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Abstract

Embedding models for deterministic Knowledge Graphs
(KG) have been extensively studied, with the purpose of cap-
turing latent semantic relations between entities and incor-
porating the structured knowledge they contain into machine
learning. However, there are many KGs that model uncer-
tain knowledge, which typically model the inherent uncer-
tainty of relations facts with a confidence score, and em-
bedding such uncertain knowledge represents an unresolved
challenge. The capturing of uncertain knowledge will bene-
fit many knowledge-driven applications such as question an-
swering and semantic search by providing more natural char-
acterization of the knowledge. In this paper, we propose a
novel uncertain KG embedding model UKGE, which aims to
preserve both structural and uncertainty information of rela-
tion facts in the embedding space. Unlike previous models
that characterize relation facts with binary classification tech-
niques, UKGE learns embeddings according to the confidence
scores of uncertain relation facts. To further enhance the pre-
cision of UKGE, we also introduce probabilistic soft logic to
infer confidence scores for unseen relation facts during train-
ing. We propose and evaluate two variants of UKGE based on
different confidence score modeling strategies. Experiments
are conducted on three real-world uncertain KGs via three
tasks, i.e. confidence prediction, relation fact ranking, and re-
lation fact classification. UKGE shows effectiveness in captur-
ing uncertain knowledge by achieving promising results, and
it consistently outperforms baselines on these tasks.

1 Introduction
Knowledge Graphs (KGs) provide structured representa-
tions of real-world entities and relations, which are catego-
rized into the following two types: (i) Deterministic KGs,
such as YAGO (Rebele et al. 2016) and FreeBase (Bol-
lacker et al. 2008), consist of deterministic relation facts
that describe semantic relations between entities; (ii) Uncer-
tain KGs including ProBase (Wu et al. 2012), ConceptNet
(Speer, Chin, and Havasi 2017) and NELL (Mitchell et al.
2018) associate every relation fact with a confidence score
that represents the likelihood of the relation fact to be true.

KG embedding models are essential tools for incorporat-
ing the structured knowledge representations in KGs into
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machine learning. These models encode entities as low-
dimensional vectors and relations as algebraic operations
among entity vectors. They accurately capture the similar-
ity of entities and preserve the structure of KGs in the em-
bedding space. Hence, they have been the crucial feature
models that benefit numerous knowledge-driven tasks (Bor-
des, Weston, and Usunier 2014; He et al. 2017; Das et al.
2018). Recently, extensive efforts have been devoted into
embedding deterministic KGs. Translational models, e.g.,
TransE (Bordes et al. 2013) and TransH (Wang et al. 2014)),
and bilinear models, e.g. DistMult (Yang et al. 2015) and
ComplEx (Trouillon et al. 2016), have achieved promising
performance in many tasks, such as link prediction (Yang
et al. 2015; Trouillon et al. 2016), relation extraction (We-
ston, Bordes, and others 2013), relational learning (Nickel,
Rosasco, and Poggio 2016), and ontology population (Chen
et al. 2018).

While current embedding models focus on capturing de-
terministic knowledge, it is critical to incorporate uncer-
tainty information into knowledge sources for several rea-
sons. First, uncertainty is the nature of many forms of
knowledge. An example of naturally uncertain knowledge
is the interactions between proteins. Since molecular reac-
tions are random processes, biologists label the protein in-
teractions with their probabilities of occurrence and present
them as uncertain KGs called Protein-Protein Interaction
(PPI) Networks. Second, uncertainty enhances inference in
knowledge-driven applications. For example, short text un-
derstanding often entails interpreting real-world concepts
that are ambiguous or intrinsically vague. The probabilis-
tic KG Probase (Wu et al. 2012) provides a prior probabil-
ity distribution of concepts behind a term that has critically
supported short text understanding tasks involving disam-
biguation (Wang et al. 2015; Wang and Wang 2016). Fur-
thermore, uncertain knowledge representations have largely
benefited various applications, such as question answering
(Yih et al. 2013) and named entity recognition (Ratinov and
Roth 2009).

Capturing the uncertainty information with KG embed-
dings remains an unresolved problem. This is a non-trivial
task for several reasons. First, compared to deterministic KG
embeddings, uncertain KG embeddings need to encode ad-
ditional confidence information to preserve uncertainty. Sec-
ond, current KG embedding models cannot capture the sub-
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tle uncertainty of unseen relation facts, as they assume that
all the unseen relation facts are false beliefs and minimize
the plausibility measures of relation facts. One major chal-
lenge of learning embeddings for uncertain KGs is to prop-
erly estimate the uncertainty of unseen relation facts.

To address the above issues, we propose a new embed-
ding model UKGE (Uncertain Knowledge Graph
Embeddings), which aims to preserve both structural and
uncertainty information of relation facts in the embedding
space. Embeddings of entities and relations on uncertain
KGs are learned according to confidence scores. Unlike pre-
vious models that characterize relation facts with binary
classification techniques, UKGE learns embeddings accord-
ing to the confidence scores of uncertain relation facts. To
further enhance the precision of UKGE, we also introduce
probabilistic soft logic to infer the confidence score for un-
seen relation facts during training. We propose two variants
of UKGE based on different embedding-based confidence
functions. We conducted extensive experiments using three
real-world uncertain KGs on three tasks: (i) confidence pre-
diction, which seeks to predict confidence scores of unseen
relation facts; (ii) relation fact ranking, which focuses on re-
trieving tail entities for the query (h, r, ?t) and ranking these
retrieved tails in the right order; and (iii) relation fact clas-
sification, which decides whether or not a given relation fact
is a strong relation fact. Our models consistently outperform
the baseline models in these experiments.

The rest of the paper is organized as follows. We first re-
view the related work in Section 2, then provide the problem
definition and propose our model UKGE in the two sections
that follow. In section 5, we present our experiments. Then
we conclude the paper in Section 6.

2 Related Work
To the best of our knowledge, there has been no previous
work on learning embeddings for uncertain KGs. We hereby
discuss the following three lines of work that are closely re-
lated to this topic.

Deterministic Knowledge Graph Embeddings Deter-
ministic KG embeddings have been extensively explored
by recent work. These models encode entities as low-
dimensional vectors and relations as algebraic operations
among entity vectors. There are two representative families
of models, i.e. translational models and bilinear models.

Translational models share a common principle hr +r ≈
tr, where hr, tr are the entity embeddings projected in a
relation-specific space. The forerunner of this family, TransE
(Bordes et al. 2013), lays hr and tr in a common space as
h and t with regard to any relation r. Variants of TransE,
such as TransH (Wang et al. 2014), TransR (Lin et al. 2015),
TransD (Ji et al. 2015), and TransA, (Jia et al. 2016) dif-
ferentiate the translations of entity embeddings in different
language-specific embedded spaces based on different forms
of relation-specific projections. Despite its simplicity, trans-
lational models achieve promising performance on knowl-
edge completion and relation extraction tasks.

Bilinear models (Jenatton et al. 2012) model relations
as the second-order correlations between entities, using the

scoring function f(h, r, t) = hTWrt. This function is first
adopted by RESCAL (Nickel, Tresp, and Kriegel 2011), a
collective matrix factorization model. DistMult (Yang et al.
2015) constrains Wr as a diagonal matrix which reduces the
computing cost and also enhances the performance. Com-
plEx adjusts the corresponding scoring mechanism to a com-
plex conjugation in a complex embedding space.

There are also other models for deterministic KG em-
bedding, such as neural models like Neural Tensor Net-
work (NTN) (Socher et al. 2013) and ConvE (Dettmers et
al. 2018), and the circular-correlation-based model HolE
(Nickel, Rosasco, and Poggio 2016).

Uncertain Knowledge Graphs Uncertain KGs provide a
confidence score along with every relation fact. The de-
velopment of relation extraction and crowdsourcing in re-
cent years enabled the construction of large-scale uncer-
tain knowledge bases. ConceptNet (Speer, Chin, and Havasi
2017) is a multilingual uncertain KG for commonsense
knowledge that is collected via crowdsourcing. The con-
fidence scores in ConceptNet mainly come from the co-
occurrence frequency of the labels in crowdsourced task re-
sults. Probase (Wu et al. 2012) is a universal probabilis-
tic taxonomy built by relation extraction. Every fact in
Probase is associated with a joint probability PisA(x, y).
NELL (Mitchell et al. 2018) collects relation facts by read-
ing web pages and learns their confidence scores from semi-
supervised learning with the Expectation-Maximum (EM)
algorithm. Aforementioned uncertain KGs have enabled nu-
merous knowledge-driven applications. For example, Wang
and Wang (2016) utilize Probase to help understand short
texts.

One recent work has proposed a matrix-factorization-
based approach to embed uncertain networks (Hu et al.
2017). However, it cannot be generalized to embed uncertain
KGs because this model only considers the node proximity
in the networks with no explicit relations and only generates
node embeddings. As far as we know, we are among the first
to study the uncertain KG embedding problem.

Probabilistic Soft Logic Probabilistic soft logic (PSL)
(Kimmig et al. 2012) is a framework for probabilistic rea-
soning. A PSL program consists of a set of first-order logic
rules with conjunctive bodies and single literal heads. PSL
takes the confidence from interval [0, 1] as the soft truth val-
ues for every atom. It uses Lukasiewics t-norm (Lukasiewicz
and Straccia 2008) to determine to which degree a rule is
satisfied. In combination with Hinge-Loss Markov Random
Field (HL-MRF), PSL is widely used in probabilistic rea-
soning tasks, such as social-trust prediction and preference
prediction (Bach et al. 2013; 2017). In this paper, we adopt
PSL to enhance the embedding model performance on the
unseen relation facts.

3 Problem Definition
We define the uncertain KG embedding problem in this sec-
tion by first providing the definition of uncertain KGs.

Definition 1. Uncertain Knowledge Graph. An uncertain
KG represents knowledge as a set of relations (R) defined
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over a set of entities (E). It consists of a set of weighted
triples G = {(l, sl)}. For each pair (l, sl), l = (h, r, t) is
a triple representing a relation fact where h, t ∈ E (the set
of entities) and r ∈ R (the set of relations), and sl ∈ [0, 1]
represents the confidence score for this relation fact to be
true.

Note that we assume the confidence score sl ∈ [0, 1]
and interpret it as a probability to leverage probabilistic
soft logic-based inference. The range of original confidence
scores for some uncertain KG (e.g., ConceptNet) may not
fall in [0, 1], and normalization will be needed in these cases.
Some examples of weighted triples are listed below.

Example 3.1. Weighted triples.
1. (choir, relatedto, sing): 1.00
2. (college, synonym, university): 0.99
3. (university, synonym, institute): 0.86
4. (fork, atlocation, kitchen): 0.4

Definition 2. Uncertain Knowledge Graph Embedding
Problem. Given an uncertain KG G, the embedding model
aims to encode each entity and relation in a low-dimensional
space in which structure information and confidence scores
of relation facts are preserved.

Notation wise, boldfaced h, r, t are used to represent the
embedding vectors for head h, relation r and tail t respec-
tively. h, r, t are assumed lie in Rk.

4 Modeling
In this section, we propose our model for uncertain KG em-
beddings. The proposed model UKGE encodes the KG struc-
ture according to the confidence scores for both observed
and unseen relation facts, such that the embeddings of rela-
tion facts with higher confidence scores receive higher plau-
sibility values.

We first design relation fact confidence score modeling
based on embeddings of entities and relations, then intro-
duce how probabilistic soft logic can be used to infer con-
fidence scores for unseen relations, and lastly describe the
joint model UKGE and its two variants.

4.1 Embedding-based Confidence Score
Modeling for Relation Facts

Unlike deterministic KG embedding models, uncertain KG
embedding models need to explicitly model the confidence
score for each triple and compare the prediction with the
true score. We hereby first define and model the plausibility
of triples, which can be considered as a unnormalized confi-
dence score.

Definition 3. Plausibility. Given a relation fact triple l,
the plausibility g(l) ∈ R measures how likely this relation
fact holds. The higher plausibility value corresponds to the
higher confidence score s.

Given a triple l = (h, r, t) and their embeddings h, r, t,
we model the plausibility of (h, r, t) by the following func-
tion:

g(l) = r · (h ◦ t) (1)

where ◦ is the element-wise product, and · is the inner prod-
uct. This function captures the relatedness between embed-
dings h and t under the condition of relation r and is first
adopted by DistMult (Yang et al. 2015). We employ this
triple modeling technique for three reasons: (i) This tech-
nique has represented the state-of-the-art performance for
modeling deterministic KGs (Kadlec, Bajgar, and Kleindi-
enst 2017), (ii) It agrees with the nature of our model to
quantify the confidence of an uncertain relation fact by com-
paring the relation embeddings with the pair of head and tail
embeddings, (iii) It does not introduce additional parame-
ter complexity to the model like other techniques, such as
TransH (Wang et al. 2014), TransR (Lin et al. 2015), ConvE
(Dettmers et al. 2018) and ProjE (Shi and Weninger 2017).
Nevertheless, this scoring function can be further explored
in future work.

From plausibility to confidence scores In order to trans-
form plausibility scores to confidence scores, we consider
two different mapping functions and test them in the experi-
mental section. Formally, let a triple be l and its plausibility
score be g(l), a transformation function φ(·) maps g(l) to a
confidence score f(l).

f(l) = φ(g(l)), φ : R→ [0, 1] (2)

Two choices of mapping φ are listed below.
Logistic function. One way to map plausibility values to
confidence score is a logistic function as follows:

φ(x) =
1

1 + e−(wx+b)
(3)

Bounded rectifier. Another mapping is a bounded rectifier
(Chen et al. 2015):

φ(x) = min(max(wx+ b, 0), 1) (4)

where w is a weight b is a bias.

4.2 PSL-based Confidence Score Reasoning for
Unseen Relation Facts

In order to better estimate confidence scores, both observed
and unseen relation facts in KGs should be utilized. Deter-
ministic KG embedding methods assume that all unseen re-
lation facts are false beliefs, and use negative sampling to
add some of these false relations into training. One major
challenge of learning embeddings for uncertain KGs, how-
ever, is to properly estimate the uncertainty of unseen triples,
as simply treating their confidence score as 0 can no longer
capture the subtle uncertainty. For example, it is common
that a Protein-Protein Interaction Network KG may have no
interaction records for two proteins that can be potentially
binded. Ignoring such possibility will result in information
loss.

We thus introduce probabilistic soft logic (PSL) (Kimmig
et al. 2012) to infer confidence scores for these unseen re-
lation facts to further enhance the embedding performance.
PSL is a framework for confidence reasoning that propagates
confidence of existing knowledge to unseen triples using soft
logic.
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Probabilistic Soft Logic A PSL program consists of a set
of first order logic rules that describe logical dependencies
between facts (atoms). One example of logical rule is shown
below:

Example 4.1. A Logical Rule on Transitivity of Synonym
Relation.
(A,synonym,B) ∧ (B,synonym,C)→ (A,synonym,C)

This logical rule describes the transitivity of the re-
lation synonym. In this logical rule, A, B and C
are placeholders for entities, synonym is the predi-
cate that corresponds to the relation in uncertain KGs,
(A,synonym,B) ∧ (B,synonym,C) is the body of the rule,
and (A,synonym,C) is the head of the rule.

A logical rule serves as a template rule. By replacing the
placeholders in a logical rule with concrete entities and re-
lations, we can get rule instances, which are called ground
rules. Considering Example 4.1 and uncertain relation facts
from Example 3.1, we can have the following ground rule
by replacing the placeholders with real relation facts in KG.

Example 4.2. A Ground Rule on Transitivity of Syn-
onym.
(college, synonym, university) ∧ (university, synonym,
institute)→ (college, synonym, institute)

Different from Boolean logic, PSL associates every atom,
i.e., a triple l, with a soft truth value from the interval [0, 1],
which corresponds to the confidence score in our context
and enables fuzzy reasoning. The assignment process of soft
truth values is called an interpretation. We denote the soft
truth value of an atom l assigned by the interpretation I as
I(l). Naturally, for observed relation facts, their observed
confidence scores are used for assignment; and for unseen
triples, the embedding-based estimated confidence scores
will be assigned to them:

I(l) = sl, l ∈ L+

I(l) = f(l), l ∈ L−
(5)

where L+ denotes the observed triple set, L− denotes the
unseen triples, sl denotes the confidence score for observed
triple l, and f(l) denotes the embedding-based confidence
score function for l.

In PSL, Lukasiewicz t-norm is used to define the basic
logical operations, including logical conjunction (∧), dis-
junction (∨), and negation (¬), as follows:

l1 ∧ l2 = max{0, I(l1) + I(l2)− 1} (6)
l1 ∨ l2 = min{1, I(l1) + I(l2)} (7)
¬l1 = 1− I(l1) (8)

For example, according to Eq. (6) and (7), 0.8 ∧ 0.3 = 0.1
and 0.8 ∨ 0.3 = 1. For a rule γ ≡ γbody → γhead, as it can
be written as ¬γbody ∨ γhead, its value pγ can be computed
as

pγbody→γhead = min{1, 1− I(γbody) + I(γhead)} (9)

PSL regards a rule γ as satisfied when the truth value of its
head I(γhead) is the same or higher than its body I(γbody),
i.e., when its value is greater than or equal to 1.

dγ = 1− pγ = max{0, I(γbody)− I(γhead)} (10)

Consider Example 4.2. Let (college, synonym, university)
be l1, (university, synonym, college) be l2, and (college,
synonym, institute) be l3. Assuming that l1 and l2 are ob-
served triples in KG, and l3 is unseen, according to Equation
(5), (6), and (9), the distance to satisfaction of this ground
rule is calculated as below:

dγ = max{0, I(l1 ∧ l2)− I(l3)}
= max{0, sl1 + sl2 − 1− f(l3)}
= max{0, 0.85− f(l3)}

where sl1 and sl2 are the ground truth confidence scores of
corresponding relation facts in the uncertain KG.

This equation indicates that the ground rule in Example
4.2 is completely satisfied when f(l3), the estimated confi-
dence score of (college, synonym institute), is above 0.85.
When f(l3) is under 0.85, the smaller f(l3) is, the larger loss
we have. In other words, a bigger confidence score is prefer-
able. In the above example, we can see that the embedding-
based confidence score for this unseen relation fact, f(l3),
will affect the loss function, and it is desirable to learn em-
beddings that minimize these losses. Note that if we sim-
ply treat the unseen relation l3 as false and use MSE (Mean
Squared Error) as the loss, the loss would be f(l3)2, which
is in favor of a lower confidence score mistakenly.

Moreover, we add a rule to penalize the predicted confi-
dence scores of all unseen relation facts, which can be con-
sidered as a prior knowledge, i.e., any unseen relation fact
has a low probability to be true. Formally, for an unseen re-
lation fact l = (h, r, t) ∈ L−, we have a ground rule γ0:

γ0 : ¬l (11)

According to Eq. (8) and (10), its distance to satisfaction
dγ0 is derived as:

dγ0 = f(l) (12)

4.3 Embedding Uncertain KGs
In this subsection, we present the objective function of un-
certain KG embeddings.

Loss on observed relation facts Let L+ be the set of
observed relation facts, the goal is to minimize the mean
squared error (MSE) between the ground truth confidence
score sl and our prediction f(l) for each relation l ∈ L+:

J+ =
∑
l∈L+

|f(l)− sl|2 (13)

Loss on unseen relation facts Let L− be the sampled set
of unseen relations, and Γl be the set of ground rules with l
as the rule head, the goal is to minimize the distance to rule
satisfaction for each triple l. In particular, we choose to use
the square of the distance as the following loss (Bach et al.
2013):

J− =
∑
l∈L−

∑
γ∈Γl

|ψγ(f(l))|2 (14)

where ψγ(f(l)) denotes the weighted distance to satisfac-
tion wγdγ of the rule γ as a function of f(l) where wγ is a
hand-crafted weight for the rule γ.

Note that when l is only covered by γ0 : ¬l, we have∑
γ∈Γl

|ψγ(f(l))|2 = |f(l)|2, which is essentially the MSE
loss by treating unseen relation facts as false.
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Dataset #Ent. #Rel. #Rel. Facts Avg(s) Std(s)
CN15k 15,000 36 241,158 0.629 0.232
NL27k 27,221 404 175,412 0.797 0.242
PPI5k 4,999 7 271,666 0.415 0.213

Table 1: Statistics of the extracted datasets used in this pa-
per. Ent. denotes entities and Rel. stands for relations. Avg(s)
and Std(s) are the average and standard deviation of the con-
fidence scores.

The Joint Objective Function Combining Eq. (13) and
(14), we obtain the following joint objective function:

J =
∑
l∈L+

|f(l)− sl|2 +
∑
l∈L−

∑
γ∈Γl

|ψγ(f(l))|2 (15)

Similar to deterministic KG embedding algorithms, we sam-
ple unseen relations by corrupting the head and the tail for
observed relation facts to generate L− during training.

We give two model variants that differ in the choice of
f(l). We refer to the variant that adopts Equation (3) as
UKGElogi and name the one using Equation (4) as UKGErect.

5 Experiments
In this section, we evaluate our models on three tasks: confi-
dence prediction, relation fact ranking, and relation fact clas-
sification.

5.1 Datasets
The evaluation is conducted on three datasets named as
CN15k, NL27k, and PPI5k, which are extracted from Con-
ceptNet, NELL, and the Protein-Protein Interaction Knowl-
edge Base STRING (Szklarczyk et al. 2016) respectively.
CN15k matches the number of nodes with FB15k (Bordes et
al. 2013) - the widely used benchmark dataset for determin-
istic KG embeddings (Bordes et al. 2013; Wang et al. 2014;
Yang et al. 2015), while NL27k is a larger dataset. PPI5k is a
denser graph with fewer entities but more relation facts than
the other two. Table 1 gives the statistics of the datasets, and
more details are introduced below.

CN15k CN15k is a subgraph of the commonsense KG
ConceptNet. This subgraph contains 15,000 entities and
241,158 uncertain relation facts in English. The original
scores in ConceptNet vary from 0.1 to 22, where 99.6% are
less than or equal to 3.0. For normalization, we first bound
confidence scores to x ∈ [0.1, 3.0], and then applied the
min-max normalization on log x to map them into [0.1, 1.0].

NL27 NL27k is extracted from NELL (Mitchell et al.
2018), an uncertain KG obtained from webpage reading.
NL27k contains 27,221 entities, 404 relations, and 175,412
uncertain relation facts. In the process of min-max normal-
ization, we search for the lower boundary from 0.1 to 0.9.
We have found out that normalizing the confidence score to
interval [0.1, 1] yields best results.

PPI5k The Protein-Protein Interaction Knowledge Base
STRING labels the interactions between proteins with the
probabilities of occurrence. PPI5k is a subset of STRING

that contains 271,666 uncertain relation facts for 4,999 pro-
teins and 7 interactions.

In an uncertain KG, a relation fact is considered strong
if its confidence score sl is above a KG-specific threshold
τ . Here we set τ = 0.85 for both CN15k and NL27k. We
follow the instructions from (Szklarczyk et al. 2016) and set
τ = 0.70 for PPI5k. Under this setting, 20.4% of relation
facts in CN15k, 20.1% of those in NL27k, and 12.4% of
those in PPI5k are considered strong.

5.2 Experimental Setup
We split each dataset into three parts: 85% for training, 7%
for validation, and 8% for testing. To test if our model can
correctly interpret negative links, we add the same amount
of negative links as existing relation facts into the test sets.

We use Adam optimizer (Kingma and Ba 2014) for train-
ing, for which we set the exponential decay rates β1 = 0.9
and β2 = 0.99. We report results for all models respec-
tively based on their best hyperparameter settings. For each
model, the setting is identified based on the validation set
performance. We select among the following sets of hyper-
parameter values: learning rate lr ∈ {0.001, 0.005, 0.01},
dimensionality k ∈ {64, 128, 256, 512}, batch size b ∈
{128, 256, 512, 1024}, The L2 regularization coefficient
λ is fixed as 0.005. Training was stopped using early stop-
ping based on MSE on the validation set, computed every 10
epochs. The best hyper-parameter combinations on CN15k
and NL27k are {lr = 0.001, k = 128} and b = 128
for UKGErect, b = 512 for UKGElogi. On PPI5k they are
{lr = 0.001, k = 128, b = 256} for both variants.

5.3 Logical Rule Generation
Our model requires additional input as logical rules for PSL
reasoning. We heuristically create candidate logical rules by
considering length-2 paths (i.e., (E1,R1,E2) ∧ (E2,R2,E3)
→ (E1,R3,E3)) and validate them by hit ratio, i.e. the pro-
portion of relation facts implied by the rule to be truly exis-
tent in the KG. The higher ratio implies that the rule is more
convincing. When grounding out the logical rules, to guar-
antee the quality of the ground rules, we only adopt observed
strong relation facts in our rule body. We eventually create 3
logical rules for CN15k, 4 for NL27k, and 1 for PPI5k. Ta-
ble 2 gives some examples of the logical rules and their hit
ratios. How to systematically create more promising logical
rules will be considered as future work.

5.4 Baselines
Three types of baselines are considered in our compari-
son, which include (i) deterministic KG embedding mod-
els TransE (Bordes et al. 2013), DistMult (Yang et al.
2015) and ComplEx (Trouillon et al. 2016), (ii) an uncer-
tain graph embedding model URGE (Hu et al. 2017), and
(iii) UKGEn− and UKGEp− that are two simplified versions
of our model.

• Deterministic KG Embedding Models. TransE, DistMult,
and ComplEx have demonstrated high performance on
deterministic KGs. Only the high-confidence relation
facts from KGs are used for training. For each KG, we
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Dataset Logical Rules Hit Ratio

CN15k (A, relatedTo, B)∧(B, relatedTo, C)→(A, relatedTo, C) 37.0%
(A, causes, B)∧(B, causes, C)→(A, causes, C) 35.6%

NL27k (A, atheletePlaysForTeam,B) ∧ (A, athletePlaysSport, C)→(B, teamPlaysSport, C) 42.9%
PPI5k (A, binding, B)∧(B, binding, C)→(A, binding, C) 80.8%

Table 2: Examples of logical rules. Hit ratio means the proportion of relation facts that have already existed in the KG

Dataset CN15k NL27k PPI5k
Metrics MSE MAE MSE MAE MSE MAE
URGE 10.32 22.72 7.48 11.35 1.44 6.00
UKGEn− 23.96 30.38 24.86 36.67 7.46 19.32
UKGEp− 9.02 20.05 2.67 7.03 0.96 4.09
UKGErect 8.61 19.90 2.36 6.90 0.95 3.79
UKGElogi 9.86 20.74 3.43 7.93 0.96 4.07

Table 3: Mean squared error (MSE) and mean absolute error
(MAE) of relation fact confidence prediction (×10−2).

metrics CN15K NL27k PPI5k
Dataset linear exp. linear exp. linear exp.
TransE 0.601 0.591 0.730 0.722 0.710 0.700

DistMult 0.689 0.677 0.911 0.897 0.894 0.880
ComplEx 0.723 0.712 0.921 0.913 0.896 0.881

URGE 0.572 0.570 0.593 0.593 0.726 0.723
UKGEn− 0.236 0.232 0.245 0.245 0.514 0.517
UKGEp− 0.769 0.768 0.933 0.929 0.940 0.944
UKGErect 0.773 0.775 0.939 0.942 0.946 0.946
UKGElogi 0.789 0.788 0.955 0.956 0.970 0.969

Table 4: Mean normalized DCG for global ranking task.
Here linear stands for linear gain, and exp. stands for ex-
ponential gain.

have a KG-specific confidence score threshold τ to dis-
tinguish the high-confidence relation facts from the low-
confidence ones, which will be discussed later in Section
5.7. These models cannot predict confidence scores. We
compare our methods to them only on the ranking and the
classification tasks. For the same reason, the early stop-
ping is based on mean reciprocal rank (MRR) on the vali-
dation set. We adopt the implementation given by (Trouil-
lon et al. 2016) and choose the best hyper-parameters fol-
lowing the same grid search procedure. This implementa-
tion uses (Duchi, Hazan, and others 2011) for optimiza-
tion. The best hyper-parameter combinations on CN15k
and NL27k are b = 1024, {lr = 0.01, k = 128} for
TransE and {lr = 0.05, k = 256} for DistMult and Com-
plEx. On PPI5k they are lr = 0.1, {k = 128, b = 512}
for DistMult and {k = 256, b = 1024} for TransE and
ComplEx.

• Uncertain Graph Embedding Model. URGE is proposed
very recently to embed uncertain graphs. However, it can-
not deal with multiple types of relations in KGs, and it
only produces node embeddings. We simply ignore rela-
tion types when applying URGE to our datasets. We adopt
its first-order proximity version as our tasks focus on the
edge relations between nodes.

• Two Simplified Versions of Our Model. To justify the

use of negative links and PSL reasoning in our model,
we propose two simplified versions of UKGErect , called
UKGEn− and UKGEp−. In UKGEn−, we only keep the ob-
served relation facts and remove negative sampling, and
in UKGEp−, we remove PSL reasoning and use the MSE
loss for unseen relation facts.

5.5 Confidence Prediction
The objective of this task is to predict confidence scores of
unseen relation facts.

Evaluation protocol For each uncertain relation fact
(l, sl) in the test set, we predict the confidence score of l
and report the mean squared error (MSE) and mean absolute
error (MAE).

Results Results are reported in Table 3. Both our variants
UKGErect and UKGElogi outperform the baselines URGE,
UKGEn−, and UKGEp−, since URGE only takes node prox-
imity information and cannot model the rich relations be-
tween entities, and UKGEn− does not adopt negative sam-
pling and cannot recognize negative links. The better re-
sults of UKGErect than UKGEp− demonstrate that introduc-
ing PSL into embedding learning can enhance the model
performance. Between the two model variants, UKGErect re-
sults in smaller MSE and MAE than UKGElogi. We notice
that all the models achieve much smaller MSE on PPI5k than
CN15k and NL27k. We hypothesize that this is because the
much higher density of PPI5k facilitates embedding learning
(Pujara, Augustine, and Getoor 2017).

5.6 Relation Fact Ranking
The next task focuses on ranking tail entities in the right
order for the query (h, r, ?t).

Evaluation protocol For a query (h, r, ?t), we rank all the
entities in the vocabulary as tail candidates and evaluate the
ranking performance using the normalized Discounted Cu-
mulative G ain (nDCG) (Li, Liu, and Zhai 2009). We define
the gain in retrieving a relevant tail t0 as the ground truth
confidence score s(h,r,t0). We take the mean nDCG over the
test query set as our ranking metric. We report the two ver-
sions of nDCG that use linear gain and exponential gain re-
spectively. The exponential gain version puts stronger em-
phasis on highly relevant results.

Results Table 4 shows the mean nDCG over all test
queries for all compared methods. Though TransE, Dist-
Mult, and ComplEx do not encode the confidence score in-
formation, they maximize the plausibility of all observed re-
lation facts and therefore rank these existing relation facts
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Dataset head relation true tail confidence predicted tail predicted confidence true confidence

CN15k

rush relatedto

fast 0.968 fast 0.703 0.968
motion 0.709 move 0.623 0.557
rapid 0.709 hour 0.603 0.654

urgency 0.709 time 0.601 0.105

hotel usedfor

sleeping 1.0 relaxing 0.858 N/A
rest 0.984 sleeping 0.849 1.0

bed away from home 0.709 rest 0.827 0.984
stay overnight 0.709 hotel room 0.797 N/A

NL27k Toyota competeswith

Honda 1.0 Honda 0.942 1.0
Ford 1.0 Hyundai 0.910 0.719

BMW 0.964 Chrysler 0.908 N/A
General Motors 0.930 Nissan 0.896 0.859

Table 5: Examples of relation fact ranking (global) results using UKGElogi. Top 4 results are shown. N/A denotes relation facts
that are not observed in KG.

Metrics CN15k NL27k PPI5k
Dataset F-1 Accu. F-1 Accu. F-1 Accu.
TransE 23.4 67.9 65.1 53.4 83.2 98.5

DistMult 27.9 71.1 72.1 70.1 86.9 97.1
ComplEx 18.9 73.2 63.3 53.4 83.2 98.9

URGE 21.2 86.0 83.6 88.7 85.2 98.6
UKGEn− 23.6 86.1 64.4 65.5 92.7 99.3
UKGEp− 26.2 88.7 89.7 93.4 94.2 99.3
UKGErect 28.8 90.4 92.3 95.2 95.1 99.4
UKGElogi 25.9 90.1 88.4 93.0 94.5 99.5

Table 6: F-1 scores (%) and accuracies (%) of relation fact
classification

high. We observe that DistMult and ComplEx have con-
siderably better performance than TransE, as TransE does
not handle 1-to-N relations well. ComplEx embeds enti-
ties and relations in the complex domain and handles asym-
metric relations better than DistMult. It achieves the best
results among the deterministic KG embedding models on
this task. As UKGEn− removes negative sampling from the
loss function, it cannot distinguish the negative links from
existing relation facts and results in the worst performance.
UKGEp− yields slightly worse performance than UKGErect.
Besides ranking the existing relation facts highly, our mod-
els also preserve the order of the observed relation facts
and thus achieve higher nDCG scores. Both UKGErect and
UKGElogi outperform all the baselines under all settings,
while UKGElogi yields higher nDCG on all three datasets
than UKGErect. Considering the confidence prediction re-
sults of UKGElogi in Section 5.5, we hypothesize that the
easy saturation of logistic function allows UKGElogi to bet-
ter distinguish negative links from true relation facts, while
this feature compromises its ability to fit confidence scores
more precisely.

Case study Table 5 gives some examples of relation fact
ranking results by UKGElogi. Given a query (h, r, ?t), the
top 4 predicted tails and true tails are given, sorted by their
scores in descending order. The predictions are consistent
with our common-sense. It is worth noting that some quite
reasonable unseen relation facts such as hotel is used for re-

laxing, can be predicted correctly. In other words, our pro-
posed approach can be potentially used to infer new knowl-
edge from the observed ones with reasonable confidence
scores, which may shed light on another line of future study.

5.7 Relation Fact Classification
This last task is a binary classification task to decide whether
a given relation fact l is a strong relation fact or not. A
relation fact is considered strong if its confidence score sl
is above a KG-specific threshold τ . The embedding mod-
els need to distinguish relation facts in the KG from neg-
ative links and high-confidence relation facts from low-
confidence ones.

Evaluation protocol We follow a procedure that is sim-
ilar to (Wang et al. 2014). Our test set consists of relation
facts from the KG and randomly sampled negative links
equally. We divide the test cases into two groups, strong and
weak/false, by their ground truth confidence scores. A test
relation fact l is strong when l is in the KG and sl > τ , oth-
erwise weak/false. We fit a logistic regression classifier as a
downstream classifier on the predicted confidence scores.

Results F-1 scores and accuracies are reported in Table 6.
These results show that our two model variants consistently
outperform all baseline models. The deterministic KG mod-
els can distinguish the existing relation facts from negative
links, but they do not leverage the confidence information
and cannot recognize the high-confidence ones. URGE does
not encode the rich relations. Although UKGEn− fits confi-
dence scores in the KG, it cannot correctly interpret nega-
tive links as false. Consistent with the previous two tasks,
the performance of UKGEp− is worse than UKGErect.

6 Conclusion and Future Work
To the best of our knowledge, this paper is the first work on
embedding uncertain knowledge graphs. Our model UKGE
effectively preserves both the relation facts and uncertainty
information in the embedding space of KG. We propose two
variants of our model and conduct extensive experiments
on relation fact confidence score prediction, relation fact
ranking, and relation fact classification. The results are very
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promising. For future work, we will study how to systemati-
cally generate reasonable logical rules and test its impact on
embedding quality. We are interested in extending UKGE for
uncertain knowledge extraction from text.
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