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Abstract

Knowledge graphs are used to represent relational informa-
tion in terms of triples. To enable learning about domains,
embedding models, such as tensor factorization models, can
be used to make predictions of new triples. Often there is
background taxonomic information (in terms of subclasses
and subproperties) that should also be taken into account. We
show that existing fully expressive (a.k.a. universal) mod-
els cannot provably respect subclass and subproperty infor-
mation. We show that minimal modifications to an exist-
ing knowledge graph completion method enables injection of
taxonomic information. Moreover, we prove that our model
is fully expressive, assuming a lower-bound on the size of
the embeddings. Experimental results on public knowledge
graphs show that despite its simplicity our approach is sur-
prisingly effective.

The AI community has long noticed the importance of
structure in data. While traditional machine learning tech-
niques have been mostly focused on feature-based repre-
sentations, the primary form of data in the subfield of Sta-
tistical Relational AI (StaRAI) (Getoor and Taskar 2007,
Raedt et al. 2016) is in the form of entities and relation-
ships among them. Such entity-relationships are often in the
form of (head, relationship, tail) triples, which can also be
expressed in the form of a graph, with nodes as entities and
labeled directed edges as relationships among entities. Pre-
dicting the existence, identity, and attributes of entities and
their relationships are among the main goals of StaRAL

Knowledge Graphs (KGs) are graph structured knowl-
edge bases that store facts about the world. A large num-
ber of KGs have been created such as NELL (Carlson et
al. 2010), FREEBASE (Bollacker et al. 2008), and Google
Knowledge Vault (Dong et al. 2014). These KGs have appli-
cations in several fields including natural language process-
ing, search, automatic question answering and recommen-
dation systems. Since accessing and storing all the facts in
the world is difficult, KGs are incomplete. The goal of /ink
prediction for KGs — a.k.a. KG completion — is to predict
the unknown links or relationships in a KG based on the ex-
isting ones. This often amounts to infer (the probability of)
new triples from the existing triples.
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A common approach to apply machine learning to sym-
bolic data, such as text, graph and entity-relationships, is
through embeddings. Word, sentence and paragraph embed-
dings (Mikolov et al. 2013; Pennington, Socher, and Man-
ning 2014), which vectorize words, sentences and para-
graphs using context information, are widely used in a va-
riety of natural language processing tasks from syntactic
parsing to sentiment analysis. Graph embeddings (Hoff,
Raftery, and Handcock 2002; Grover and Leskovec 2016;
Perozzi, Al-Rfou, and Skiena 2014) are used in social net-
work analysis for link prediction and community detection.

In relational learning, embeddings for entities and rela-
tionships are used to generalize from existing data. These
embeddings are often formulated in terms of tensor factor-
ization (Nickel, Tresp, and Kriegel 2012; Bordes et al. 2013;
Trouillon et al. 2016; Kazemi and Poole 2018c). Here, the
embeddings are learned such that their interaction through
(tensor-)products best predicts the (probability of the) ex-
istence of the observed triples; see (Nguyen 2017; Wang
et al. 2017) for details and discussion. Tensor factorization
methods have been very successful, yet they rely on a large
number of annotated triples to learn useful representations.
There is often other information in ontologies which speci-
fies the meaning of the symbols used in a knowledge base.
One type of ontological information is represented in a hier-
archical structure called a taxonomy. For example, a knowl-
edge base might contain information that DJTrump, whose
name is “Donald Trump” is a president, but may not contain
information that he is a person, a mammal and an animal, be-
cause these are implied by taxonomic knowledge. Being told
that mammals are chordates, lets us conclude that DJTrump
is also a chordate, without needing to have triples specifying
this about multiple mammals. We could also have informa-
tion about subproperties, such as that being president is a
subproperty of “managing”, which in turn is a subproperty
of “interacts with”.

This paper is about combining taxonomic information
in the form of subclass and subproperty (e.g., managing
implies interaction) into relational embedding models. We
show that existing factorization models that are fully ex-
pressive cannot reflect such constraints for all legal entity
embeddings. We propose a model that is provably fully ex-
pressive and can represent such taxonomic information, and
evaluate its performance on real-world datasets.



Factorization and Embedding

Let £ represent the set of entities and R represent the
set of relations. Let W be a set of triples (h,r,t) that
are true in the world, where h,t € £ are head and tail,
and r € R is the relation in the triple. We use W° to
represent the triples that are false — i.e., W© = {(h,r,t) €

E xR x& | (h,r,t) ¢ W}. An example of a triple
in W can be (Paris, CapitalCityOfCountry, France)
and an example of a triple in WS can be

(Paris, CapitalCityOfCountry, Germany). A KG KL ¢ W is
a subset of all the facts. The problem of the KG completion
is to infer W from its subset KG. There exists a variety of
methods for KG completion. Here, we consider embedding
methods and in particular using tensor-factorization. For a
broader review of the existing KG completion that can use
background information see Related Work.

Embeddings: An embedding is a function from an entity
or a relation to a vector (or sometimes higher order tensors)
over a field. We use bold lower-case for vectors — that is s €
R” is an embedding of an entity and r € R is an embedding
of a relation.

Taxonomies: It is common to have structure over the
symbols used in the triples, see (e.g., Shoham, 2016). The
Ontology Web Language (OWL) (Hitzler et al. 2012) de-
fines (among many other meta-relations) subproperties and
subclasses, where p; is a subproperty of po if Vz,y :
(x,p1,y) — (x,p2,y), that is whenever p; is true, ps is also
true. Classes can be defined either as a set with a class as-
sertion (often called “type”) between an entity and a class,
e.g., saying x is in class C using (z,type,C') or in terms
of the characteristic function of the class, a function that is
true of element of the class. If ¢ is the characteristic func-
tion of class C, then z is in class ¢ is written (z, ¢, true).
For representations that treat entities and properties sym-
metrically, the two ways to define classes are essentially the
same. (1 is a subclass of C5 if every entity in class C7 is
in class Cy, that is, Vz : (x,type,C1) — (z,type,Cs) or
Vo : (x,c1,true) - (x,cq,true) . If we treat true as an
entity, then subclass can be seen as a special case of subprop-
erty. For the rest of the paper we will refer to subsumption in
terms of subproperty (and so also of subclass). A non-trivial
subsumption is one which is not symmetric; p; is a subprop-
erty of po and there is some relations that is true of p; that
is not true of po. We want the subsumption to be over all
possible entities; those entities that have a legal embedding
according to the representation used, not just those we know
exist. Let £* be the set of all possible entities with a legal
embedding according to the representation used.

Tensor factorization: For KG completion a tensor fac-
torization defines a function i : R¥ x R! x R*¥ — [0, 1] that
takes the embeddings h, r and t of a triple (h,r,t) as input,
and generates a prediction, e.g., a probability, of the triple
being true (h,r,t) € W. In particular, p is often a non-
linearity applied to a multi-linear function of h,r,t. The
family of methods that we study uses the following multi-
linear form: Let x, y, and z be vectors of length k. Define
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(x,y,z) to be the sum of their element-wise product, namely

k

<X7 Yy, Z) = Z XeYezZe
£=1

)

where x; is the /-th element of vector x.

Here, we are interested in creating a tensor-factorization
method that is fully expressive and can incorporate back-
ground information in the form of taxonomy. A model is
fully expressive if given any assignment of truth values to all
triples, there exists an assignment of values to the embed-
dings of the entities and relations that accurately separates
the triples belonging to YV and W* using .

ComplEx

ComplEx (Trouillon et al. 2016) defines the reconstruction
function p, such that the embedding of each entity and each
relation is a vector of complex numbers. Let Re(x) and
Im(x) denote the real and imaginary part of a complex vec-
tor x. In ComplEX, the probability of any triple (4, r,t) is

2)

where o : R — [0,1] is the sigmoid or logistic function,
and a+ib = a — ib (where i = v/—1) is the element-wise
conjugate of the complex vector a + ¢b. Note that, if the
tail did not use the conjugate, the head and tail would be
treated symmetrically and it could only represent symmetric
relations; e.g., see DistMult in (Yang et al. 2014).

Trouillon et al. (2017) prove that ComplEx is fully expres-
sive. In particular, they prove that any assignment of ground
truth can be modeled by ComplEx embeddings of length
|€ |IR |. The following theorem shows that we cannot use
ComplEx to enforce our prior knowledge about taxonomies.

p(h,r,t) = o(Re((h,r,t))

Theorem 1 ComplEx cannot enforce non-trivial subsump-
tion.

Proof Assume a non-trivial subsumption so that Vh,t € £* :
(h,r,t) = (h,s,t), and so u(h,s,t) > u(h,r,t), and there
are entities a,b € £* such that p(a,s,b) > u(a,r,b). Let
a’ be an entity such that a’' = —a. Then u(a’,;s,b) = 1 -
1(a,s,b) and p(a’;r,b) =1 - p(a,r,b), so pu(a’;s,b) <
p(a’,r,b), a contradiction to the subsumption we assumed.
]

Recently, Ding et al. (2018) proposed a method which
they call ComplEx-NNE+AER to incorporate a weaker no-
tion of subsumption in ComplEx. For a subsumption Vh,t €
E* : (h,r,t) - (h,s,t), they suggest adding soft con-
straints to the loss function to encourage Re(r) < Re(s)
and Im(r) = Im(s). When the constraints are satisfied,
ComplEx-NNE+AER ensures Vh,t € £ : u(h,r,t) <
wu(h, s t). This is a weaker notion than the definition in
the Factorization and Embedding section which requires
Vh,t € & : u(h,r,t) < p(h,s,t) (that is, £* is replaced
with &).

Theorem 2 ComplEx-NNE+AER cannot satisfy its con-
straints and be fully expressive if symmetry constraints are
allowed.



Table 1: Results for the choice of non-linearity in producing non-negative embeddings.

WNI18 FB15k
MRR Hit@ MRR Hit@
Function f Filter =~ Raw 1 3 10 Filter =~ Raw 1 3 10
SimplE*-Exponential 0.866 0.547 0.829 0.925 0.897 0.575 0.248 0.468 0.640 0.773

SimplE*-Logistic 0.8564 0.542 0.836 0.863 0.885 0.425 0.228 0.294 0.491 0.694

SimplE*-ReLU 0.937 0.575 0.936 0.938 0.939 0.725 0.240 0.658 0.770 0.841
Proof In ComplEx a relation r is symmetric for all pos- ) ..
sible entities if and only if Im(r) = 0 (Trouillon et Table 2: Statistics on th.e datasets..
al.,, 2016, Section 3). In order to satisfy constraints for Dataset €] IR| #train #valid #test
Vhit € € 2 (h,r,t) = (h,s,t), (Ding et al. 2018) as- WNIS 40,943 18 141,442 5000 5,000
sign Im(r) = Tm(s). Therefore, if relation r is sym- FBISk 14,951 1,345 483,142 50,000 59,071
metric, it enforces relation s to be symmetric too which Sport 1039 5 1312 - 307
is not generally true. As a counter example, r might Location 445 5 384 - 100

be the married_to relation, which is symmetric (so the
Im(married to) = 0), but s is the knows relation, and
Vh,t € € : (h,married_to,t) - (h,knows,t) is true in
real-world, but setting the Im(knows) = Im(married to)
will imply knows is symmetric, which is not true (as many
people know celebrities but celebrities do not know many
people). m

SimplE

SimplE (Kazemi and Poole 2018c) achieves state-of-the-art
in KG completion by considering two embeddings for each
relation: one for the relation » € R itself and one for its
inverse. We use r* € R to denote the “forward” embedding
of r and r~ € R¥ to denote the embedding of its inverse.
The embedding r = [r*, r~] for a relation is a concatenation
of these two parts. Similarly, the embedding for each entity
e € £ has two parts: its embedding as a head e* and as a
tail e~ — that is e = [e*,e”]. Using this notation, SimplE
calculates the probability of (h,r,t) € W for each triple in
both forward and backward directions using

M(h,r,t)ig(%(<h+,r+,t+)+<t-,r-,h->)). 3)

Kazemi and Poole (2018c) prove SimplE is fully ex-
pressive and provide a bound on the size of the embed-
ding vectors: For any truth assignment W ¢ &€ xR x &,
there exists a SimplE model with embedding vectors of size
min(|€ ||R |,[W| + 1) that represent the assignment. The
following theorem shows the limitation of SimplE when it
comes to enforcing subsumption.

Theorem 3 SimplE cannot enforce non-trivial subsump-
tions.

Proof Consider Vh,t € £* : (h,r,t) » (h,s,t) as a non-
trivial subsumption. So we have pu(h,s,t) > u(h,r,t), and
there are entities a,b € £* such that ji(a,s,b) > u(a,r,b).
Let a' be an entity such that a’ = —a. Then u(a’,;s,b) =1 -
,u(a, S, b) and :u(alv r, b) =1- /I’(av r, b)’ SO u(aly S, b) <
wu(a’,r, b)) a contradiction to the subsumption we assumed.
u
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Neural network models

The neural network models (Socher et al. 2013; Dong et al.
2014; Santoro et al. 2017) are very flexible, and so without
explicit mechanisms to enforce subsumption, they cannot be
guaranteed to obey any subsumption knowledge.

Proposed Variation: SimplE*

In this section we propose a slight modification on Sim-
plE so that the resulting method can enforce subsumption.
The modification is restricting entity embeddings to be non-
negative — that is e*,e™ > 0 Ve € £ , where the inequality is
element-wise. Next we show that the resulting model is fully
expressive and is able to enforce subsumption.

Theorem 4 (Expressivity) For any truth assignment over
entities £ and relations R containing |W)| true facts, there
exists a SimplE*model with embeddings vectors of size
min(|€ ||R |+ 1,|W| + 1) that represent the assignment.

Proof Assume r; is the i-th relation in R and e; is the j-th
entity in £. For a vector a we define (a); as the i-th element
of a. We define (x}), = 1 if ndiv|E| = i except the last
element (r])ig|r| = —1, and for each entity s; we define
(87)n = Lifnmod [E] = j or n = |E|[R| and O otherwise.
In this setting, for each r; and e; product of r; and s; is 0
everywhere except for the element at (i * |E| + j) and the last
element in the embeddings. In order for the triple (e;,r;, e))
to hold, we define (s;) to be a vector where all elements are
0 except the (i + |E| + j)-th element which is 2. This proves
that SimplE™ is fully expressive with the bound of |€ ||R |+ 1
for size of the embeddings.

We use induction to prove the bound |W| + 1. Let [W| =0
(base of induction). We can have embedding vectors of size
1 for each entity and relation, setting the value for entities
to 1 and to relations to -1. Then (h*,r* t*) + (t",r",h7)
is negative for every entities h and t and relation r. So there
exist an assignment of size 1 that represent this ground truth.

Let’s assume for any ground truth where |W)| = n—1, there
exists an assignment of values to embedding vectors of size



Table 3: Relations and Rules in Sport and Location datasets.

Relations Subsumptions
AthleteLedSportsTeam (z, AtheleLedSportsTeam,y) — (x, Athlete PlaysForTeam,y)
AthletePlaysForTeam (x, AthletePlaysForTeam,y) - (xz, PersonBelongsToOrganization,y)
Sport CoachesTeam (z,CoachesTeam,y) — (x, PersonBelongsToOrganization,y)
OrganizationHiredPerson (x, OrganizationHiredPerson,y) — (y, PersonBelongsToOrganization, )
PersonBelongsToOrganization | (z, PersonBelongsToOrganization,y) — (y, Organization Hired Person, x)
Capital CityOfCountry
. CityLocatedInCountry (z, CapitalCityO fCountry,y) — (z, CityLocatedInCountry,y)
Location CityLocatedInState (z, StateHasCapital,y) — (y, CityLocatedInState, x)
StateHasCapital ’ ’ ’ ’
StateLocatedInCountry

n that represent the ground truth (assumption of induction).
We must prove for any ground truth where |W| = n, there
exist an assignment of values to embedding vectors of size
n + 1 that represent this ground truth.

Let (h,r,t) be one of the n true facts. Consider a modified
ground truth which is identical to the ground truth with n
true facts, except that (h,r,t) is assigned false. The modified
ground truth has n—1 true facts and based on the assumption
of the induction, we can represent it using some embedding
vectors of size n. Let g = (h*,r*,t*) + (t7,r",h™). We add
an element to the end of all embedding vectors and set it to
0. This increases the vector size to n + 1 but does not change
any scores. Then we seth to 1, r to 1 and t to q + 1. This
ensure this triple is true for the new vectors, and no other
probability of triple is affected. m

Theorem 5 (Subsumption) SimplE* guarantees subsump-
tion using an inequality constraints.

Proof Assume Vh,t € &* (h,r,t) — (h,s,t) as
a non-trivial subsumption. As legal entity embeddings in
SimplE* have non-negative elements, by adding the element-
wise inequality constraint s > r, we force u(h,s,;t) >
w(h,r,t) forall h,t € £ which is forcing the subsumption.
u

Objective Function and Training

Given the function p, that maps embeddings to the probabil-
ity of a triple, ideally we would like to minimize the follow-
ing regularized negative log-likelihood function:

L({e} {r})=- > log(u(h,r,t))
(h,r,t)ew
- Z log(1 - p(h,r,t)) + Q({e}, {r})
(h,r,t)ewe

where {e} represents entity embeddings, {r} represents re-
lation embeddings and Q({e}, {r}) is a regularization term.
We use L2-regularization in our experiments. Optimizing £
poses two challenges: I) we do not know the sets VW and W,
as the purpose of KG completion is to produce these sets in
the first place; II) the number of triples (specially in W°) is
often too large, and for larger KGs exact calculation of these
terms is often computationally unfeasible.

To address I, we use K as a surrogate for YV and use its
complement £ = &€ xR x & — K instead of W*. To ad-
dress the computational problem in II, we use stochastic op-
timization and follow the contrastive approach of (Bordes et
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al. 2013): for each mini-batch of positive samples from KG,
we produce a mini-batch of negative samples of the same
size, by randomly “corrupting” the head or tail of the triple
— i.e., replacing it with a random entity.

Enforcing the subsumptions In order to enforce Vh,t €
E* : (h,r,t) — (h,s,t), we add an equality constraint as
r = s — §,, where J,. is a non-negative vector that specifies
how r differs from s. We learn ¢, for all relations r that are
in such a subsumption. This equality constraint guarantees
the inequality constraint of Theorem 5.

Experimental Results

The objective of our empirical evaluations is two-fold: First,
we want to see the practical implication of non-negativity
constraints in terms of effectiveness of training and the
quality of final results. Second, and more importantly, we
would like to evaluate the practical benefit of incorporating
prior knowledge in the form of subsumptions in sparse data
regimes.

Datasets: We conducted experiments on four standard
benchmarks: WN18, FB15K, Sport and Location. WN18
is a subset of WORDNET (Miller 1995) and FB 15K is a sub-
set of FREEBASE (Bollacker et al. 2008). Sport and Location
datasets are introduced by (Wang et al. 2015), who created
them using NELL (Mitchell et al. 2015). The relations in
Sport and Location, along with the subsumptions, are listed
in Table 3. Table 2 gives a summary of these datasets. For
evaluation on WN18, FB15K, we split the existing triples
in KG into the same train, validation, and test sets using the
same split as (Bordes et al. 2013).

Evaluation Metrics: To evaluate different KG comple-
tion methods we need to use a train A and test T split,
where N/ U T = K. We use two evaluation metrics: HIT@T
and Mean Reciprocal Rank (MRR). Both these measures
rely on the ranking of a triple in the test set (h,r,t) € T,
obtained by corrupting the head (or the tail) of the relation
with &' # h and estimating p(h',r,t). An indicator for a
good KG completion method is that (h,r,t) ranks high in
the sorted list among corrupted triples.

Let ranky, (h,r,t) be the ranking of p(h,r,t) among all
head-corrupted relations, and let rank; (h, 7, t) denote a sim-
ilar ranking with tail corruptions. MRR is the mean of the



Table 4: Results on WN 18 and FB 15K for SimplE and SimplE* without incorporating subsumptions.

WNI18 FB15K
MRR Hit@ MRR Hit@
Model Filter = Raw 1 3 10 Filter = Raw 1 3 10
ComplEx 0.941 0.587 0.936 0.945 0.947 0.692 0.242 0.599 0.759 0.840
SimplE  0.942 0.588 0.939 0.944 0.947 0.727 0.239 0.660 0.773 0.838
SimplE*  0.937 0.575 0.936 0.938 0.939 0.725 0.240 0.658 0.770 0.841
reciprocal rank: o4 P
035 = =SimplE 7~
1 1 1 —— SimplE+ -
MRR = + 03 >imp — e
2% |T| (h,r,t)eT rankh(ha T, t) rankt(h, r, t) o 025 = = Logical Inference e -
® e e --°
To provide a better metric, Bordes et al. (2013) suggest re- '3:: . — =T .- -
moving any corrupted relation that is in KG. We refer to the 015 - ——_ -
original definition of MRR as raw MRR and to Bordes et 01 ok S
al. (2013)’s modified version as filtered MRR. 0.05 ,’k ==
z

HIT@T measures the proportion of triples in 7 that rank
among top ¢ after corrupting both heads and tails.

Effect of Non-Negativity Constraints

Non-negativity has been a subject studied in various re-
search fields. In many NLP-related tasks, non-negativity
constraints are studies to learn more interpretable represen-
tations for words (Murphy, Talukdar, and Mitchell 2012).
In matrix factorization, non-negativity constraints are used
to produce more coherent and independent factors (Lee and
Seung 1999). (Ding et al. 2018) also proposed using non-
negativity constraint to incorporate subsumption into Com-
plEx. We use the non-negativity constraint in SimplE* to
enforce monotonousity of probabilities as dictated by sub-
sumption. In order to get non-negativity constraint on the
embedding of entities, we simply apply an element-wise
non-linearity ¢ : R — R>" before evaluation — that is we
replace 1(h, r, t) with u((h), r, 9(t)).

Table 1 shows the result of SimplE* with for differ-
ent choices of ¢: I) exponential ¢(x) = e*; II) logistic
¢(x) = (1+e*)"; and ) rectified linear unit (ReLU)
¢(x) = max(z,0). ReLU outperforms other choices, and
therefore moving forward we use ReLU for non-negativity
constraints.

Next, we evaluate the effect of non-negativity constraint
on the performance of the algorithm. Table 4 shows our re-
sult on WN18 and FB15K datasets. Note that this is effec-
tively comparing SimplE*with SimplE and ComplEx, with-
out accommodating any subsumptions. As the results indi-
cate, this constraint does not deteriorate the model’s perfor-
mance.

Sparse Relations

In this section, we study the scenario of learning relations
that appear in few triples in the KG. In particular, we ob-
serve the behaviour of various methods as the amount of
training triples varies. We train SimplE, SimplE*, and log-
ical inference on fractions of the Sport training set and test
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Figure 1: hit@1 of SimplE, SimplE*, and logical inference
for different proportions of training data on Sport dataset

them on the full test set. Logical inference refers to inferring
new triples based only on the subsumptions.

Figure 1 shows the HIT@1 of the three methods when
they are trained on different fractions (percentages) of the
training data. According to Figure 1, when training data
is scarce, logical inference performs better than (or on-par
with) SimplE, as SimplE does not see enough triples to
be able to learn meaningful embeddings. As the amount of
training data increases, SimplE starts to outperform logical
inference as it can better generalize to unseen cases than
pure logical inference. The gap between these two methods
becomes larger as the amount of training data increases. For
all tested fractions, SimplE*outperforms both SimplE and
logical inference as it uses both the generalization power of
SimplE and the inference power of logical rules.

In order to test the effect of incorporating taxonomical
information on the number of epochs required for training
to converge, we tested SimplE and SimplE*on the Sport
dataset with the same set of parameters and the same ini-
tialization and plotted the loss function for each epoch. The
plot in Figure 2 shows that SimplE*requires fewer epochs
than SimplE to converge.

KGs with no Redundant Triples

Tensor factorization techniques rely on large amounts
of annotated data. When background knowledge is
available, we might expect a KG to not include
redundant information. For instance if we have
(Paris, CapitalCityO fCountry, France) in a KG and
we know Vh,t € £* : (h,CapitalCityO fCountry,t) —
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Figure 2: Loss value at each epoch for SimplE and
SimplE*on Sport dataset.

(h, CityLocatedInCountry,t),  then  the  triple
(Paris, City LocatedInCountry, France) is redundant.
Similar to the experiment for incorporating background
knowledge in (Kazemi and Poole 2018c), we remove
all redundant triples from the training set and compare
SimplE with SimplE*and logical inference. The obtained
results in Table 5 demonstrate that SimplE*outperforms
SimplE and logical inference on both Sport and Location
datasets with a large margin. As an example, SimplE* gains
almost 90 percent and 230 percent improvement over
SimplE in terms of HIT@ 1 for Sport and Location datasets
respectively. These results represent the clear advantage
of SimplE*over SimplE when background taxonomic
information is available.

Related Work

Incorporating background knowledge in link prediction
methods has been the focus of several studies. Here, we cat-
egorize these approaches emphasizing the shortcomings that
are addressed in our work; see (Nickel et al. 2016) for a re-
view of KG embedding methods.

Soft rules There is a large family of link prediction mod-
els based on soft first-order logic rules (Richardson and
Domingos 2006; De Raedt, Kimmig, and Toivonen 2007;
Kazemi et al. 2014). While these models can be easily
integrated with background taxonomic information, they
typically cannot generalize to unseen cases beyond their
rules. Exceptions include (Fatemi, Kazemi, and Poole 2016;
Kazemi and Poole 2018b) which combine (stacked lay-
ers of) soft rules with entity embeddings, but these mod-
els have only applied to property prediction. Approaches
based on path-constrained random walks (e.g., (Lao and Co-
hen 2010)) suffer from similar limitations as they have been
shown to be a subset of probabilistic logic-based models
(Kazemi and Poole 2018a).

Augmentation by grounding of the rules The simplest
way to incorporate a set of rules in the KG is to augment the
KG with their groundings (Sedghi and Sabharwal 2018) be-
fore learning the embedding. Demeester, Rocktischel, and
Riedel (2016) address the computational inefficiency of this
approach through lifted rule injection. However, in addition
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to being inefficient, the the resulting model does not guaran-
tee the subsumption in the completed KG.

Augmentation through post-processing A simple ap-
proach is to augment the KG after learning the embedding
using an existing method (Wang et al. 2015; Wei et al. 2015).
That is, as a post processing step we can modify the out-
put of KG completion so as to satisfy the ontological con-
straints. The drawback of this approach is that the back-
ground knowledge does not help learn a better representa-
tion.

Regularized embeddings Rocktischel, Singh, and
Riedel (2015) regularize the learned embeddings using first-
order logic rules. In this work, every logic rule is grounded
based on observations and a differentiable term is added to
the loss function for every grounding. For example, ground-
ing the rule Vz : human(x) — animal(xz) would result
in a very large number of loss terms to be added to the
loss function in a large KG. This method as well as other
approaches in this category (e.g., Rocktischel et al., 2014;
Wang et al., 2015; Wang and Cohen, 2016) do not scale be-
yond a few entities and rules, because of the very large num-
ber of regularization terms added to the loss function De-
meester, Rocktédschel, and Riedel (2016). Guo et al. (2018)
proposed a methods for incorporating entailment into Com-
plEx called RUGE which models rules based on t-norm
fuzzy logic, which imposes an independence assumption
over the atoms. Such an independence assumption is not
necessarily true, especially in the case of subsumption, e.g.
in human(x) - animal(x) for which the left and the right
part of the subsumption are strongly dependent. In addition
to being inefficient, the resulting model of the regularized
embedding approaches does not guarantee the subsumption
in the completed KG.

Constrained matrix factorization Several recent works
incorporate background ontologies into the embeddings
learned by matrix factorization (e.g., Rocktédschel, Singh,
and Riedel, 2015; Demeester, Rocktidschel, and Riedel,
2016). While these methods address the problems of the
two categories above, they are inadequate due to the use of
matrix factorization. Application of matrix factorization for
KG completion (Riedel et al. 2013) learns a distinct embed-
ding for each head-tail combination. In addition to its pro-
hibitive memory requirement, since entities do not have their
own embeddings, some regularities in the KG are ignored;
for example this representation is oblivious to the fact that
(hi,rg,t;) and (hy, 7, t;) share the same tail.

Constrained translation-based methods In translation-
based methods, the relation between two entities is repre-
sented using an affine transformation, often in the form of
translation. Most relevant to our work is KALE (Guo et
al. 2016) that constrains the representation to accommodate
logical rules, albeit after costly propositionalization. Sev-
eral recent works show that a variety of existing translation-
based methods are not fully expressive (Wang et al. 2017,
Kazemi and Poole 2018c), putting a severe limitation on the
kinds of KGs that can be modeled using translation-based
approaches.

Region based representation Gutiérrez-Basulto and
Schockaert (2018) propose representing relations as convex



Table 5: Results on Sport and Location. Best results are in bold. MRR and Hit@n for n > 1 does not make sense for logical

inference.
Sport Location
MRR Hit@ MRR Hit@
Model Filter =~ Raw 1 3 10 Filter =~ Raw 1 3 10
Logical inference - - 0.288 - - - - 0.270 - -
SimplE 0.230 0.174 0.184 0.234 0.324 0.190 0.189 0.130 0.210 0.315
SimplE™* 0.404 0.337 0.349 0440 0.508 0.440 0.434 0.430 0.440 0.450

regions in a 2k-dimensional space, where k is the length
of the entity embeddings. A relation between two embed-
dings is deemed true if the corresponding point is in the
convex region of the relation. Although this framework al-
lows Gutiérrez-Basulto and Schockaert (2018) to incorpo-
rate a subset of existential rules by restricting the convex
regions of relations, they did not propose a practical method
for learning and their method is restricted to a subset of ex-
istential rules.

Conclusion and Future Work

In this paper, we proposed SimplE*, a fully expressive ten-
sor factorization model for knowledge graph completion
when background taxonomic information (in terms of sub-
classes and subproperties) is available. We showed that ex-
isting fully expressive models cannot provably respect sub-
class and subproperty information. Then we proved that
by adding non-negativity constraints to entity embeddings
of SimplE, a state-of-the-art tensor factorization approach,
we can build a model that is not only fully expressive but
also able to enforce subsumptions. Experimental results on
benchmark KGs demonstrate that SimplE*is simple yet ef-
fective. On our benchmarks, SimplE*outperforms SimplE
and offers a faster convergence rate when background taxo-
nomic information is available. In future, we plan to extend
SimplE*to further incorporate ontological background in-
formation, and rules such as Vh,t € £* : (h,r,t)A(h, s, t) —
(h,p,t).
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