
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Image Block Augmentation for One-Shot Learning

Zitian Chen,1 Yanwei Fu,2,3 Kaiyu Chen,1 Yu-Gang Jiang1,2,3

1School of Computer Science, Fudan University, 2School of Data Science, Fudan University
3Shanghai Key Lab of Intelligent Information Processing, Fudan University,

{chenzt15, yanweifu,kychen15, ygj}@fudan.edu.cn

Abstract

Given one or a few training instances of novel classes, one-
shot learning task requires that the classifier generalizes to
these novel classes. Directly training one-shot classifier may
suffer from insufficient training instances in one-shot learn-
ing. Previous one-shot learning works investigate the meta-
learning or metric-based algorithms; in contrast, this pa-
per proposes a Self-Training Jigsaw Augmentation (Self-Jig)
method for one-shot learning. Particularly, we solve one-shot
learning by directly augmenting the training images through
leveraging the vast unlabeled instances. Precisely our pro-
posed Self-Jig algorithm can synthesize new images from
the labeled probe and unlabeled gallery images. The labels
of gallery images are predicted to help the augmentation
process, which can be taken as a self-training scheme. In-
trinsically, we argue that we provide a very useful way of
directly generating massive amounts of training images for
novel classes. Extensive experiments and ablation study not
only evaluate the efficacy but also reveal the insights, of the
proposed Self-Jig method.

Introduction
Inspired by the ability of people to acquire a new concept
from a handful of examples, one-shot learning is recently
studied with the goal of learning classifiers that general-
ize to novel classes which only have one, or a few training
instances of each class. While this problem is quite diffi-
cult, the main obstacle is lacking enough training images in
the novel classes. To address this task, previous efforts ex-
plored transferring knowledge from source base classes to
help learn a classifier on target novel classes, by the ways
of meta-learner (Vinyals et al. 2016; Snell, Swersky, and
Zemeln 2017) or metric space(Finn, Abbeel, and Levine
2017; Zhou, Wu, and Li 2018; Li et al. 2017), and to a lesser
extent, data augmentation in novel classes (Wang et al. 2018;
Hariharan and Girshick 2017).

In term of Gestalt principles of perceptual grouping (Des-
olneux, Moisan, and Morel 2004), humans can naturally per-
ceive objects as the organized patterns and objects. People
have been entertained by solving Jigsaw puzzles by assem-
bling the pieces into a complete picture. In this game, even
though some pieces are missing, we are still able to infer the
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(a) Jigsaw Augmentation Method

(b) Self-training Jigsaw Augmentation

Figure 1: Illustration of our augmentation method. The syn-
thesized image is visually consistent in each block (i.e., local
consistent), but not in all blocks (i.e., not global consistent).

content drawn in Jigsaw. This game thus inspires us a totally
different way of addressing one-shot learning by replacing
some pieces of labeled images and producing the deformed
additional images to help train the one-shot classifier.

Formally, to address one-shot learning task, we propose a
Self-Training Jigsaw Augmentation (Self-Jig) model to gen-
erate synthesized training images of novel classes. In par-
ticular, our fundamental idea is the proposed Jigsaw aug-
mentation algorithm that can create a new image from the
probe and gallery images. In the source domain, we first
train a base network; the synthesized images are composed
by the labeled probe and labeled gallery images which are
randomly sampled from training data. In the target domain,
we learn to generalize the one-shot classifier. Particularly,
the Self-Jig algorithm learns to synthesize new images from
the labeled probe image, and unlabeled gallery image which
must have the same class label predicted as the probe image
by one-shot classifier. As illustrated in Fig. 1(a), our Jigsaw
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augmentation method can synthesize new image by replac-
ing some blocks. The synthesized images can then be uti-
lized to update the classifiers in the target domain. Critically,
we present a very effective way of directly generating a large
number of training images in the novel classes. The whole
pipeline of our method is illustrated in Fig. 1(b). Remark-
ably, our framework is orthogonal and complementary to all
previous one-shot methods (Finn, Abbeel, and Levine 2017;
Zhou, Wu, and Li 2018; Li et al. 2017; Vinyals et al. 2016);
and the augmented training images, in principle, can be uti-
lized to train classifiers in the target domain. Extensive ex-
periments show that our framework can greatly improve the
one-shot learning performance.

Related Work
We briefly review the connections and differences between
our method with several related works. Note that the litera-
ture on these topics is vast, only works that most relevant are
summarized here.
One-Shot Learning. Previous works explored it by metric-
learning and meta-learning. The former one aims at learning
a metric space in which the one-shot classification can be
performed. The recent typical works on metric learning in-
clude Deep Siamese Networks(Koch, Zemel, and Salakhut-
dinov 2015), Matching Nets (Vinyals et al. 2016), PROTO-
NET (Snell, Swersky, and Zemeln 2017), RELATION NET
(Sung et al. 2018) and MACO (Hilliard et al. 2018). The
meta-learning algorithms (Finn, Abbeel, and Levine 2017;
Li et al. 2017; Zhou, Wu, and Li 2018; Ravi and Larochelle
2017; Munkhdalai and Yu 2017; Wang and Hebert 2016)
train a “high-level meta-structure” – meta-learner to fast op-
timize and adapt the weights of low-level networks. Ad-
ditionally, other strategies have also been investigated in
one-shot learning, such as attention (Wang et al. 2017;
Guttenberg and Kanai 2018), graph CNN (Garcia and Bruna
2018), and memory network (Santoro et al. 2016; Cai et al.
2018). Different from all these works, our model directly
generates synthesized images for one-shot classes; thus is
orthogonal and complementary to all these previous works.
Data Augmentation. In standard supervised classifica-
tion, researchers usually utilize many data augmentation
methods, such as flipping, rotating, adding noise and ran-
domly cropping images, to train deep networks (Krizhevsky,
Sutskever, and Hinton 2012; Chen et al. 2018; Zeiler and
Fergus 2014). More advanced augmentation method is to
synthesize or edit images directly, by hallucinating (Wang
et al. 2018), shrinking and hallucinating features (Hariharan
and Girshick 2017), mixing paring samples (Inoue 2018),
or randomly erasing parts of images (Zhong et al. 2017).
Quite differently, our Jigsaw augmentation dynamically syn-
thesizes the new image by integrating two images: one is the
labeled image, the other one is selected from the unlabeled
image set by self-training scheme. Thus visually our new
image can be both similar and yet significant different to the
labeled image.
Semi-supervised Learning. It focuses on facilitating unla-
beled data to help learn classifiers, particularly by deep ar-
chitectures (Rasmus et al. 2015; Laine and Aila 2016). These

works nevertheless still require an amount of labeled data to
initially train a deep network, thus limited in the one-shot
learning scenario. Recently, Ren et al. (Ren et al. 2018) ad-
dressed the semi-supervised few-shot learning tasks by ex-
tending PROTO-NET (Snell, Swersky, and Zemeln 2017).
In contrast, our model primarily targets at augmenting train-
ing data by the proposed self-training Jigsaw augmenta-
tion model, which is also very different from standard self-
training scheme (Yarowsky 1995; Chuck Rosenberg 2005).
That is, our framework utilizes the self-training scheme to
select unlabeled images as the gallery images to help syn-
thesize new images by Jigsaw augmentation method.

Image Block Augmentation
In one-shot learning, we are given the base categories Cbase,
and novel categories Cnovel in the source/target domain re-
spectively. The Cbase have sufficient labeled image data
Dbase = {Ii, yi}, yi ∈ Cbase. We conduct one-shot learn-
ing on the Cnovel which only have a small amount of la-
beled data Dnovel = {Ii, yi}, yi ∈ Cnovel ; additionally,
we have large amounts of unlabeled data of novel categories
Unovel = {Iu} in the target domain.

Our framework has two steps. We firstly use base classes
to train the base network, which is further fine-tuned as the
robust feature extractor by the augmented data, generated
by our Jigsaw augmentation method. We further employ the
augmentation method on novel classes by using unlabeled
data to help train the classifier for one-shot recognition.

Jigsaw Augmentation Method to Synthesize Images
We introduce a novel Jigsaw data augmentation method. As
Fig. 1(a), all the images are resized to the same fixed size,
and divided into nine blocks. Some blocks of probe image
Ii are randomly chosen and replaced by m blocks (m ≤ 4)
of corresponding positions from gallery image Iu.

Generally, we require Ii and Iu to have the same class
label. However, in target domain Cnovel, the gallery image
Iu is unlabeled; thus we use the predicted label of Iu by
self-training scheme. Such a way has several benefits.

First, when the class label of Iu is very different from
that of Ii, (i.e., the labels of Iu is wrongly predicted), the
synthesized image Ĩi can be taken as the randomly erased
version of Ii. Interestingly such synthesized image Ĩi has
been shown in (Zhong et al. 2017) to be able to improve the
generalization ability of the deep network, and complemen-
tary to the classical augmentation techniques, e.g., random
cropping, and flipping.

Second, when Iu is very related to Ii, i.e., they may share
the same or similar class label, the Ĩi can be taken as the
semantic composition of Iu and Ii. That means, the features
extracted from Iu and Ii, should in principle, be close to
each other, or distributed on the same class manifold/cluster.
And the Ĩi that is visually similar to both Iu and Ii, will
also be located in the same class manifold/cluster, as visu-
alized in Fig. 2. Note that visually Ĩi is only locally, but not
globally consistent, since some blocks are replaced (in Fig.
1(a)). Thus we need to learn a feature extractor that can still
robustly understand such images.
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Learning Robust Feature Extractor of Base Classes
To learn a feature extractor, we firstly train base network on
Dbase, and then fine-tune the base network with synthesized
images generated by Jigsaw augmentation method, which
replaces some blocks m ≤ 4. Particularly, we use the base
categories Cbase to train a supervised classification network
f (I; θ) ; θ indicates the parameter set. The f (I; θ) can be
a classification network, e.g., ResNet (He et al. 2015). In
Dnovel, we can use the final layer output of f (I; θ) as the
extracted features of the image I.

The f (I; θ) should be trained to robustly extract the fea-
tures of the synthesized image set

{
Ĩi

}
which is locally con-

sistent, but not globally. Thus, we fine-tune the f (I; θ) by
the synthesized images from synthesized image set D̃base

until converged. To construct the synthesized image set
D̃base, the probe Ii and gallery Iu images are randomly sam-
pled from Dbase. We want to highlight several issues with
this fine-tuning step.

Firstly, rather than using only D̃base to fine-tune f (I; θ) ,
we actually mix D̃base and Dbase to avoid the “catastrophic
forgetting” of the network (McCloskey and Cohen 1989).
Otherwise, the fine-tuned network will be inclined to extract
robust features of images in D̃base, but not Dbase.

Secondly, training by the augmented set D̃base does not
improve the classification performance of f (I; θ) on the
source domain. This is very reasonable, since the gallery
images that generate D̃base have already been used to train
f (I; θ). In other words, any each block of newly synthesized
image Ĩi in D̃base has been trained in f (I; θ); and there is
no new information being learned. This motivates our semi-
supervised framework of using unlabeled image set Unovel

to help one-shot learning. Thus once f (I; θ) is trained, we
use it as the generic feature extractor for one-shot recogni-
tion.

Thirdly, Noroozi et al. (Noroozi and Favaro 2016) took
solving Jigsaw puzzles as a pretext task to train a context-
free network in boosting the performance of object classifi-
cation and detection. In contrast, our fine-tuning step intro-
duced here can be used in any base network rather than the
specially designed network as in (Noroozi and Favaro 2016).

Furthermore, the target of our fine-tuning step is only to
teach the network to understand the synthesized images,
rather than directly boosting the performance of one-shot
classification.

Self-Training Jigsaw Augmentation Algorithm
We explain our self-training Jigsaw augmentation algorithm
in details. Particularly, in novel categories, the we can ex-
tract the features x = f (I; θ) of image I ∈ Dnovel; and
we further train a classifier g (x; η) with the parameter set
η. The classifier g (·) can either be Support Vector Machine
(SVM), Logistic Regression (LR) or Neural Network. The
g (x; η) is directly applied to Unovel to predict the class la-
bel of each image Iu. Among these unlabeled images, the
g (x; η) selects the image subset Uself = {Iu} ⊆ Unovel

of high prediction confidence, as well as the corresponding

label set yself = {g (f (Iu; θ) ; η)}.
We then apply the Jigsaw augmentation method by tak-

ing Dnovel and Uself as probe and gallery set respectively.
We set the replacing block m ≤ 2. Specifically, given one
labeled image Ii as the probe image, we randomly select
one gallery image Iu ∈ Uself , conditioning that yi =
g (f (Iu; θ) ; η). We can thus generate the augmented dataset
D̃novel =

{
Ĩi, yi

}
by Jigsaw augmentation method. In one-

shot recognition, we use the network f (I; θ) to extract the
image features of Dnovel and D̃novel and train the classi-
fier g̃ (x; η), which can be applied to categorize the testing
instances.

Intrinsically, our algorithm can indeed use the self-
training scheme (Chuck Rosenberg 2005) of updating
g (x; η) , which is one of the simplest semi-supervised algo-
rithms. Note that traditional self-training algorithm may suf-
fer from the semantic drift by reinforcing poor predictions.
In contrast, the synthesized images generated by our Jig-
saw augmentation algorithm may have better performance
in learning the one-shot learning models. This is because
the synthesized images can be either the cropped labeled
probe images or semantically composed images. Note that
it is useless to synthesizing new images by simply exchang-
ing blocks between labeled images due to that does not bring
in any new information. This point is also evaluated in our
ablation study of the experiments.

Experiments
Extensive experiments are conducted on miniImageNet and
ImageNet1k challenge datasets. The codes and models will
be released upon acceptance.

The miniImageNet proposed in (Vinyals et al. 2016), is
one of the most widely used benchmark dataset on one-shot
learning. It has 60,000 images from 100 classes with 600
images per class. The data split setup is used by (Ravi and
Larochelle 2017) with 64, 16, 20 classes as training vali-
dation, and testing set individually. Only the 64 classes of
training set serve as theCbase to train feature extractor. As in
(Vinyals et al. 2016; Ravi and Larochelle 2017), we consider
1-shot and 5-shot classification for five classes asCnovel ran-
domly chosen from testing class set; and 15 examples per
class for evaluation in each test round. The results are av-
eraged and reported over multiple rounds. Additionally, in
each round, we randomly select, 30 unlabeled images per
class (Unovel ) that have not used for training and testing.
We employ a self-training scheme to select half of the im-
ages from Unovel as Uself .

We also conduct the experiments on the large-scale
dataset – ImageNet1k challenge dataset. We use the same
split Cbase and Cnovel as proposed in (Hariharan and Gir-
shick 2017). The Top-1 and Top-5 accuracy are reported.
The results are averaged over 5 repeated runs as (Hariharan
and Girshick 2017). On each novel category, we randomly
sample 50 images per class as the unlabelled set Unovel.

Results on ImageNet1k Challenge Dataset
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Methods n=1 2 5 10 20

Baselines
Softmax –/14.1 –/33.3 –/56.2 –/66.2 –/71.5
LR 18.3/42.8 26.0/54.7 35.8/66.1 41.1/71.3 44.9/74.8
SVM 15.9/36.6 22.7/48.4 31.5/61.2 37.9/69.2 43.9/74.6

Competitors

Matching Network] (Vinyals et al. 2016) –/43.0 –/54.1 –/64.4 –/68.5 –/72.8
Model Regression] (Wang and Hebert 2016) 16.9/41.7 24.0/53.6 33.5/63.7 37.7/68.2 42.7/72.3
Generation-SGM (Hariharan and Girshick 2017) –/34.3 –/48.9 –/64.1 –/70.5 –/74.6
Flipping 17.4/39.6 24.7/51.2 33.7/64.1 38.7/70.2 44.2/74.5
Gaussian Noise 16.8/39.0 24.0/51.2 33.9/63.7 38.0/69.7 43.8/74.5
Gaussian Noise(feature level) 16.7/39.1 24.2/51.4 33.4/63.3 38.2/69.5 44.0/74.2

Ours

Self-Jig (SVM)* 23.8/51.9 31.5/62.1 38.6/69.6 42.4/73.2 45.8/75.7
Self-Jig(SVM)+ 17.7/39.1 24.9/51.3 34.1/64.9 39.1/70.6 44.2/74.9
Self-Jig (LR)* 22.0/49.3 30.1/60.5 38.1/68.7 41.9/72.2 44.9/74.9
Self-Jig (LR)+ 20.1/45.3 28.1/56.9 36.5/66.4 41.3/71.5 44.8/74.6

Ablation Study I

Rob (LR) 16.7/40.5 24.2/52.5 33.7/64.2 38.9/69.4 43.1/73.0
Jigsaw (LR) 17.5/42.2 25.1/53.9 33.9/64.7 39.8/67.9 41.3/70.6
Self-T (LR) 16.1/41.2 24.6/52.9 32.8/64.0 39.7/68.8 42.2/72.7
Rob (SVM) 14.3/33.2 20.5/44.4 29.4/58.6 36.3/67.5 42.0/72.9
Jigsaw (SVM) 14.2/33.9 20.1/45.2 29.2/58.4 34.1/65.1 40.0/68.4
Self-T (SVM) 16.0/36.7 22.7/48.4 30.8/60.0 35.7/66.7 40.9/69.5

Ablation Study II

Rob+Jigsaw (LR) 22.1/47.2 29.3/57.0 36.1/66.3 41.0/71.1 44.5/74.1
Rob+Self-T (LR) 16.3/41.5 24.4/52.7 33.1/64.1 39.9/69.2 42.6/72.5
Self-T+Jigsaw (LR) 15.6/40.3 23.6/51.8 32.0/63.5 39.1/68.5 41.9/71.8
Rob+Jigsaw (SVM) 17.9/37.0 23.9/48.3 29.5/58.8 35.1/65.7 40.3/68.8
Rob+Self-T (SVM) 15.0/35.5 21.8/47.5 29.9/59.2 34.6/65.4 39.8/68.3
Self-T+Jigsaw (SVM) 13.1/31.9 19.0/44.3 28.3/57.2 33.0/64.3 39.1/67.2

Table 1: Top-1 / Top-5 results of Imagenet1K (ResNet-10). *: our methods. ]: results from (Hariharan and Girshick 2017). +

: Jigsaw is applied in Dbase rather than Unovel (from Dnovel).

Setup. To make a comparison to (Hariharan and Girshick
2017), we choose both ResNet-10 and ResNet-50 resid-
ual network (He et al. 2015) as the base networks to train
f (I; θ). For both networks, we use SGD to train networks
which gets converged in 300 epochs: the learning rate is
set to 1 × 10−1 and degraded by 10 every 30 epochs with
the batch size 128. We augment each training instance up
to five instances and train for 10 epochs.In fine-tuning, each
probe image Ii helps produce 10 synthesize image Ĩi and we
trained for 10 epochs. The learning rate of the last layer and
the other layers are set to 1 × 10−1, 1 × 10−2 respectively
in our experiments.

Baselines and competitors. As the naive baselines, we di-
rectly use Cbase to train f (I; θ) which serves as the fea-
ture extractor to extract feature x of the image I; and further
train g (x; η) . The g (x; η) can be used as Support Vector
Machine (SVM), Logistic Regression (LR) or Neural Net-
work of 1 fully connected layer and 1 Softmax classification
layer (Softmax). In our experiments, SVM and LR perform
consistently better than Softmax, and thus are further used
in the ablation study. We also compare with recent models,
such as Model Regression (Wang and Hebert 2016), Match-
ing Network (Vinyals et al. 2016), Generation SGM (Hari-
haran and Girshick 2017). The standard data augmentation
methods are also compared here: “Flipping”: the same in-
put image is flipped from left to right; “Gaussian Noise”:

we add Gaussian noise N (0, 10) to each pixel of the in-
put image; “Gaussian Noise (feature level)”: the Gaussian
noiseN (0, 0.3) is also added to each dimension of ResNet-
18 feature extracted of each image. To make fair compar-
isons, all the augment methods utilize the SVM classifier as
the one-shot classifier.
Variants of our framework. An ablation study is used
to evaluate these three components of our framework: (1)
Learning robust feature extractor (“Rob”): we only learn
robust feature extractor, and directly apply the feature ex-
tractor to do one-shot classification on Cnovel; (2) Self-
training scheme (“Self-T”): we only use Dbase to train
f (I; θ); and on Cnovel, we apply the self-training method
(Chuck Rosenberg 2005) to update the classifier g (x; η); (3)
Jigsaw data augmentation (“Jigsaw”): we only use Dbase to
train f (I; θ); and we randomly select some unlabeled im-
ages as the gallery images in Jigsaw augmentation to get
D̃novel and g̃ (x; η).
Results. The results of using ResNet-10 and ResNet-50 net-
works are compared in Tab. 1 and Tab. 2 respectively. We
highlight several valuable points of the experiments.
(1) Our framework – Self-Jig (SVM) can achieve the best
performance, significantly outperforming all the baselines
and competitors. In particular, on Top-1 accuracy, the results
of Self-Jig (SVM) are improved 8% over the SVM baseline.
This validates the effectiveness of our self-training Jigsaw
augmentation method.
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Figure 2: t-SNE Visualization. Stars, Circles and Triangles represent the labeled probe, unlabeled gallery, and synthesized image
produced by our framework.

Figure 3: Top 5 accuracy(%) on Imagenet1K (Resnet-10).

Figure 4: Class activation of probe and synthesized images.

(2) On Top-5 accuracy, our Self-Jig (SVM) can beat the best
competitors – Matching Network (Vinyals et al. 2016) by
more than 10% in Tab. 1. The same conclusion still holds
when we use the ResNet-50 in Tab. 2. We argue that much
of our success and improvement comes from a more dis-
criminative augmented training set D̃novel by self-training
Jigsaw augmentation method, rather than from the other fac-
tors, since the Self-Jig (SVM) can beat the corresponding
baselines and competitors by a large margin both in Tab. 1
and Tab. 2.
(3) We found that due to the small number of training in-
stances on Cnovel , the Softmax classifier has lower recog-

Methods n=1 2 5 10
Softmax –/28.2 –/51.0 –/71.0 –/78.4
SVM 20.1/41.6 29.4/57.7 42.6/72.8 49.9/79.1
LR 22.9/47.9 32.3/61.3 44.3/73.6 50.9/78.8

Generation SGM –/47.3 –/60.9 –/73.7 –/79.5
Self-Jig (SVM) 30.3/59.7 39.7/70.9 48.7/78.7 51.1/80.3
Self-Jig (LR) 32.8/62.8 41.2/71.3 49.2/77.9 51.5/79.3

Robust (SVM) 19.2/40.7 28.3/56.6 41.4/71.9 48.7/77.9
Robust (LR) 21.8/46.5 31.2/60.2 43.3/72.6 50.7/77.5

Table 2: Top-1 / Top-5 accuracy on Imagenet1K Chal-
lenge Dataset (ResNet-50). Self-Jig (LR) indicates that LR
classifier is used as g (I; η). Self-T: self-training; Jigsaw:
Jigsaw Augmentation. Rob: Robust feature extractor. n in-
dicates the number of training instances per class.

nition accuracy than SVM and LR. Fig.3 clearly visualize
the performances of three different classifiers when chang-
ing the number of training instances.

We further extend the experiments in few-shot settings by
increasing the training instances from 1 to 20 as shown in
Tab. 1 and Tab. 2 . We found that our methods can still
beat the other baselines and competitors, due to the fact
that our augmented training instance set can help train the
classifier on Cnovel. We also observe that the improvements
achieved by our self-training Jigsaw augmentation method
tend to somewhat diminish as the number of training in-
stances substantially grows from 1, 2, 5 to 20 shots. This also
makes sense. With sufficient training instances, the classifier
g (I; η) can be better learned and the effects of augmenting
labeled images from the unlabeled set Uself , become less
pronounced.
Ablation study. In Ablation Study I in Tab. 1, we evalu-
ate the variants of our model. Here when we use Jigsaw
without self-T, means we synthesized new images from the
probe and randomly selected gallery images. We note that,
(1) almost all the results of using each single component
get degraded than the naive baselines. (2) Self-T (SVM) and
Self-T (LR) are the naive semi-supervised baselines by the
self-training method only. They add the most confidence in-
stances from Unovel to update the corresponding classifier
g (x; η). Only in one-shot learning (n = 1), Self-T (SVM)
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“Self-T”

“R
ob

”
0 1 2 3 4

0 52.73 51.76 50.12 49.34 48.02
1 52.64 55.99 56.24 55.79 55.55
2 52.66 56.67 56.99 56.51 56.01
3 52.59 57.45 57.78 57.66 57.22
4 52.55 57.76 58.45 57.01 56.45
5 52.23 56.06 56.71 56.36 56.21
6 51.79 53.51 54.12 53.89 53.25
7 51.6 53.21 53.41 52.97 52.76
8 51.44 52.77 52.83 52.41 52.18

(a) Replacing blocks (b) Augmentation in SSL

Figure 5: (a)Each row/column is corresponding to the number of replaced blocks in the “Rob”/”Self-T” component individually.
The 1-shot classification accuracy on Cnovel are reported. (b) Our Self-Jig is used in semi-supervised learning. The X-axis
indicates the number of percentage of training instances used. Y-axis denotes the classification accuracy.

can get slightly improved over SVM method, due to discrim-
inative information learned from unlabeled data. Critically,
this shows that the proposed methodology is a single uni-
fied framework; and the significant improvement of Self-Jig
comes from the integration of all three components, rather
than each individual component.

In Ablation Study II in Tab. 1, the combinations of two
components are compared. Interestingly, (1) we found that
using two components can indeed help improve the perfor-
mance over the corresponding baselines. For example, the
“Rob+Jigsaw (LR)” and “Rob+Jigsaw (SVM)” have better
classification accuracy over the LR and SVM baselines, but
lower results than our Self-Jig (LR) and Self-Jig (SVM).
This actually demonstrates that the importance of “self-
training” component in selecting the Uself for data augmen-
tation. (2) Additionally, the SVM classifier is more sensitive
to the quality of training instances than LR. With the aug-
mented data D̃novel by our self-training Jigsaw method, our
Self-Jig (SVM) have better performance than Self-Jig (LR).
In contrast, Ablation study I and Ablation Study II show that
the baseline methods by SVM classifiers are significantly
lower than those corresponding variants by the LR classi-
fier, due to the small number or low augmented data quality
of training instances.
Without unlabeled data. Our framework still works with-
out access to the extra unlabeled data. We could sample in-
stances from Dbase to serve as the gallery images. In this
case, the Jigsaw Augmentation is conducted between im-
ages from different categories but likely to have a similar
appearance. As shown in Tab. 1, we observed marginally
improved (Self-Jig(SVM)+,Self-Jig(LR)+) over the naive
baseline (SVM,LR).

Results on miniImageNet
Setup. We employ ResNet-18 structure as the feature extrac-
tor f (I; θ). By default, we use the same hyperparameter and
experimental settings as we train the network in ImageNet1k
challenge dataset.
Competitors. As in Tab. 3, we mainly compare three

groups of the competitors: Meta-learning algorithms, such
as MAML (Finn, Abbeel, and Levine 2017), Meta-SGD
(Li et al. 2017), DEML+Meta-SGD (Zhou, Wu, and Li
2018), META-LEARN LSTM (Ravi and Larochelle 2017)
and Meta-Net (Munkhdalai and Yu 2017); Metric-learning
algorithms, such as Matching Nets (Vinyals et al. 2016),
PROTO-NET (Snell, Swersky, and Zemeln 2017), RELA-
TION NET (Sung et al. 2018), and MACO (Hilliard et
al. 2018)) ; and other semi-supervised methods, including
Semi-supervised PROTO-NET (S.S. PROTO-NET) (Ren et
al. 2018), Ladder Network (Rasmus et al. 2015), Graph Neu-
ral Networks(Garcia and Bruna 2018), Transductive Prop-
agation Network(Liu et al. 2018), Semi-supervised Resnet
PN(Boney and Ilin 2017). In particular, to make a fair com-
parison, we implement the ladder network by using ResNet-
18 architectures and the Graph Neural networks under same
settings. Random Erase (Zhong et al. 2017) is the method
that randomly erases the images. We implement the method
(Zhong et al. 2017) by ResNet-18 with SVM classifier.
Results. As shown in Tab. 3(a), our Self-Jig (SVM) achieves
the best performance in the 1-shot and 5-shot classification
settings. This validates the effectiveness of our framework in
using the unlabeled images in data augmentation. Further-
more, we split the proposed framework, and evaluate each
component/the combination of any two components in Tab.
3(b). We have two conclusive results: (1) Our frameworks,
i.e., Self-Jig (SVM), and Self-Jig (LR), get significantly im-
proved over the corresponding baselines – SVM and LR, on
1-shot and 5-shot classification. This again shows the effi-
cacy of our self-training Jigsaw data augmentation in help-
ing one-shot classification. (2) The variants of only using
each or any two components have no or very limited im-
provement over the corresponding baselines. That indicates
that the proposed method is a unified single framework.
Compared with other semi-supervised few-shot learning
methods. S.S.PROTO-NET(Ren et al. 2018), Ladder Net-
work (Rasmus et al. 2015), GNN(Garcia and Bruna 2018),
TPN(Liu et al. 2018), Resnet PN(Boney and Ilin 2017),
Resnet PN+(Boney and Ilin 2017) use 20,15,15,15,15,120

3384



Methods
miniImageNet (%)

1-shot 5-shot

MAML (Finn, Abbeel, and Levine 2017) 48.70±1.84 63.11±0.92
Meta-SGD (Li et al. 2017) 50.47±1.87 64.03±0.94

DEML+Meta-SGD (Zhou, Wu, and Li 2018) 58.49±0.91 71.28±0.69
META-LEARN LSTM (Ravi and Larochelle 2017) 43.44±0.77 60.60±0.71

Meta-Net (Munkhdalai and Yu 2017) 49.21±0.96 –
Matching Nets (Vinyals et al. 2016) 43.56±0.84 55.31±0.73

PROTO-NET (Snell, Swersky, and Zemeln 2017) 49.42±0.78 68.20±0.66
RELATION NET (Sung et al. 2018) 57.02±0.92 71.07±0.69

MACO (Hilliard et al. 2018) 41.09±0.32 58.32±0.21
Random Erase (Zhong et al. 2017) 52.89±1.32 73.42±0.74

S.S. PROTO-NET (Ren et al. 2018) 50.41±0.31 64.39±0.24
Ladder Network (Rasmus et al. 2015) 52.82±1.49 73.37±0.79

GNN(Garcia and Bruna 2018) 53.46±0.48 68.70±0.81
TPN(Liu et al. 2018) 54.72±0.84 69.25±0.67

Resnet PN(Boney and Ilin 2017) 54.07±0.47 70.92±0.66
Resnet PN+(Boney and Ilin 2017) 55.67±0.45 72.55±0.52

Self-Jig (SVM)* 58.80±1.36 76.71±0.72
Self-Jig (LR)* 58.45±1.22 76.31±0.64

Methods
miniImageNet (%)

1-shot 5-shot

SVM 52.73±1.44 73.31±0.81
LR 53.06±1.37 73.48±0.86

Rob (SVM) 52.55±1.23 72.89±0.69
Rob (LR) 52.95±1.19 73.01±0.77

Self-T (SVM) 49.81±1.09 71.57±0.70
Self-T (LR) 51.89±1.52 72.58±0.87

Jigsaw (SVM) 54.76±1.25 73.25±0.88
Jigsaw (LR) 55.09±1.21 73.39±0.76

Rob+Self-T (SVM) 51.22±1.41 71.98±0.77
Rob+Self-T (LR) 50.02±1.11 71.02±0.65

Rob+Jigsaw (SVM) 55.54±1.29 73.40±0.69
Self-T+Jigsaw (SVM) 49.89±1.51 71.21±0.92

Self-Jig (SVM)* 58.80±1.36 76.71±0.72
Self-Jig (LR)* 58.45±1.22 76.31±0.64

(a) Main Results (b) Ablation Study

Table 3: Results on miniImageNet. The “±” indicates 95% confidence intervals over tasks. *: indicates our method.

unlabeled images per category respectively, while our
method use 15. As in Tab. 3(a), our frameworks easily over-
perform other methods in both 1-shot and 5-shot classifica-
tion settings.

Visualization. We visualize the Class Activation Map
(CAM) of images in Fig. 4. Specifically, the first and third
rows are labeled probe and synthesized images produced by
our framework, respectively. The second and fourth rows are
the activation map computed from the first and third rows
by (Zhou et al. 2015) individually. In particular, the high-
est predicted class scores of each image is projected back
to highlight its class–specific discriminative regions. We can
show that if the replaced blocks of the synthesized images
are highly related to its class label, the class-specific region
would be enlarged, such as the “radar” image in the fourth
column; otherwise, this region will be reduced.

To give more insights we visualize five classes in Fig.
2(a). The Stars, Circles, and Triangles represent the labeled
probe, the unlabeled gallery, and the synthesized image gen-
erated by our framework. The instances of each class are de-
noted by the same color. We can see in Fig. 2(a) that most of
our synthesized images (i.e., Triangles) are still in the same
class manifold. This explains why our synthesized images
can help a lot in one-shot classification. We show the in-
stances distribution of the red (Fig. 2(b)), green (Fig. 2(c))
and purple class (Fig. 2(d)) of Fig. 2(a). Each pair of labeled
probe Ii , unlabeled gallery Iu and synthesized image Ĩi is
drawn with the same color. We can observe that when the
gallery image is on the same manifold as probe image, the
synthesized image is also on the manifold, e.g., the blue pair
in Green class in Fig. 2(c) .

Ablation Study

We conduct extensive further ablation study on
miniImageNet to reveal the insights of our framework.
In particular, we answer several questions as follows,

Replacing blocks. We use Jigsaw augmentation to fine-tune
the base network with m ≤ 4; The “Self-T” component em-
ploys the Jigsaw augmentation (m ≤ 2) in a self-training
manner. We vary the parameter m in our framework and
compare the results in Tab. 5. We can see that by chang-
ing the number of replaced blocks, there may be a slight
variance in one-shot classification accuracy; but, our experi-
mental conclusions still hold.

The Number of synthesized images. We choose to generate
10 synthesized images in our experiments. We also compare
the results of generating 0, 1, 2, 5, 10, 20, 50, 100, 200, 500,
1000 synthesized images, while all the other parameters are
kept the same. Thus the corresponding one-shot classifica-
tion accuracies are 52.55%, 55.84%, 57.14%, 57.9%, 58.2%,
58.02%, 57.96%, 58.42%, 58.24%, 58.11% and 58.19%, re-
spectively. Thus, we found that changing this parameter may
lead to a slight variance of the final performance. But our fi-
nal results are still significantly better than the baselines.

Performance in Semi-Supervised Learning (SSL). Our
Self-Jig is tested in the SSL setting on Cbase classes: we use
Dbase as training data, and have unlabeled images to help
learn the SSL classifier. As in Tab. 5(b), we train the ResNet-
18 classifier on Cbase, and conduct the Self-Jig method by
using the unlabeled images. The results show that our frame-
work can improve classification performance in such a set-
ting, and we will take it as a future work to fully explore
these cases.
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Conclusion
This work proposes a self-training Jigsaw data augmentation
method for one-shot learning. Extensive experiments show
the efficacy of our framework in synthesizing new instances
to boost the recognition performance.
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