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Abstract

In the absence of prior knowledge, ordinal embedding meth-
ods obtain new representation for items in a low-dimensional
Euclidean space via a set of quadruple-wise comparisons.
These ordinal comparisons often come from human annota-
tors, and sufficient comparisons induce the success of clas-
sical approaches. However, collecting a large number of la-
beled data is known as a hard task, and most of the ex-
isting work pay little attention to the generalization abil-
ity with insufficient samples. Meanwhile, recent progress in
large margin theory discloses that rather than just maximiz-
ing the minimum margin, both the margin mean and variance,
which characterize the margin distribution, are more crucial
to the overall generalization performance. To address the is-
sue of insufficient training samples, we propose a margin dis-
tribution learning paradigm for ordinal embedding, entitled
Distributional Margin based Ordinal Embedding (DMOE).
Precisely, we first define the margin for ordinal embedding
problem. Secondly, we formulate a concise objective func-
tion which avoids maximizing margin mean and minimiz-
ing margin variance directly but exhibits the similar effect.
Moreover, an Augmented Lagrange Multiplier based algo-
rithm is customized to seek the optimal solution of DMOE
effectively. Experimental studies on both simulated and real-
world datasets are provided to show the effectiveness of the
proposed algorithm.

The problem of analyzing a set of n objects given simi-
larity information is an inherent part in a broad variety of
tasks in artificial intelligence (Heikinheimo and Ukkonen
2013; Wilber, Kwak, and Belongie 2014), machine learn-
ing (Jamieson and Nowak 2011; Kleindessner and Luxburg
2014; Arias-Castro 2017; Kleindessner and von Luxburg
2017), information retrieval (Liu et al. 2016), data mining
(Le and Lauw 2016) and computer vision (Wilber et al.
2015). Many algorithms are based on the assumption that
‘similar’ inputs should generate ‘close’ outputs. In a numer-
ical setting of embedding, a similarity function (or, equiva-
lently, a dissimilarity function) quantifies how ‘similar’ ob-
jects are to others. The required input is the distance or simi-
larity matrix of items. We calculate a set of embedded points
which aims to preserve such similarities as well as possible.
However, in recent years a whole new branch of the liter-
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ature has emerged, which is the comparison-based embed-
ding. Instead of evaluating similarity directly, we collect the
similarity comparisons as follows:

“Is the similarity between object i and j larger than the
similarity between l and k?”

The corresponding problem is ordinal embedding. These
two types of supervision information, numerical similari-
ties and relative comparisons, are all generated by human
beings. Nevertheless, the latter one provides similarity esti-
mates on a relative scale instead of the absolute scale. The
comparison-based setting is a special case of the observation
that humans are better at comparing two stimuli than at iden-
tifying a single one (Stewart, Brown, and Chater 2005). Con-
sequently, the relative comparison is a more reliable form for
incorporating human knowledge with artificial intelligence
tasks.

The ordinal embedding problem was firstly studied by
(Shepard 1962a; 1962b; Kruskal 1964a; 1964b) in the psy-
chometric society. In recent years, it has drawn a lot of at-
tention (Schultz and Joachims 2003; Agarwal et al. 2007;
Tamuz et al. 2011; van der Maaten and Weinberger 2012;
Terada and Luxburg 2014; Amid and Ukkonen 2015; Heim
et al. 2015; Jain, Jamieson, and Nowak 2016; Ma et al.
2018). One class of these typical methods is margin-based
ordinal embedding which solves the problem under the clas-
sification framework. The well-known Generalized Non-
Metric Multidimensional Scaling (GNMDS) (Agarwal et al.
2007) aims at finding a Gram matrix G such that the pair-
wise distances of embedded points satisfy the partial or-
der constraints. Stochastic Triplet Embedding (STE/TSTE)
(van der Maaten and Weinberger 2012) is proposed to jointly
penalize the violated constraints and reward the satisfied
constraints via logistic loss. Multi-view Triplet Embedding
(MTE) (Amid and Ukkonen 2015) decomposes the STE
objective function as different components and re-weights
them for a better explanation. The other class of ordinal
embedding methods uses the nearest neighbor graphs to
model the similarity comparisons. Structure Preserving Em-
bedding (SPE) (Shaw and Jebara 2009) and Local Ordinal
Embedding (LOE) (Terada and Luxburg 2014) embed un-
weighted nearest neighbor graphs to Euclidean spaces with
convex and non-convex objective functions. The nearest
neighbor adjacency matrix can be transformed into ordinal
constraints, but it is not a standard equipment in comparison-
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based scenarios. With this limitation, SPE and LOE are
not suitable for ordinal embedding via quadruplets or triple
comparisons.

A common issue of the existed ordinal embedding meth-
ods is the dependence of large samples of similarity com-
parisons. (Kleindessner and Luxburg 2014; Arias-Castro
2017) show the consistency of ordinal embedding prob-
lem. When the number of the objects n tends to infin-
ity, the set of embedded points always converges to the
set of original points, up to similarity transformations; the
rate of convergence depends on the Hausdorff distance be-
tween the ground-truth points. Later (Jain, Jamieson, and
Nowak 2016) show a finite sampling result of consistency.
Learning an embedding which predicts nearly as well as
the true embedding needs Θ(pn log n) samples, where p is
the embedding dimension. There is a strong condition that
the triple-wise comparisons are generated from the classical
Bradley-Terry-Luce (BTL) model (Bradley and Terry 1952;
Luce 1959) and this assumption could not be verified in the
actual applications. The theoretical results suggest that only
the adequateness of similarity comparisons can promise the
prediction result. However, the cost of eliciting relative simi-
larity comparisons from human beings would be prohibitive.
The amenable applications for collecting the relative simi-
larity comparisons, e.g., crowdsourcing and human compu-
tation, need passively waiting for participants and stimulate
them with money to get the desired information. Without
prior knowledge, the relative comparisons always involve
all objects, and the number of possible comparisons could be
Θ(n4). The spending of data collection presents ordinal em-
bedding methods with a dilemma: the insufficient samples
would limit the potential performance; the adequate sam-
ples with prospective results would be cumbersome. Unfor-
tunately, most of the traditional methods ignore that the gen-
eralization is the main concern in ordinal embedding task
with insufficient samples.

In this paper, we propose a new method, named Distri-
butional Margin based Ordinal Embedding (DMOE), which
tries to achieve strong generalization performance by opti-
mizing the margin distribution in ordinal embedding prob-
lem. Inspired by the recent results in classification (Zhang
and Zhou 2014; Yang, Lu, and Zhang 2016), we define the
margin of ordinal embedding and characterize the margin
distribution by the first- and second-order statistics, and try
to maximize the margin mean and minimize the margin vari-
ance simultaneously. For optimization, we propose an alter-
nating direction method of multipliers (ADMM) for DMOE
with semi-definite and low-rank constraints. Comprehensive
experiments on the synthetic and real-world datasets show
the superiority of our method to other ordinal embedding al-
gorithms, verifying that the margin distribution is more cru-
cial for generalization than minimum margin.

Problem Definition
Throughout the paper, scalars, vectors, matrices and sets
are denoted as lowercase letters (x), bold lower case letters
(x), bold capital letters (X) and calligraphy uppercase let-
ters (X ). xij denotes the (i, j) entry of X . [n] is the set of
{1, . . . , n}. E(·) represents the expectation.

Suppose O = {o1, . . . ,on} is a set of n objects, we
assume that a certain but unknown similarity function ζ :
O × O → R+ assigns similarity value ζij for a pair of
objects (oi,oj). With similarity function ζ, a quadruplet
q = (i, j, l, k) defines the corresponding ordinal constraint,
and these constraints lead to the ordinal embedding problem.
Definition 1 (Ordinal Constraints). Given a set of quadru-
plets

Q = {q | q = (i, j, l, k), (i, j) 6= (l, k),

i 6= j, l 6= k, i, j, l, j ∈ [n] } (1)

which is a subset of [n]4, the ordinal constraints YQ =
{yq|q ∈ Q} ⊂ {−1,+1}|Q|, implies the similarity partial
order of object pairs in O as

yq =

{
+1, if ζij < ζlk,
−1, if ζij > ζlk.

(2)

Our goal here is to obtain a set of embedded points
X which satisfy the ordinal constraints Q. Without prior
knowledge, embedding O into a Euclidean space Rp is the
most common situation which assumes that the squared Eu-
clidean distances among embedded points are inversely pro-
portional to the unknown similarity values. Specifically, a
large distance of two embedded points d2ij = ‖xi − xj‖22
means the corresponding objects oi and oj would have small
similarity value ζij . This assumption connects the squared
Euclidean distances ofX and ordinal constraintsQ. We fur-
ther give the formal definition of ordinal embedding.
Definition 2 (Ordinal Embedding). Suppose Q is a collec-
tion of quadruplets which are drawn independently and uni-
formly at random and YQ is the correspondence ordinal
constraints of object setO. LetX = {x1, . . . ,xn} ∈ Rp×n
is the desired embedding in the Euclidean space Rp where
p � n and D = {d2ij} ∈ Rn×n is the squared Euclidean
distance matrix of embedding X . Ordinal embedding is the
problem of obtaining X with ordinal constraints YQ on D
such that

sign(yq ·∆qD) > 0, ∀ yq ∈ YQ,
where

∆qD = d2ij − d2lk = ‖xi − xj‖22 − ‖xl − xk‖22.
Note that one cannot consistently estimate the underly-

ing embedding X with only ordinal supervision and with-
out direct observations. In the case when no direct measure-
ments are available, say the metric information of O as the
input, the underlying embeddingX is only identifiable up to
certain monotonic transformations, e.g., rotation, reflection,
translation, and scaling. Therefore, the sign consistency is
adopted as the goal of ordinal embedding.

By the above definition, the margin of instance (Xq, yq)
can be naturally defined as

γq = yq ·∆qD, (3)

whereXq = {xi,xj ,xl,xk}, ∀ q ∈ Q.
Despite the close relationship between D and X , ∆qD

is a nonlinear function of X and it always leads to a non-
convex optimization problem. Here we introduce the Gram
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matrix ofX and construct a margin function as a linear func-
tion of Gram matrix. Firstly, a map is established to connect
the distance matrixD and the Gram matrixG = X>X:

dij = gii − 2gij + gjj

D = diag(G) · 1> − 2G+ 1 · diag(G)>,

where diag(G) is the column vector composed of the diag-
onal entries of G and 1 is the n-dimension vector with all
entries being 1. With a little abuse of ∆q , the margin of in-
stance (Xq, yq) can be written as

γq = yq ·∆qD = yq(dij − dlk)

= yq(gii − 2gij + gjj − gll + 2glk − gkk)

:= yq ·∆qG, ∀ q ∈ Q.
(4)

By the definition of (4), ordinal embedding can be formu-
lated as the following convex optimization problem.

Definition 3 (The Margin-based Ordinal Embedding). Let
l : R+ → R be a loss function which satisfies

l(x) :

{
> 0, if x > 0,
≤ 0, if x < 0.

(5)

Given the ordinal constraints YQ, the ordinal embedding
problem can be formulated as a semi-definite programming
of Gram matrixG:

min
G

L(G,YQ)

s.t. G � 0, rank(G) ≤ p,
(6)

where L(G,YQ) = 1
|Q|
∑
q∈Q

l(γq).

We note that (6) is a semi-definite programming (SDP)
and G � 0 comes from the fact that G = X>X is a
positive semi-definite matrix. Furthermore, the desired em-
bedding dimension p is a parameter of the ordinal embed-
ding. It is well known that there exists a perfect embedding
X estimated by any label set Y on the Euclidean distances
in Rn−2, even for the noisy constraints (Borg and Groenen
2003). However, the low-dimensional setting where p � n
is the main task of this work. The smallest p for noisy ordinal
constraints YQ is a future direction which worths pursuing.
The choice of p in the experiment section depends on the
potential applications.

For example, the Generalized Non-metric Multidimen-
sional Scaling (GNMDS) follows the SVM formulation to
obtain theG by solving

min
G, ξ

1

|Q|
∑
q∈Q

ξq

s.t. γq ≥ γ0 − ξq, ξq ≥ 0, ∀ q ∈ Q,
G � 0, rank(G) ≤ p,

(7)

where γ0 is a relaxed minimum margin and ξ = {ξq}q∈Q is
the slack variable.

Distributional Margin based Embedding
The relaxed minimum margin γ0 in GNMDS indeed
characterizes the top minimum margins of all instance
{Xq, yq}q∈Q. In margin theory of classification, it is known
that maximizing the minimum margin of training examples
is not sufficient to achieve fulfilling generalization perfor-
mance (Reyzin and Schapire 2006). The margin distribution
of training examples, rather than the minimum margin, is
more crucial to generalization performance in classification
(Gao and Zhou 2013; Zhang and Zhou 2016).

Formulation
The two most usual statistics for characterizing the margin
distribution are the first- and second-order statistics, that is,
the mean and the variance of margin. According to (4), the
margin mean of training samples {(Xq, yq)} is

γ̄ =
1

|Q|
∑
q∈Q

γq (8)

and the margin variance is

γ̂ =
1

|Q|
∑
q∈Q

(γq − γ̄)2. (9)

Intuitively, we attempt to maximize the margin mean and
minimize the margin variance simultaneously in ordinal em-
bedding problem (6).

First, there is a straightforward idea to achieve our goal
as considering the margin mean (8) and the margin variance
(9) in (6) explicitly. Although (6) can adopt different loss
functions, we will focus on SVM formulation (7) because
the hinge loss is a natural form of margin. Considering the
margin distribution, the optimization problem (7) can be for-
mulated as

min
G, ξ

1

|Q|
∑
q∈Q

ξq − λ1γ̄ + λ2γ̂

s.t. γq ≥ γ0 − ξq, ξq ≥ 0, ∀ q ∈ Q,
G � 0, rank(G) ≤ p,

(10)

where λ1 and λ2 are the trade-off parameters for balancing
the impacts of γ̄ and γ̂. It is apparent that GNMDS (7) is a
degenerate case of (10) when λ1 and λ2 equal to 0. How-
ever, there exists an obvious drawback of (10) with directly
optimizing the margin distribution: tuning the parameters,
λ1 and λ2, is an obstacles of solving (10) efficiently. There-
fore, a new lightweight formulation is proposed to optimize
margin distribution implicitly.

Recall that SVM fixes the minimum margin as 1 by scal-
ing the margin with the norm of linear predictor. Following
the similar way, we can scale the margin of (Xq, yq) in or-
dinal embedding (4) and set the margin mean as a constant.
This would not result in a sub-optimal solution because the
ordinal constraints YQ can only determine an embeddingX
up to the monotonic transformations. Without loss of gener-
ality, the mean of γQ = {γq|q ∈ Q} can be set as a constant
and an equality constraint is conducted

1

|Q|
∑
q∈Q

γq = γ̃0. (11)
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On the other hand, we want to minimize the variance of γQ.
By (11), the deviation of γq to the margin mean γ̃0 is |γq −
γ̃0|, and we force the deviation to be smaller than εq ≥ 0 as

|γq − γ̃0| ≤ εq, ∀ q ∈ Q. (12)

Thus, minimizing εq is equivalent to minimize the margin
variance (9). Meanwhile, (12) implies the margin mean con-
straint (11).

Constraints like (12) in optimization problems always in-
volve two inequality, ∀ q ∈ Q,

γq ≤ γ̃0 + εq, (13a)
γq ≥ γ̃0 − εq. (13b)

Note that the soft-margin constraint

γq ≥ γ̃0 − ξq (14)

plays the same role as (13b). Replacing (13b) with (14) and
adding (13) into (10), we arrive at the following formulation

min
G, ξ, ε

1

|Q|
∑
q∈Q

ξq + ν · εq

s.t. γq ≥ γ̃0 − ξq, γq ≤ γ̃0 + εq,

ξq ≥ 0, εq ≥ 0, ∀ q ∈ Q,
G � 0, rank(G) ≤ p.

(15)

This optimization problem corresponds to dealing with such
a loss function, ∀ q ∈ Q

`γ̃0,ν(γq) = max(γ̃0 − γq, 0) + ν ·max(γq − γ̃0, 0).
(16)

The trading-off parameter ν in (15) can capture the asym-
metry between the sign correctness and the dispersion of
{γq}q∈Q. When ν = 1 and ignoring the semi-definite and
rank constraints, (15) is similar to the support vector regres-
sion (SVR) (Drucker et al. 1997). In SVR, the τ -insensitive
loss

|ζ|τ =

{
0, if |ζ| ≤ τ,

|ζ| − τ, otherwise (17)

produces two slack variables ξ and ξ∗ for each training ex-
ample to guard against outliers. As ν = 1, the loss function
(16) is explicitly the same loss function adopted by SVR as
τ = 0. In our formulation (15), ξq and εq conduct the similar
constraints like SVR but have totally different meanings. All
the training examples are used to learn the margin distribu-
tion in (15), but the optimal solution of SVR is only spanned
by the support vectors which is sparse in the training data.
Figure 1 depicts the situations of the learned margin distri-
bution graphically. Some theoretical results are provided at
the end of this section.
Theorem 1. Suppose that

Gµ = {G ∈ Sn+ : ‖G‖∞ ≤ µ, ‖G‖∗ ≤ λ}

and the true Gram matrix G∗ ∈ Gµ. Let Ĝ be a solution of
(15). With probability at least 1− δ, it holds that

R(Ĝ)−R(G∗)

≤ 4µ(1 + ν)

√
32np log n

|Q|
+ 8µ(1 + ν)

√
2 log 2

δ

|Q|
,

(18)

(a) Margin Distribution (b) Loss Function

Figure 1: (a) The Margin Distribution obtained by solving
(15). (b) The loss function (16) with different ν.

where R(·) is the risk, as for anyG ∈ Gµ

R(G) = E[`(γq)] =
1

|Q|
∑
q∈Q

pq`(γq) + (1− pq)`(−γq),

pq = P(yq = 1). Here the expectation respects to both the
uniformly random selection of the quadruplet q and its label
yq .

Theorem 1 says that |Q| must scale like Θ(pn log n)

which leads to the bounded errorR(Ĝ)−R(G∗). This result
is consistent with known finite sample bounds (Jamieson and
Nowak 2011). The details are provided in the supplementary
materials. The generalization bound of margin distribution is
a future direction.

Optimization
Consider that ∆q is a linear operator on Sn+, ∆q has its sym-
metric n × n matrix form in Sn+, the positive semi-definite
cone of n×n symmetric matrix. Given a ordinal constraints
q = (i, j, l, k),Kq is the matrix form of ∆q where

Kq =

i j l k i 1 −1 0 0
j −1 1 0 0
l 0 0 −1 1
k 0 0 1 −1

(19)

and

∆qG = 〈Kq,G〉 = tr(KqG) = vec(Kq)
>vec(G). (20)

With the trick that

γ̃0 − γq = yqyqγ̃0 − yq∆qG = yq(yqγ̃0 −∆qG), (21)

we note

eQ = [e1, . . . , e|Q|]
>

= yQ � Γ0 −


...

vec (Kq)
>

...


|Q|×n2

· vec(G)

, yQ � Γ0 −K · vec(G),

(22)

where yQ ∈ {−1,+1}|Q| = [y1, . . . , y|Q|]
>, Γ0 is a

|Q|-dimension vector with all entries are γ̃0 and � is the
Hadamard product. Furthermore, we introduce the redun-
dant variables to make the objective separable which can be
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solved by the ALM framework efficiently. The optimization
is converted into:

min
T
‖(yQ � e1)+‖pp + ‖(yQ � e2)+‖pp + λ‖G1‖∗

s.t. G = G1, G = G2, G2 � 0,

e1 = eQ, e2 = −eQ,
(23)

where T = {G,G1,G2, e1, e2} is the set of all the param-
eters to be solved and ‖ · ‖∗ is the nuclear norm which is
the convex surrogate of matrix rank constraints. It is worth
mentioning that (23) is a convex optimization problem as the
feasible set of each constraint is a convex set and the objec-
tive function is convex. The Lagrange function of (23) can
be written in the following form:

L(T ) = ‖(yQ � e1)+‖+ ‖(yQ � e2)+‖
+ Φ(z1, e1 − eQ) + Φ(z2, e2 + eQ)

+ λ‖G1‖∗ + Φ(Z3,G−G1)

+ δ(G2 � 0) + Φ(Z4,G−G2),

(24)

with
Φ(u,v) =

µ

2
‖v‖2 + 〈u,v〉, µ > 0.

‖ · ‖ is `2 norm for vector and the Frobenius norm for ma-
trix. In addition, z1, z2 ∈ R|Q| and Z3,Z4 ∈ Rn×n are
Lagrange multipliers. δ is the Dirac delta function whose
function value would be infinity if the condition is not satis-
fied. Below are the solutions to each sub-problem.
e1 sub-problem. With the variables unrelated to e1 fixed,
we have the sub-problem of e1:

e
(t+1)
1 = arg min

e1

1

µ(t)
‖(yQ � e1)+‖pp +

1

2
‖e1 − s(t)1 ‖22,

(25)
where

s
(t)
1 = e

(t)
Q −

z
(t)
1

µ(t)
.

It’s worth noting that (·)+ is a piece-wise linear function.
Thus, to seek the minimum of each element in e1, we just
need to pick the smaller value between yqe1q and 0. The so-
lution of (25) is

e
(t+1)
1 = Ω

(
S 1

µ(t)
[s

(t)
1 ]

)
+ Ω̄

(
s
(t)
1

)
, (26)

where Ω : RQ → RQ is an indicator function as [Ω(w)]q =
I(wq > 0) · wq, w ∈ RQ and Ω̄ is the complementary
support of Ω. The definition of shrinkage operator on scalars
is Sτ>0[u] = sign(u)(|u| − τ)+ and it is an element-wise
operator for vector and matrix.
e2 sub-problem. Similarly, picking out the terms related to
e2 gives the following sub-problem:

e
(t+1)
2 = arg min

e2

1

µ(t)
‖(yQ � e2)+‖pp +

1

2
‖e2 − s(t)2 ‖22,

(27)
where

s
(t)
2 = −e(t)Q −

z
(t)
2

µ(t)
,

and the solution of e2 sub-problem is just replaced the s(t)2

with s(t)1 in (26).
G sub-problem. Dropping the terms independent on G
leads to the following problem:

arg min
G

(
Φ(z

(t)
1 , e

(t)
1 − e

(t)
Q ) + Φ(z

(t)
2 , e

(t)
2 + e

(t)
Q )

+ Φ(Z
(t)
3 ,G−G(t)

1 ) + Φ(Z
(t)
4 ,G−G(t)

2 )

)
.

(28)
We have

2(K>K + I) · vec(G)(t+1)

= K>
(
e
(t)
1 +

1

µ(t)
z
(t)
1 − e

(t)
2 −

1

µ(t)
z
(t)
2

)
+ vec

(
G

(t)
1 −

1

µ(t)
Z

(t)
3 +G

(t)
2 −

1

µ(t)
Z

(t)
4

)
,

(29)

and note the right-hand side as w, we have

vec(G)(t+1) =
1

2
(K>K + I)−1w,

andG(t+1) is the matrix form of vec(G)(t+1).
G1 sub-problem. There are two terms in (24) involving
G1. The associated optimization problem ofG1 is

G
(t+1)
1 = arg min

G
λ‖G1‖∗ + Φ(Z3,G−G1), (30)

and solving this problem yields

G
(t+1)
1 = US λ

µ(t)
(Σ)V >, (31)

where
G

(t)
1 +

1

µ(t)
Z

(t)
3 = UΣV >

and Sτ (·) is the shrinkage operator.
G2 sub-problem. Considering the potential asymmetric of
G(t), we claim that G2 is the nearest symmetric positive
semi-definite matrix of G(t) in Frobenius norm (Higham
1988). By the following theorem, we show the explicit solu-
tion ofG(t)

2 .
Theorem 2. Suppose that A ∈ Rn×n, and let B = (A +

A>)/2, C = (A − A>)/2 be the symmetric and skew-
symmetric parts of A respectively. If we do polar decom-
position of B as B = UH where U is orthogonal ma-
trix UU> = I and H is positive semi-definite matrix,
XF = (B+H)/2 is the unique approximation ofA in the
Frobenius norm with positive semi-definite constraint, and
the distance ρF (A) in the Frobenius norm fromA to Sn+ is

ρ2F (A) =
∑

σi(B)<0

σ2
i (B) + ‖C‖2F ,

where σi(B), i = 1, . . . , n is the eigenvalue ofB.

Consequently, the explicit solution ofG(t)
2 is

G
(t)
2 =

1

4

(
G(t) +

1

µ
Z4 +G>(t) +

1

µ
Z>4

)

+
1

4

√(
G(t) +

1

µ
Z4

)>(
G(t) +

1

µ
Z4

)
,

(32)
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where
√
A is the square root of A ∈ Sn+, A = V SV −1

and
√
A = V S

1
2V −1, S is a diagonal matrix and S

1
2 is

element-wise square root of S.

Algorithm 1: The ADMM method for solving (23)

Input: K, yQ, γ0, ν, λ
Output:G

1 InitializeG0, µ, z(0)1 = z
(0)
2 = 0|Q|, t := 1,

Z
(0)
1 = Z

(0)
2 = 0n×n, calculate eQ via (22);

2 while Not Converged do
3 update e1, e2 by solving (25) and (27);
4 updateG by solving (28);
5 updateG1,G2 via (31) and (32);
6 calculate eQ via (22);
7 update multipliers and µ as

z
(t+1)
1 = z

(t)
1 + µ(t)(e

(t)
1 − eQ)

z
(t+1)
2 = z

(t)
2 + µ(t)(e

(t)
2 + eQ)

Z
(t+1)
1 = Z

(t)
1 + µ(t)(G(t) −G(t)

1 )

Z
(t+1)
2 = Z

(t)
2 + µ(t)(G(t) −G(t)

2 )

µ(t+1) = ρµ(t), ρ > 1

(33)

t := t+ 1;
8 end

For clarity, the procedure of solving (23) is outlined in
Algorithm 1. The algorithm would not be terminated until
the change of objective value in two successive iterations is
smaller than a threshold (in the experiments, 0.001 is the
default setting).

Empirical Study
In this section, we show the results of simulations and real-
world data experiments to demonstrate the effectiveness of
the proposed algorithms. As the existed margin-based ordi-
nal embedding methods, such as GNMDS, STE and TSTE,
just use triple-wise comparisons as the ordinal constraints,
we treat triple-wise comparisons as the input of the proposed
algorithm for fair competition. The triple-wise comparisons
T = {(i, j, k)} is a special case of quadruplets which means
l = i in q = (i, j, l, k) ∈ Q. The ∆p of triplet t = (i, j, k) is
also a symmetric n× n matrix indicated by (i, j, k) as

Kt =

i j k( )
i 0 −1 1
j −1 1 0
k 1 0 −1

. (34)

Replacing Kq with Kt in those sub-problems in Al-
gorithm 1, the proposed DMOE method could handle the
triplets set T as the ordinal constraints. The reproducible
code can be found here1.

1https://github.com/alphaprime/DMOE

Simulation
Settings. The synthesized dataset consists of 100 points
{xi}100i=1 ⊂ R10, where xi ∼ N (0, 1

20I), I ∈
R10×10 is the identity matrix. The possible similarity
triple comparisons are generated based on the Euclidean
distances between {xi}. We randomly sample |T | =
{200, 500, 1, 000, 10, 000} triplets as the training set and the
test set is the rest of all triplets. The embedding dimension
is fixed to 10.
Evaluation Metrics. We employ the generalization error to
evaluate generalization ability of various algorithms. As the
learned Gram matrix G from partial triple comparisons set
T ⊂ [n]3 may be generalized to unknown triplets, the per-
centage of held-out triplets which is not satisfied in theG is
the generalization error of the learned embedding.
Competitors. We compare the proposed algorithm with
three well-known ordinal embedding methods: GNMDS
(Agarwal et al. 2007), STE and TSTE (van der Maaten and
Weinberger 2012). Note that we adopt the optimization strat-
egy proposed by (Jain, Jamieson, and Nowak 2016), which
performs gradient descent with line search, and projects the
Gram matrix onto the subspace spanned by the top p eigen-
values at each step (i.e. setting the smallest n−p eigenvalues
to 0). We call the three competitors: GNMDS-p, STE-p and
TSTE-p, correspondingly. The optimization problem of GN-
MDS is (7). STE replaces the hinge loss by logistic loss in
(7) and adopts Gaussian kernel to predict the label:

lste(G
(t), yp) = log(1 + exp(γ(t)p )),

where γ
(t)
p = ∆pG

(t). TSTE employs the heavy-tailed
Student-t kernel:

ltste(G
(t), yp) = log

(
1 +

(
γ(t)p

)−α+1
2

)
.

The regularization parameters of the competitors are tuned
for the best performance under the different settings.

(a) 200 (b) 1000 (c) 10000

Figure 2: Generalization errors of DMOE, GNMDS-p, STE-
p and TSTE-p on the synthetic dataset.

Results. From Figure 2 and Table 1, the following phe-
nomena can be observed. First of all, the generalization
ability of all methods would be improved when the num-
ber of training samples increases. The decrease of standard
derivation also improves the stability. Moreover, the pro-
posed algorithm shows better generalization performance
than the traditional methods in all four settings. Compared
with GNMDS-p/STE-p/TSTE-p which need more training
samples, our method can achieve better results with fewer
training samples. This is our main motivation to optimize
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Table 1: Performance Comparison on synthetic dataset with 200, 1000 and 10000 samples as training data, respectively

(a) 200 samples

algorithm min median max std

GNMDS-p 0.419 0.447 0.476 0.016
STE-p 0.397 0.426 0.461 0.016
TSTE-p 0.440 0.468 0.498 0.014
DMOE 0.372 0.390 0.410 0.011

(b) 1000 samples

min median max std

0.318 0.341 0.359 0.009
0.375 0.385 0.401 0.007
0.426 0.441 0.466 0.011
0.281 0.298 0.305 0.008

(c) 10000 samples

min median max std

0.143 0.147 0.154 0.007
0.219 0.234 0.251 0.007
0.238 0.257 0.271 0.011
0.142 0.146 0.151 0.008

Table 2: Performance Comparison on music artists dataset with 200, 500, 1000 and 5000 samples as training data.

(a) 200 samples

algorithm min median max std

GNMDS-p 0.391 0.403 0.416 0.007
STE-p 0.444 0.455 0.475 0.008
TSTE-p 0.416 0.436 0.458 0.011
DOME 0.372 0.385 0.400 0.007

(b) 1000 samples

min median max std

0.307 0.317 0.332 0.007
0.397 0.415 0.429 0.007
0.377 0.389 0.406 0.007
0.281 0.291 0.307 0.007

(c) 5000 samples

min median max std

0.225 0.239 0.257 0.006
0.252 0.275 0.294 0.011
0.243 0.259 0.297 0.013
0.216 0.227 0.244 0.007

the margin distribution instead of maximizing the mini-
mum margin like the classic methods. Third, the results of
GNMDS-p verifies that only maximizing the minimum mar-
gin would not necessarily lead to better generalization per-
formances as the STE-p is better than GNMDS when train
samples are few.

(a) 200 (b) 1000 (c) 5000

Figure 3: Generalization errors of DMOE, GNMDS, STE
and TSTE on the music artists dataset.

Music Artist Data
Settings. The music artist data is collected by (Ellis et al.
2002) via a web-based survey in which 1, 032 users pro-
vided 213, 472 triplets on the similarity of 412 music artists.
We use the data pre-processed by (van der Maaten and Wein-
berger 2012) which includes only 9, 107 triplets for n = 400
artists. The size of training samples is variant from 200 to
5, 000 and the rest of triplets are treated as test set. The de-
sired dimension of embedding is d = 9 as these music artists
can be classified by genre into 9 categories.
Results. According to the experimental results, Figure 3
and Table 2, we have the following observations. DMOE
still shows better prediction result than GNMDS-p/STE-
p/TSTE-p with the same number of noisy training sam-
ples. To achieve the same generalization error, DMOE needs
the smallest number of training samples and STE-p/TSTE-p
need five times more than DMOE. This real-world data ex-
periment verifies the proposed method, DMOE, has strong
generalization for ordinal embedding with small training

samples. Although this dataset contains noise triplets and it
is well-known that the calculation of mean and the variance
is sensitive, the proposed method show the same magnitude
of standard deviation and its results are not damaged by the
potential wrong training samples. The robustness is still an
open problem in ordinal embedding, and this is our future
work.

Conclusion

The classical ordinal embedding algorithms always need a
large number of labeled data to predict unknown similar-
ity relationship among items from learned embedded points.
As collecting high-quality, large-scale labeled data from hu-
man is a hard task, generalization ability is the main chal-
lenge when we could only access small numbers of rela-
tive comparisons. Incorporating margin distribution learning
paradigm gives birth to a novel algorithm for ordinal embed-
ding, namely DMOE. Comprehensive experiments on syn-
thetic dataset and real-world dataset validate the superiority
of our method to traditional methods which need more train-
ing data to achieve the same generalization.
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