolerant ontological query answering. In particular,
it would be interesting to explore whether there are data-
tractable and/or even first-order rewritable other such se-
mantics. Furthermore, a more fine-grained way to analyze
the complexity of query answering would be a non-uniform
approach, looking at the complexity of a single ontology or
a single ontology-mediated query (see, e.g., (Bienvenu et al.
2014; Koutris and Suciu 2014; Hernich et al. 2017)).
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