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Abstract

Permutation is a fundamental combinatorial object appeared
in various areas in mathematics, computer science, and ar-
tificial intelligence. In some applications, a subset of a per-
mutation group must be maintained efficiently. In this study,
we develop a new data structure, called group decision di-
agram (GDD), to maintain a set of permutations. This data
structure combines the zero-suppressed binary decision dia-
gram with the computable subgroup chain of the permutation
group. The data structure enables efficient operations, such
as membership testing, set operations (e.g., union, intersec-
tion, and difference), and Cartesian product. Our experiments
demonstrate that the data structure is efficient (i.e., 20–300
times faster) than the existing methods when the permutation
group is considerably smaller than the symmetric group, or
only subsets constructed by a few operations over generators
are maintained.

1 Introduction
Background and Motivation A permutation is a bijec-
tion on a (finite) set. It is a fundamental object in combina-
torics (Knuth 1997), and is applied in several areas, such as
sorting (Waksman 1968), scheduling (Pruesse and Ruskey
1994), and puzzles (Egner and Püschel 1998; Mulholland
2013). In certain applications, a subset of permutations must
be maintained (i.e., stored and manipulated) efficiently.

For example, let us consider a 3×3×3 Rubik’s cube. We
want to count the number of configurations that can be gen-
erated by at most k moves from the initial configuration. As
the configuration of the cube is represented by a permutation
of 48 non-center facets, the problem is equivalent to count
the number of permutations on [48] = {1, . . . , 48}, denoted
by Sym(48), that can be generated by at most k-fold compo-
sitions of the basic permutations, i.e., by the rotations of the
faces. We can enumerate such configurations by the breadth-
first search: Let S0 = {e} be the singleton set of the identity
permutation, which is associated with the initial configura-
tion. Then, the configurations obtained by at most i moves
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are recursively computed by

Si = Si−1{e,F,B,R,L,D,U}
=
{
sg : s ∈ Si−1, g ∈ {e,F,B,R,L,D,U}

}
, (1)

where F, B, R, L, D, and U are the basic permutations that
rotate the front, back, right, left, down, and up faces, respec-
tively, and sg denotes the composition of s and g.

If we have a data structure that stores a set of permuta-
tions compactly, and permits union and multiplication oper-
ations efficiently, we can implement the above breadth-first
search procedure using the data structure. Minato (Minato
2011) proposed such a data structure called permutation de-
cision diagram (πDD), which represents a permutation by a
sequence of transpositions and stores them using the zero-
suppressed binary decision diagram (ZDD) (Minato 1993).
Inoue and Minato (Inoue and Minato 2014) proposed an-
other data structure called rotation permutation decision di-
agram (ρDD), which uses left-rotations instead of transpo-
sitions; see Section 2. These data structures perform well
on several problems including the Rubik’s cube (Minato
2011), circuit design (Tague et al. 2013), and topological
sorting (Matsumoto, Hatano, and Takimoto 2018).

However, in the Rubik’s cube problem, using the πDD or
ρDD appears redundant. These data structures can represent
any subset of Sym(48); here, Sym(48) has a cardinality of
48! ≈ 1061. On the other hand, the number of possible con-
figurations of the Rubik’s cube is 227314537211 ≈ 1019,
which is significantly smaller than 48!. This may imply that
πDD and ρDD are “too powerful” to represent a subset of
the possible configurations of the Rubik’s cube; therefore,
there can be more “suitable” data structures to maintain the
possible configurations of the Rubik’s cube.

The above question is generalized in the notion of compu-
tational group theory (Seress 2003; Holt, Eick, and O’Brien
2005). Let Sym(n) be the set of all permutations of [n] =
{1, . . . , n}, called the symmetric group of degree n. Then,
the πDD and ρDD are data structures that can store any sub-
set of Sym(n). Now, we are interested in subgroup G of
Sym(n), and want to maintain a subset of G efficiently. Our
research question is as follows.

Is there an efficient data structure for maintaining a sub-
set of G that is a subgroup of Sym(n)? Is it beneficial
to considering G instead of Sym(n)?
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Here, we emphasize that a new data structure is needed to
handle subsets, instead of subgroups; otherwise, one can use
classical data structures in computational group theory such
as the Schreier–Sims table (see Preliminaries).

Our Contribution We answer the above research ques-
tion affirmatively by proposing a new data structure called
group decision diagram (GDD). Our contributions are as
follows.

• We propose the GDD, which maintains a subset of a (per-
mutation) group G. The GDD is built by a combination
of the ZDD and the computable subgroup chain of G,
which is a standard tool in computational group theory. It
includes the πDD, ρDD, and ZDD as special cases (Sec-
tion 3).

• We show that, as similar to the πDD and ρDD, the GDD
admits efficient operations such as the membership test-
ing, set operations (intersection, union, and difference),
and Cartesian product, whose complexities only depend
on the size of the GDDs, instead of the cardinalities of the
subsets (Section 4).

• We conducted experiments to establish that the GDD is
more efficient in representing a set of permutations, com-
pared to the πDD and ρDD (Section 5).

2 Preliminaries
This section presents the basics of the computational group
theory and the ZDD with its families for permutations.

Computational Group Theory We follow the standard
notations of computational group theory (Cameron 1999;
Seress 2003; Holt, Eick, and O’Brien 2005).

A group (G, ◦) is a set G with an associative binary oper-
ator ◦ that has an identity e ∈ G and an inverse g−1 for all
g ∈ G. We abbreviate (G, ◦) as G, and g1 ◦ g2 as g1g2. The
cardinality of G is referred to as the order. In this paper, we
only consider groups of finite orders.

A subgroup H of a group G is a subset of G that forms
a group in its own right. If H is a subgroup of G, we write
H ≤ G. For a subset S ⊆ G, we define 〈S〉 as the smallest
subgroup that contains S. If 〈S〉 = H , then S is referred
to as the generator of H . For g ∈ G, the set Hg = {hg :
h ∈ H} is called the (right) coset of H in G with respect
to g. The set of all the cosets is denoted by G/H = {Hg :
g ∈ G}. We can define an equivalence relation, g ≡ g′,
by Hg = Hg′. A set of representatives of this equivalence
relation is referred to as a transversal of G/H . Note that
|G/H| = |G|/|H| by the Lagrange theorem.

For a group G, we consider a chain of subgroups

G = G0 ≥ G1 ≥ · · · ≥ Gr = {e}. (2)

For each i = 1, . . . , r, we fix a transversal Ti of Gi−1/Gi.
Then, any g ∈ G is uniquely factorized by

g = gr · · · g1, (3)

where gi ∈ Ti (i = 1, . . . , r). The chain of subgroups
with transversals is computable if, for each g ∈ Gi−1, we

can (efficiently) compute a representative gi ∈ Ti such that
Gig = Gigi. Many algorithms in computational group the-
ory can be implemented if we have a computable subgroup
chain (Cooperman and Murray 2005).

Let Ω be a set. A group G acts on Ω if mapping g : Ω 3
ω 7→ ωg ∈ Ω is defined for all g ∈ G, such that it
is compatible with the group operation, i.e., ωe = ω and
(ωg1)g2 = ωg1g2 for all ω ∈ Ω and g1, g2 ∈ G. An element
g ∈ G stabilizes β ∈ Ω if βg = β. The set of all elements
g ∈ G that stabilizes β1, . . . , βk ∈ Ω forms a subgroup ofG,
called the point-wise stabilizer of β1, . . . , βk, and is denoted
by StabG(β1, . . . , βk).

The symmetric group Sym(n) of degree n is the set of
all permutations of [n]. Each element g ∈ Sym(n) is repre-
sented as a list of n distinct integers as

g = [1g, 2g, . . . , ng], (4)

where kg denotes an integer that is mapped from k. The
composition of permutations is defined by

gh = [(1g)h, (2g)h, . . . , (ng)h]. (5)

Note that it is a reverse order of the function composition.
For notational convenience, we denote by

g = (i1, i2, . . . , ik) (6)

for the permutation such that igj = ij+1, for all j ∈ [k] where
ik+1 = i1, and otherwise, ig = i.
Example 1. The composition of permutations are defined
by the reverse-composition order. For example, (1, 2, 3) =
(2, 3)(1, 2) since k(1,2,3) = (k(2,3))(1,2) for k = 1, 2, 3.

A subgroup G of Sym(n) is referred to as a permutation
group (of degree n). A permutation group of degree n natu-
rally acts on set [n] by the induced action of Sym(n).

For a permutation groupG of degree n, there is a standard
method to obtain a computable subgroup chain, called the
base and strong generating set (BSGS). Let {β1, . . . , βr} ⊆
[n] be a sequence of integers and Gi be the point-wise stabi-
lizer of {β1, . . . , βi}. Then, we have a chain of subgroups

G = G0 ≥ G1 ≥ · · · ≥ Gr. (7)

If Gr = {e} then the sequence is called a base. A subset
S ⊆ G is a strong generating set if 〈Gi ∩S〉 = Gi holds for
i = 0, . . . , r − 1. The union of the set of representatives of
Gi−1/Gi for i = 1, . . . , r forms a strong generating set. The
representatives of Gi−1/Gi are denoted by Ti = {gi,α ∈
G : α ∈ [n]} such that gi,α maps βi to α. Here, gi,α can be
empty. For each g ∈ Gi−1, we can identifyGig = Gigi,α by
checking βgi = α. Thus, the chain (7) forms a computable
chain.
Example 2. Let Sym(n) be the permutation group of degree
n, which is identified as the permutations of set {1, . . . , n}.
We consider the following subgroup chain

Sym(n) 
 Sym(n− 1) 
 · · · 
 Sym(2) = {e}, (8)

where Sym(i) (i.e., permutation of [i]) is identified as the
subgroup of Sym(n). Let k = n − i − 1. The coset Ti =
Sym(k)/Sym(k − 1) has cardinality k1. We can choose
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Algorithm 1 Naive Schreier–Sims algorithm.
procedure SCHREIERSIMS(S)
Q← empty queue; gα ← ⊥ for all α ∈ [n]
find β ∈ [n] such that S does not fix β
Q.push(β); gβ ← e
while Q 6= ∅ do
α← Q.pop()
for s ∈ S do

if gαs = ⊥ then
gαs ← gαs
Q.push(αs)

end if
end for

end while
return {gαsg−1αs : s ∈ S, α ∈ [n]} and β

end procedure

Ti = {e, (1, k), (2, k), . . . , (k − 1, k)} as the transversal for
each i. Here, each (j, k) maps βi = k to j. This means that
any permutation on [k] is uniquely factored into the product
of (j, k) for some j and the permutation on [k − 1].

Further, the construction of BSGS needs to be addressed.
Suppose that G is specified by generators S ⊆ Sym(n)
as G = 〈S〉. The Schreier–Sims algorithm (Holt, Eick,
and O’Brien 2005) constructs a BSGS of G as follows. Let
S0 = S and G0 = G. For i = 1, 2, . . ., we select βi ∈ [n]
such that Si−1 does not stabilize βi; we often select βi that
has the longest orbit. We define Gi = StabGi−1(βi) =
StabG(β1, . . . , βi). By performing a breadth-first search (or
a depth-first search) on [n], we obtain gi,α ∈ Gi−1 such that
β
gi,α
i = α for each α ∈ [n] (if exists); these forms the rep-

resentatives of Gi−1/Gi. The generators of Gi are obtained
by the following lemma.

Theorem 3 (Schreier’s Lemma). The set {gαsg−1αs : s ∈
Si−1, α ∈ [n]} generates Gi.

Thus, by setting Si = {gαsg−1αs : s ∈ Si−1, α ∈ [n]},
we proceed to the next iteration. Here, if Si = {e}, we ob-
tained the BSGS. Each iteration of the algorithm is shown in
Algorithm 1.

The naive algorithm based on the Schreier’s lemma cre-
ates exponentially many generators during the process. To
reduce the number of generators, several methods, such as
Sims’s filter, Jerrum’s filter, and the incremental Schreier–
Sims method have been proposed; see (Cameron 1999;
Seress 2003; Holt, Eick, and O’Brien 2005). The elaborate
implementations of these procedures can be found in the
computational group theory softwares (Bosma, Cannon, and
Playoust 1997; GAP 2018; Meurer et al. 2017).

Zero-Suppressed Binary Decision Diagram and Permu-
tation Decision Diagrams The ZDD is a data structure
to maintain a family of a finite set [n] (Minato 2011). It
is a variant of the binary decision diagram (BDD) (Bryant
1992), tailored to represent a combination of a few items.

The ZDD is a directed acyclic graph (DAG) with a single
root and two terminals > and ⊥. Each non-terminal node

is associated with an element i ∈ [n] and has two outgoing
edges, 1-edge and 0-edge. Each outgoing edge points to a
terminal or node associated with a larger integer than the
source node. Each path from the root to the > corresponds
to a set in the family. Here, a path through the 1-edge of
the node associated with i corresponds to a set containing i.
To make the diagram compact, we apply the following two
reduction rules:

1. There is no node that has a 1-edge pointing to ⊥
2. There are no two nodes that have outgoing edges

pointing to the same destination.
(9)

As per the reduction rules, any family is uniquely repre-
sented by a ZDD.

The πDD (Minato 2011) stores a set of permutations us-
ing a ZDD as follows. A transposition (u, v) ∈ Sym(n)
is a permutation that swaps u ∈ [n] and v ∈ [n]. Since
(u, v) = (v, u), we assume that u < v in this notation.
Any permutation g is factorized by a sequence of transpo-
sitions g = (uk, vk) · · · (u1, v1) where vi > vj if i < j.
For example, permutation g = [3, 1, 4, 2] is factorized as
g = (1, 2)(2, 3)(2, 4). We define the ordering on the pairs of
integers as mentioned above . Then, a permutation is repre-
sented by a set of integer pairs; hence, a set of permutations
is represented by a family of sets of pairs, which can be ef-
ficiently stored by a ZDD. This data structure is called the
πDD.

The ρDD (Inoue and Minato 2014) is defined using left-
rotations instead of transpositions as follows. A left-rotation
is a permutation of the form ρu,v = (u, u + 1, . . . , v) ∈
Sym(n), where u < v. Any permutation g is factorized by
a sequence of consecutive rotations g = ρuk,vk · · · ρu1,v1
where vi > vj if i < j. For example, permutation g =
[3, 1, 4, 2] is factorized as g = (1, 2)(2, 3, 4) = ρ1,2ρ2,4.
Using this factorization, as same as πDD, we can represent
a set of permutations by a family of sets of pairs. This data
structure is called the ρDD.

ZDD-type structures permit efficient set operations, such
as the intersection, union, difference, and Cartesian prod-
uct, implemented by recursion with memoization in a uni-
fied manner. Such implementations are referred to as apply
operations (Bryant 1992).

3 Group Decision Diagram
In this section, we introduce a new data structure, the group
decision diagram (GDD), for maintaining a subset of a
groupG. The GDD is based on the following: If we fix a sub-
group chain (2) with transversals, any subset Si−1 ⊆ Gi−1
is uniquely factorized by

Si−1 =
⋃
α

Si,αgi,α (10)

where Si,α ⊆ Gi, and Si,αgi,α = {sgi,α : s ∈ Si,α}. This
immediately follows from the factorization of an element
(3). The union over α in (10) is further factorized as

Si−1 = S′i−1 ∪ S′′i gi,α. (11)
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Here, S′i−1 is a subset of Gi−1 that contains the transversal
element gi,α′ for some α′, and S′′i is a subset of Gi. The
GDD applies factorization (11) recursively, and represents
the structure by a DAG as in the ZDD-type structures.

Formally, the GDD is defined as follows. We fix a com-
putable subgroup chain with transversals, and total orders on
the transversals (we assume that these are provided or pre-
computed from the input). The GDD is a DAG D = (V,E)
that has a unique root and two special terminals > and ⊥.
Each non-terminal node u ∈ V \ {>,⊥} is associated with
an element gi,α ∈ Ti in the transversal of Gi−1/Gi, and has
two outgoing edges, 1-edge and 0-edge. Each 1-edge points
a terminal or node associated with gj,α ∈ Tj for j > i (cor-
responds to the second term in the right-hand side of (11)),
and each 0-edge points a terminal or node associated with
gj,α′ ∈ Tj for j > i or gi,α′ ∈ Ti for gi,α′ > gi,α (cor-
responds to the first term on the right-hand side of (11)).
Then, each path from the root to the > corresponds to a sin-
gle group element, where gi,α appears in the formula if the
path through the 1-edge of the node associated with gi,α.
By definition, > corresponds to the singleton of the identity
element {e} and ⊥ corresponds to the empty set { }.

To make the diagram compact, we apply the same reduc-
tion rules (9) as that of the ZDD. As per the reduction rules
and the uniqueness of the representation (11) under the fixed
orderings on the transversals, any subset S is uniquely rep-
resented by a GDDD(S). This means that, GDD is a canon-
ical data structure for subsets of the group.

For each node u ∈ V , its descendants form a GDD. Thus,
we identify the node in a GDD and the GDD. In particular,
the GDD D(S) is identified as the root node of D(S).

Remark 4. It may be more natural to construct a DAG with
arbitrary many out-going edges from (10). The GDD is iso-
morphic to this DAG as each “fat” node in the DAG is ex-
panded to binary nodes (the 0-edge is for a sibling and the
1-edge is for a child). However, in practice, the GDD offers
a better run time than the DAG because it uses less mem-
ory, and has higher hash efficiency because it can store the
“intermediate” states of the fat nodes in the DAG.

Here, we provide several examples of the GDD.

Example 5. Let us consider the symmetric group Sym(5) of
degree five. It has a chain of subgroups whose transversals
are

T1 = {e, (1, 2), (1, 3), (1, 4), (1, 5)}, (12)
T2 = {e, (2, 3), (2, 4), (2, 5)}, (13)
T3 = {e, (3, 4), (3, 5)}, (14)
T4 = {e, (4, 5)}. (15)

Note that this is the reverse numbering as Example 2.
We try to represent subset S = {e, (2, 3, 4), (2, 4, 3)}.

Since (2, 3, 4) = (3, 4)(2, 3) where (3, 4) ∈ T3 and (2, 3) ∈
T2 and (2, 4, 3) = (3, 4)(2, 4) where (3, 4) ∈ T3 and
(2, 4) ∈ T2, this set is factorized by

S = {e} ∪ {(3, 4)(2, 3)} ∪ {(3, 4)(2, 4)} (16)
= (({e}) ∪ {(3, 4)}(2, 4)) ∪ {(3, 4)}(2, 3) (17)

(2, 3)

(3, 4)

(2, 4)

>

Figure 1: GDD for representing 〈(2, 3, 4)〉 in Sym(5); see
Example 5

(2, 3, 4)

(2, 4, 5)

(3, 5, 4)

>

Figure 2: GDD for representing 〈(2, 3, 4)〉 in Alt(5); see Ex-
ample 6.

Thus, D(S) is represented by Figure 1. Note that the sub-
structure for {(3, 4)}, which appeared twice in (16) is
shared.
Example 6. Let us consider the alternate group Alt(5) of
degree five, which is the set of all even permutations on [5]
(i.e., obtained by the even number of transpositions). Then,
it has a chain of subgroups

T1 = {e, (1, 2, 3), (1, 3, 4), (1, 4, 5), (1, 5, 2)}, (18)
T2 = {e, (2, 3, 4), (2, 4, 5), (2, 5, 3)}, (19)
T3 = {e, (3, 4, 5), (3, 5, 4)}. (20)

We try to represent subset S = {e, (2, 3, 4), (2, 4, 3)}. This
set is factorized by

S = (({e}) ∪ {(3, 5, 4)}(2, 4, 5)) ∪ {(2, 3, 4)}. (21)
Thus, it is represented by Figure 2.

We show that the GDD contains the ZDD, πDD, and ρDD
as special cases.
Example 7 (GDD ⊃ ZDD). Let Cn2 =
〈{(1, 2), (3, 4), . . . , (2n − 1, 2n)}〉 be the direct prod-
uct of n cyclic groups of order two. We consider the
subgroup chain

Cn2 
 Cn−12 
 · · · 
 C2 
 {e}, (22)

where Ck2 is the subgroup of Cn2 generated by
(1, 2), . . . , (2k − 1, 2k). The coset Ck2 /C

k−1
2 has a

cardinality of two, with representatives that correspond to
the flipping or non-flipping of 2k − 1 and 2k. If we select
Tk = {e, (2k − 1, 2k)} as the transversal for each k, the
GDD coincides with the ZDD.
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Example 8 (GDD ⊃ πDD). Let us consider the symmetric
group Sym(n) with the subgroup chain (8) as in Example 2.
If we choose Ti = {e, (1, k), (2, k), . . . , (k − 1, k)} as the
transversal for each k, the GDD coincides with the πDD.

Example 9 (GDD ⊃ ρDD). Let us consider the same group
Sym(n) with the same subgroup chain (8) as in Example 2.
If we select Ti = {ρ1,k, . . . , ρk−1,k} as the transversal for
each k, the GDD coincides with the ρDD.

4 Implementation of Basic Operations
Here, we present algorithms to manipulate GDDs. We as-
sume the RAM model with sufficient memory (i.e., we can
store/retrieve elements in a hash table in O(1) time).

Similar to the existing decision diagrams (Bryant 1992;
Minato 1993; 2011; Inoue and Minato 2014), our algorithms
are implemented using recursion with memoization. Their
run time depends on the size of the GDDs, rather the cardi-
nality of the subsets. As the size of GDD is often exponen-
tially smaller than the cardinality of the subset, it provides
exponential speedup.

Preprocessing: Subgroup Chain

In several applications, we only have generators S of the
permutation group G. Thus, we have to compute the sub-
group chain (2) with transversals from S. It is desired that
the transversals are “close” to the generators, as this may
yield a smaller GDD if the sets are generated by a few oper-
ations from the generators. For this purpose, we employ the
incremental Schreier–Sims method (Holt, Eick, and O’Brien
2005), which finds the subgroup chain in polynomial time.1

The algorithm works as follows (see (Holt, Eick, and
O’Brien 2005) for more detail). First, we find β1 ∈ [n]
that is not stabilized by the generators, and we define S1 =
{s ∈ S : βs1 = β1} the set of generators that sta-
bilizes β1. We compute the subgroup chain of subgroup
H = 〈S1〉 recursively. We also compute the generators for
G1 = StabG({β1}) using Schreier’s lemma (Theorem 3).
Then, for each generator h of G1, we check h ∈ H . If
h 6∈ H , we add h to S1 and repeat the procedure; else, we
have G1 = H; therefore, we obtain the subgroup chain.
Here, we can check h ∈ H efficiently by the following
procedure, called the sifting. By the definition of the incre-
mental Schreier–Sims algorithm, we have a subgroup chain
H = H0 
 H1 
 · · · 
 Hr′ = {e}. Let h1,α be a repre-
sentative of h in H/H1; if it does not exist, we have h 6∈ H .
Then, h ∈ H if and only if hh−11,α ∈ H1, which is computed
recursively. According to the construction, all the generators
in the input are used in the transversals (if it is not redun-
dant).

1We compared the incremental Schreier–Sims method and the
Schreier–Sims method with Jerrum’s filter in a preliminary exper-
iment, and found that although the former is slower in computing
the transversals, it produces better transversals, which provide bet-
ter performance in GDD applications shown in Section 5.

Algorithm 2 Create a node for (i, α, lo, hi)
1: procedure GETNODE(i, α, lo, hi)
2: if hi = ⊥ then return lo
3: if (i, α, lo, hi) 6∈ CACHE then
4: CACHE[(i, α, lo, hi)]← new Node(i, α, lo, hi)
5: end if
6: return CACHE[(i, α, lo, hi)]
7: end procedure

Algorithm 3 Create a GDD for a singleton.
1: procedure SINGLETON(h, i = 0)
2: if h = e then return >
3: if βhi = βi then return SINGLETON(h, i+ 1)
4: return GETNODE(i, βhi ,⊥, SINGLETON(hg−1

i,βhi
, i+

1))
5: end procedure

Node Representation
Let r be the length of the subgroup chain. A node of the
GDD is implemented by a tuple x = (i, α, lo, hi) of i ∈ [r],
α ∈ [n], and two pointers lo and hi. This node is associated
with an element gi,α ∈ Ti in the transversal ofG−1/Gi, and
the 1 and 0-edges are implemented by pointers hi and lo,
respectively. We denote by x.i, x.α, x.lo, and x.hi to denote
the entries of the tuple.

To maintain the reduction rule (2) efficiently, we store the
nodes in a hash table and retrieve the stored node when we
refer to the node as in Algorithm 2.

Owing to the uniqueness of the representation, and the
usage of the hash table, the equality of the two subsets rep-
resented by GDDs are checked inO(1) time by checking the
equality of the addresses.

Singleton
For h ∈ G, we can construct the GDD D({h}) of singleton
{h} in O(nr) time as follows. First, we compute α = βh1 .
Then, the corresponding element in the first transversal is
given by g1,α. We construct GDD D({hg−11,α}) recursively,
and let x be the pointer of the root node of this GDD. Then,
it returns GDD node (1, α,⊥, x) as the solution. The imple-
mentation is shown in Algorithm 3.

Membership
For h ∈ G (or h ∈ Sym(n)), we can test whether h ∈ S in
O(ndepth(D(S))) time, where depth(D(S)) is the length
of the longest path in D(S), which is bounded by

∑
i |Ti|,

as the following procedure, which is almost the same as the
sifting.

Let S = S′ ∪ S′′gi,α. Then, if βhi = α then h ∈ S if
and only if hg−1i,α ∈ S′′; else, h ∈ S if and only if h ∈ S′,
if S and S′ correspond to the same coset. Each step of this
procedure requires O(n) time, and the number of recursion
is at most the depth of D(S). Therefore, the complexity is
obtained. The implementation is shown in Algorithm 4.

2990



Algorithm 4 Membership predicate.
1: procedure ISMEMBER(h, x)
2: if x = ⊥ then return FALSE
3: if h = e and x = > then return TRUE
4: if βhi = α then return ISMEMBER(hg−1i,α, x.hi)
5: if x.i = x.lo.i then return ISMEMBER(h, x.lo)
6: return FALSE
7: end procedure

Algorithm 5 Union of two sets.
1: procedure UNION(x, y)
2: if x = ⊥ then return y
3: if y = ⊥ then return x
4: if x = y then return x
5: if {x, y} 6∈ CACHE then
6: if (x.i, x.α) = (y.i, y.α) then
7: z ← UNION(x.lo, y.lo)
8: w ← UNION(x.hi, y.hi)
9: CACHE[{x, y}]← GETNODE(x.i, x.α, z, w)

10: else if (x.i, x.α) < (y.i, y.α) then
11: z ← UNION(x.lo, y)
12: CACHE[{x, y}]← GETNODE(x.i, x.α, z, x.hi)
13: else
14: z ← UNION(y.lo, x)
15: CACHE[{x, y}]← GETNODE(y.i, y.α, z, y.hi)
16: end if
17: end if
18: return CACHE[{x, y}]
19: end procedure

Set Operations
Set operations, e.g., union, intersection, and difference, can
be implemented as in the ZDD. For example, we consider
union operation. Suppose that S = S′∪S′′gi,α and T = T ′∪
T ′′gj,β . If (i, α) 6= (j, β), we call the procedure recursively
to the suitable child; else, we have

S ∪ T = (S′ ∪ T ′) ∪ (S′′ ∪ T ′′)gi,α. (23)

Therefore, we call the procedure recursively to the children.
To reduce the computational cost, we memoize the compu-
tation using a hash table. Algorithm 5 shows the implemen-
tation of the union operation. The intersection and difference
can be implemented similarly.

The complexity of the union, intersection, and difference
operations are analyzed as follows:
Proposition 10. Let D(S) and D(T ) be GDD nodes repre-
senting subsets S and T , respectively. Then, the union, in-
tersection, and difference run in O(|D(S)||D(T )|) time.

Proof. Due to memoization, for each pair of nodes x, y of
D(S), D(T ), respectively, the procedure is called at most
O(1) times.

Remark 11. The above estimation appears pessimistic. For
the ZDD, in the worst case, there exists example that re-
quires quadratic time; however, in many applications, it runs
in almost linear time (Yoshinaka et al. 2012).

Algorithm 6 Right multiplication.
1: procedure RMUL(x, h)
2: if x = ⊥ then return ⊥
3: if x = > then return SINGLETON(h)
4: if (x, h) 6∈ CACHE then
5: hα = gx.i,x.αhg

−1
x.i,x.αh

6: z ← RMUL(x.lo, h)
7: w ← GETNODE(x.i, x.αh,⊥,RMUL(x.hi, hα))
8: CACHE[(x, h)]← UNION(z, w)
9: end if

10: return CACHE[(x, y)]
11: end procedure

Cartesian Product
The Cartesian product of two sets S, T ⊆ G is defined by

SS = {st : s ∈ S, t ∈ T} (24)
This operation is highly beneficial in several applications,
including the Rubik’s cube problem, as shown in Section 1.

To implement the Cartesian product, we first implement
the right multiplication, Sh, for the subroutine. Note that it
is a special case (T is a singleton) of the Cartesian product.
Let S = S′ ∪ (S′′gi,α). We define hα = g1,αhg

−1
1,αh

. Then,
we have

Sh = (S′ ∪ (S′′gi,α))h

= (S′h) ∪
(
(S′′hα)gi,αh

)
. (25)

Here, S′′hα is a multiplication in Gi. Thus, no additional
computation is needed to multiply gi,αh from the right.
Therefore, we can implement right multiplication recur-
sively. The implementation is shown in Algorithm 6.

Using the right multiplication as a subroutine, we can im-
plement the Cartesian product as follows. For the base case,
we have

S{e} = S, S{} = {}. (26)
For general case, let T = T ′ ∪ (T ′′gi,α). Then, we have

ST = S (T ′ ∪ (T ′′gi,α))

= (ST ′) ∪ ((ST ′′)gi,α) . (27)
Therefore, by calling the procedure recursively, we com-
pute the Cartesian product. The worst case complexity of
the Cartesian product may be exponential.
Remark 12. Here, we mention a disadvantage of the GDD
compared to the πDD and ρDD. In the implementations of
the Cartesian product in the πDD and ρDD, the following
relation can be used: for any α and β, there exists γ such
that

gi,αgi,β = gi−1,γgi,αgi,β , (28)
Using this identity, we can assume that the group elements
appeared in the right multiplication for the Cartesian prod-
uct are transversal elements, which reduces the size of the
hash table. However, in the GDD, we cannot assume such
a relation. Thus, it may increase the constant factor of the
Cartesian product operation.

This phenomenon will be particularly observed when
G = Sym(n) and the GDD reduced to the πDD or ρDD;
see Pancake Sorting problem in our Experiments.
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Algorithm 7 Cartesian product.
1: procedure CARTESIANPROD(x, y)
2: if y = ⊥ then return ⊥
3: if y = > then return x
4: if {x, y} 6∈ CACHE then
5: z = CARTESIANPROD(x, y.lo)
6: w = RMUL(CARTESIANPROD(x, y.hi), gy.i,y.α)
7: CACHE[{x, y}]← UNION(x, w)
8: end if
9: return CACHE[{x, y}]

10: end procedure

5 Experiment
We conducted experiments to evaluate the performance of
the GDD. The codes was implemented in C++. For com-
parison, we obtained the original source codes of πDD
and ρDD from the authors of the papers (Minato 2011;
Inoue and Minato 2014), which are also implemented in
C++. These were compiled by g++ (GCC) 4.8.5 with the -O3
option. All the experiments were performed on a machine
with Intel(R) Xeon(R) CPU E5-2690 v4, 2.60GHz with a
single core, with 50GB of RAM.

Our code is available at the project page2. Also, some
additional experimental results are available in the project
page, which are omitted from this manuscript due to the
space limitation.

Rubik’s Cube (Pocket Cube) Puzzle
The Rubik’s cube is one of the famous permutation puzzles.
Here, we consider the Pocket Cube, which is a 2 × 2 × 2-
variant of the Rubik’s cube3. The possible configurations of
the puzzle forms a group G ≤ Sym(24) generated by the
following three elements:

R = (13, 14, 16, 15)(10, 2, 19, 22)(12, 4, 17, 24), (29)
U = (1, 2, 4, 3)(9, 5, 17, 13)(10, 6, 18, 14), (30)
F = (9, 10, 12, 11)(3, 13, 22, 8)(4, 15, 21, 6). (31)

The order of G is 3, 674, 160, which is significantly smaller
than that of |Sym(24)| = 24! ≈ 6 × 1023. Therefore, we
expect the GDD to perform better than the πDD and ρDD.

We count the number of configurations that can be gen-
erated by k moves for k = 1, 2, . . .. These numbers are ob-
tained by computing the k-fold Cartesian products S · · ·S
for S = {e,R,R−1, U, U−1, F, F−1}. The result is shown
in Table 1. As expected, in the most expensive case, i.e.,
k = 11, the size of GDD is 6 and 14 times smaller than
those of the πDD and ρDD, respectively, making the compu-
tation time 12 and 28 times faster than those of the πDD and
ρDD, respectively. It should be emphasized that the number
of nodes of the GDD is smaller than the number of con-
figurations, implying that multiple configurations are repre-
sented compactly in the GDD. This demonstrates the effec-
tiveness of the GDD.

2https://github.com/spaghetti-source/gdd
3The results of the original 3× 3× 3 Rubik’s cube is presented

in the project page — all the methods can enumerate at most six
steps; thus, not suited for comparing algorithms.

Table 1: Pocket Cube. #Conf. shows the number of config-
urations. The first rows of GDD, πDD, and ρDD show the
number of nodes of the data structures, and the second rows
show the computation time (in [sec]). The time to construct
the subgroup chain for GDD is not included in the below
table, but it is less than 0.01s.

k 2 5 8 11 14
#Conf. 27 2,256 114,149 1,350,852 276

GDD 53 3,047 95,152 445,928 76
0.00s 0.01s 0.88s 19.50s 29.18

πDD 354 24,917 647,999 2,455,878 1,400,951
0.00s 0.55s 36.83s 374.46s 481.07s

ρDD 495 33,427 1,090,124 6,369,842 6,149,175
0.01s 0.97s 54.17s 745.75s 1069.31s

Pancake Sorting Problem
The pancake sorting problem (Dweighter 1975) is as fol-
lows. Let τk be a prefix-reversal permutation, i.e., τk =
[k, k − 1, . . . , 1, k + 1, k + 2, . . . , n]. Then, τ2, . . . , τn gen-
erates the symmetric group Sym(n), i.e., any π ∈ Sym(n)
is generated by the product of τ2, . . . , τk. The problem
seeks the smallest integer k such that any permutation g ∈
Sym(n) is generated by at most k products of τ2, . . . , τn
(i.e., it is the diameter of the Cayley graph of Sym(n)). This
value is useful in a network design problem for parallel com-
putation (Akl, Qiu, and Stojmenović 1993). Currently, the
values of n ≤ 17 are obtained using a sophisticated algo-
rithm with massive parallel computation (Asai et al. 2006).

The result is shown in Table 2. Here, the GDD does not
outperform πDD and ρDD — it is slightly slower than πDD
and three times slower than ρDD. The reason is that, in this
example, the size of GDD is not so smaller than that of πDD
and ρDD since the Pancake group is Sym(n), and the gen-
erators of πDD and ρDD are not so redundant — The gener-
ators of this problem is the prefix reversals, e.g., [2, 1, 3, 4],
[3, 2, 1, 4, and [4, 3, 2, 1] for n = 4. These are efficiently
represented by the successive applications of the left rota-
tions as [2, 1, 3, 4] = (1, 2), [3, 2, 1, 4] = (1, 2)(1, 2, 3), and
[4, 3, 2, 1] = (1, 2)(1, 2, 3)(1, 2, 3, 4). Thus, ρDD is suitable
for this problem.

Shortest Zero-Walk in Group-Labeled Graphs
A group-labeled graph (Huynh 2009) (with group G) is a
directed graph G = (V, E) with a group-valued edge label
g : E → G. A group-labeled graph is also known as a voltage
graph (Gross and Tucker 1977) or biased graph (Zaslavsky
1989), and has been studied for graph embedding.

Here, we consider the shortest zero-walk problem. A walk
W = [u1, . . . , ul] is a sequence of vertices that traverses
edges, i.e., (ui, ui+1) ∈ E for all i = 1, . . . , l−1. We define
g(W ) = g((u1, u2)) · · · g((ul−1, ul)). Then, the problem
seeks the shortest walk W from s to t such that g(W ) = e.
As mentioned in (Kobayashi and Toyooka 2017), this prob-
lem is solved in O(|G||V||E|) time using the dynamic pro-
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Table 2: Pancake Sorting Problem. Ans. shows the solution
for each n. The first rows of GDD, πDD, and ρDD show the
number of nodes appeared during the computation, and the
second rows shows the computation time (in [sec]). The time
to construct the subgroup chain for GDD is not included in
the below table, but it is less than 0.01s.

n 7 8 9 10 11
Ans. 8 9 10 11 13

GDD 611 3,224 19,751 140,360 1,165,544
0.02s 0.09s 0.82s 11.00s 126.81s

πDD 590 3,309 20,343 144,630 1,195,767
0.01s 0.06s 0.85s 10.38s 117.69s

ρDD 517 2,801 17,429 122,781 1,021,055
0.00s 0.03s 0.20s 3.25s 39.39s

Table 3: Shortest zero walk problem. The row of Ans. shows
the answer of the solution for each n. The first rows of GDD,
πDD, and ρDD show the maximum size of xDDs appeared
during the computation, and the second rows show the com-
putation time of the data structures (in [sec]). The time to
construct the subgroup chain for GDD is not included in the
below table, but it is less than 0.01s.

n 10 30 50 70 90
Ans. 18 34 54 74 94

GDD 1,016 13,915 51,414 128,159 255,004
0.21s 1.25s 5.20s 15.40s 32.22s

πDD 1,258 298,555 — — —
0.20s 290.74s — — —

ρDD 1,220 57,792 363,028 1,397,459 3,813,833
0.16s 9.16s 83.25s 310.00s 926.80s

gramming algorithm:

Sv,k+1 ← Sv,k ∪
⋃

(u,v)∈E

Su,kg((u, v)). (32)

We implemented the above algorithm using the GDD, πDD,
and ρDD, and compared their performances.

We defined G = 〈{(1, 2), (1, . . . , n)}〉 = Sym(n). Then,
we generated a graph of 10 × 10 grid, which consists of
100 vertices; each edge is bidirected and assigned (1, 2)
or (1, . . . , n) randomly. Then, the shortest walk was de-
termined using (32). The result is shown in Table 3. The
GDD found the shortest walk for n = 90 in 30[sec]. On
the other hand, the πDD only solved n = 30 within time
limit (< 3000 [sec]). The ρDD solved n = 90 but requires
approximately 15 [min].

This result implies that, even if the group is the symmetric
group, the GDD has an advantage because it can find a better
representation suited to the input.

6 Conclusion
We have proposed a new data structure, called the GDD,
to maintain a set of permutations. The data structure com-
bines the ZDD with the computable subgroup chain. The
data structure admits efficient operations such as the mem-
bership testing, set operations (union, intersection, differ-
ence), and Cartesian product. Our experiments demonstrated
that the GDD is highly efficient than the existing data struc-
tures if the group G is considerably smaller than the sym-
metric group.

The most important future direction is to characterize
when the data structure works well. For the BDD and ZDD,
we know that any subsets of a bounded treewidth graph
specified by a monadic second-order logic are maintained
by polynomial size structure (Amarilli et al. 2017). How-
ever, there are no corresponding result for permutation di-
agrams. We believe that establishing such result increases
applicability of the data structures in practice.

Related with this direction, we need a method for con-
structing a “nice” subgroup chain for given problems. As
we see in experiments, it is very important to reduce the size
of GDD, which is determined by the subgroup chain. There-
fore, it will be effective for the running time.
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