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Abstract

Pairwise learning is an important learning topic in the ma-
chine learning community, where the loss function involves
pairs of samples (e.g., AUC maximization and metric learn-
ing). Existing pairwise learning algorithms do not perform
well in the generality, scalability and efficiency simultane-
ously. To address these challenging problems, in this paper,
we first analyze the relationship between the statistical accu-
racy and the regularized empire risk for pairwise loss. Based
on the relationship, we propose a scalable and efficient adap-
tive doubly stochastic gradient algorithm (AdaDSG) for gen-
eralized regularized pairwise learning problems. More im-
portantly, we prove that the overall computational cost of
AdaDSG is O(n) to achieve the statistical accuracy on the
full training set with the size of n, which is the best theoreti-
cal result for pairwise learning to the best of our knowledge.
The experimental results on a variety of real-world datasets
not only confirm the effectiveness of our AdaDSG algorithm,
but also show that AdaDSG has significantly better scalability
and efficiency than the existing pairwise learning algorithms.

Introduction
Many machine learning problems, such as AUC maxi-
mization (Zhao et al. 2011; Gao et al. 2013) or equiv-
alently bipartite ranking (Agarwal and Niyogi 2009; Re-
jchel 2012), metric learning (Jin, Wang, and Zhou 2009;
Weinberger and Saul 2009; Ying and Li 2012) and multi-
ple kernel learning (Kumar et al. 2012), consider the pair-
wise loss function on a pair of samples (x, y) and (x′, y′)
of the form of L(f, (x, y), (x′, y′)). For example, Gao et
al. (2013) considered the least square pairwise loss function
(1− (f(x)− f(x′)))2 for AUC maximization, where y and
y′ are with different labels. This important learning scenario
is called as pairwise learning. The aim of pairwise learning
is to find a hypothesis function minimizing the expected risk
E(x,y)E(x′,y′)L(f, (x, y), (x′, y′)).

The scalability and efficiency have been the notorious
bottlenecks of pairwise learning. Traditional univariate loss
functions only depend on one sample. The problem size for
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traditional machine learning problems grows linearly in the
size of samples. However, as mentioned above, pairwise loss
functions depend on pair of samples. Thus, the pairwise
learning algorithms need to handle the challenge raised by
the big volume of data samples in the sense that, the size
of pairs of samples grows quadratically in term of the size
of samples. If the training set has n samples, we will have
n2 possible pairs of samples which make it challenging to
design a scalable and efficient pairwise learning algorithm.

Existing pairwise learning algorithms have mainly uti-
lized the techniques of online learning and stochastic opti-
mization to address the challenge of the quadratic growth
of the size of sample pairs. Specifically, Lin et al. (2017)
used the typical online learning framework (Cesa-Bianchi,
Conconi, and Gentile 2004) to implement pairwise learning
whose space and time complexities are O(Td) and O(T 2d)
respectively, where d is the dimensionality and T is the it-
eration number. Kar et al. (2013) proposed an improved on-
line algorithm for pairwise learning by utilizing a buffer of
a fixed size s to update the gradients, whose space and time
complexities are O(sd) and O(sdT ) respectively. Boissier
et al. (2016) introduced an improved online algorithm for
linear pairwise learning with the space and time complex-
ities as O(d2) and O(Td2) respectively, by incrementally
updating the gradients. Gao et al. (2013) used the similar
strategy to implement AUC maximization. Ying, Wen, and
Lyu (2016) reformulated the AUC maximization problem as
a saddle point problem, and proposed a stochastic optimiza-
tion algorithm with the space and time complexities asO(d)
andO(Td) respectively. We summarize these representative
pairwise learning algorithms in Table 1.

We compare the pairwise learning algorithms from three
points of view, i.e., generality, complexity, and convergence
rate. For generality, we consider the generalities w.r.t. solved
problems, pairwise loss functions, and hypothesis functions.
For complexity, we consider the complexities w.r.t. space and
time. From Table 1, we find that the online algorithm of
(Kar et al. 2013) has the best generality and convergence
rate in the existing pairwise learning algorithms. However,
its space and time complexities are related to a buffer size
s and achieving better generalization performance requires
a larger s. Thus, the online algorithm of (Kar et al. 2013)
is still not scalable and efficient enough. Although the SO-
LAM algorithm (Ying, Wen, and Lyu 2016) has the best
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Table 1: Representative pairwise learning algorithms. (PL and FCN are the abbreviations of pairwise loss and function, respec-
tively. T is the iteration number, d is the dimensionality and s is the buffer size.)

Algorithm Reference Generalization Complexity Convergence rateProblems Loss FCN Hypothesis FCN Space Time
Online (Lin et al. 2017) General PL Square Kernel O(Td) O(T 2d) O(T−

1
4 lnT )

Online (Kar et al. 2013) General PL General General O(sd) O(sTd) O( 1
T )

Online (Boissier et al. 2016) General PL Square Linear O(d2) O(Td2) O( log2 T
T )

OPAUC (Gao et al. 2013) AUC Square Linear O(d2) O(Td2) O( 1√
T

)

SOLAM (Ying and Li 2012) AUC Square Linear O(d) O(Td) O( (lnT )1.5√
T

)

AdaDSG Our General PL General General O(d) O(Td) At least O( 1
T )

space and time complexities, it works only for AUC max-
imization, and has a poor convergence rate. To the best of
our knowledge, the existing pairwise learning algorithms do
not perform well in the generality, complexities, and conver-
gence rate simultaneously. The scalability and efficiency are
still the bottlenecks of existing pairwise learning algorithms.

To address these challenges, in this paper, we first an-
alyze the relationship between the statistical accuracy and
the regularized empire risk for pairwise loss. Based on the
relationship, we propose a scalable and efficient adaptive
doubly stochastic gradient algorithm (AdaDSG) for regu-
larized pairwise learning problems following the adaptive
sample size scheme. More importantly, we prove that the
overall computational cost of AdaDSG is O(n) to achieve
the statistical accuracy on the training set with the size of
n, which is the best theoretical result for pairwise learning
to the best of our knowledge. The experiments on the appli-
cation of the AUC maximization are conducted to validate
our AdaDSG algorithm. The experimental results on a vari-
ety of real-world datasets not only confirm the effectiveness
of our AdaDSG algorithm, but also show that AdaDSG has
significantly better scalability and efficiency than the exist-
ing pairwise learning algorithms.
Contributions. The main contributions of this paper are
summarized as follows:

1. The existing adaptive sample size algorithms only focus
on the full or singly stochastic gradient algorithms for
univariate loss functions. Differently, our AdaDSG algo-
rithm is the first adaptive sample size algorithm working
on the doubly stochastic gradient algorithm for pairwise
loss functions.

2. The existing adaptive sample size algorithms require
a strong assumption of convergence rate (i.e., linear
or quadratic) w.r.t. the full or stochastic gradient al-
gorithms. However, to the best of our knowledge, our
AdaDSG is the first adaptive sample size algorithm
working on a weaker assumption of convergence rate
(i.e. sublinear) for the doubly stochastic gradient algo-
rithm.

3. The convergence rate of our AdaDSG algorithm is at
least O( 1

T ). More importantly, we prove that the over-
all computational cost of AdaDSG is O(n) to achieve
the statistical accuracy on the full training set with the
size of n, which is the best theoretical result for pairwise

learning to the best of our knowledge.

Organization. We organize the rest of paper as follows.
Firstly, we present several related works. Secondly, we
present the generalized pairwise learning problem consid-
ered in this paper. Thirdly, we analyze the statistical accu-
racy in pairwise learning problems. Fourthly, we propose our
AdaDSG algorithm and give its complexity analysis. Fifthly,
we show the experimental results of AUC maximization on
a variety of datasets. Finally, we conclude the paper.

Related Work
Essentially, our AdaDSG algorithm is an adaptive doubly
stochastic gradient algorithm following the adaptive sample
size scheme. In this section, we first give a brief review of
doubly stochastic optimization algorithms, and then give a
brief review of adaptive sample size algorithms.

Doubly Stochastic Optimization
According to how many random events occur per iteration,
stochastic optimization algorithms can be divided into the
singly stochastic approach, the doubly stochastic approach
and others. Normally the sample space (i.e., the union of
all possible random events) of stochastic optimization algo-
rithms could be the set of samples or the set of coordinates.
For example, the sample space of stochastic gradient de-
scent algorithms (Defazio, Bach, and Lacoste-Julien 2014;
Johnson and Zhang 2013) on the univariate loss functions
is the set of samples. The sample space of stochastic co-
ordinate descent algorithms (Bradley et al. 2011; Liu and
Wright 2015) is the set of coordinates. For traditional dou-
bly stochastic optimization algorithms (Dai et al. 2014;
Zhao et al. 2014; Gu, Huo, and Huang 2018; Gu et al. 2018),
the sample spaces are both the set of samples and the set
of coordinates. Our AdaDSG algorithm considers the pair-
wise loss functions and repeats the two random events on the
same sample space (i.e., the set of samples). Thus, different
to the traditional doubly stochastic optimization algorithms
which have two different sample spaces, our adaptive dou-
bly stochastic gradient algorithm has one sample space, i.e.,
the set of samples.

Adaptive Sample Size Algorithms
There have been several adaptive sample size algorithms
proposed to solve the (regularized) empirical risk prob-
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lems of traditional univariate loss. Specifically, Danesh-
mand, Lucchi, and Hofmann (2016) proposed the adaptive
sample size scheme for the empirical risk problems of tra-
ditional univariate loss on SAGA algorithm (DynaSAGA)
(Defazio, Bach, and Lacoste-Julien 2014). Later, Mokhtari
et al.; Eisen, Mokhtari, and Ribeiro (2016; 2018) con-
sidered the regularized empirical risk problems of tradi-
tional univariate loss, and extended the adaptive sample
size scheme to Newton’s method (Boyd and Vandenberghe
2004). Mokhtari and Ribeiro (2017) also considered the reg-
ularized empirical risk problems of traditional univariate
loss, and extended the adaptive sample size scheme to ac-
celerated gradient descent (Yu 2013) and SVRG (Johnson
and Zhang 2013) algorithms. All these works proved that
the computational complexities can be reduced to O(n

5
4 )

or O(n) to reach the statistical accuracy on the full training
set. We also summarize these representative adaptive sample
size algorithms in Table 2. To sum up, existing adaptive sam-
ple size framework works only for the traditional univari-
ate loss functions, where the (stochastic) gradient algorithms
are with linear or quadratic convergence rate. However, our
AdaDSG algorithm works for pairwise loss functions on a
weaker assumption of convergence rate (i.e. sublinear) for
the doubly stochastic gradient algorithm.

Generalized Pairwise Learning Problem
As mentioned previously, the ultimate goal of pairwise
learning in theory is to find an optimal argument that mini-
mizes the expected risk L(w) w.r.t. a pairwise loss function
of the form of:

w∗ = argmin
w∈Rd

L(w) (1)

= argmin
w∈Rd

E(x,y)E(x′,y′)L(fw, (x, y), (x′, y′))

where fw is a hypothesis function with parameter w. How-
ever, due to the fact that the distribution of samples is un-
known, it is challenging to minimize the expected riskL(w).
In the real world applications of pairwise learning, instead
of minimizing the expected risk L(w), we usually consider
the empirical risk of pairwise loss function on a training set
S = {(xi, yi)}ni=1 as follows.

Ln(w) =
1

n(n− 1)

∑
i,j∈S,i6=j

L(fw, (xi, yi), (xj , yj)) (2)

Obviously, the problem (2) covers various pairwise learning
problems, including AUC maximization (Gao et al. 2013)
(equivalently called bipartite ranking (Rejchel 2012)), met-
ric learning (Jin, Wang, and Zhou 2009), and multiple ker-
nel learning (Kumar et al. 2012). Note that the pairwise loss
function L(fw, (xi, yi), (xj , yj)) is equal to zero for AUC
maximization if yi = yj .

Although the sample size of the set S could be huge in the
era of big data, it is still possible to overfit the training set if
directly minimizing the empirical risk objective (2). To pre-
vent overfitting, we add a regularization term λ‖w‖2 to the
empirical riskLn(w), Thus, in this paper, we find an optimal

argument that optimizes a regularized empire risk Rn(w) as
mentioned in (3), instead of the empirical risk Ln(w).

w∗n = argmin
w∈Rd

Rn(w) = argmin
w∈Rd

Ln(w) + λ‖w‖2

To build the relationship between statistical accuracy and
regularized empirical risk, we rewrite the regularization pa-
rameter λ in the formulation (3) as form of λ = cVn

2 , where

Vn = O
(

1√
n

)
and c is a constant to control the regular-

ization parameter cVn

2 . Thus, the formulation of regularized
empire risk Rn(w) can be reformulated as follows.

Rn(w) (3)

= Ln(w) +
cVn
2
‖w‖2 =

1

n(n− 1)
·

∑
i,j∈S,i6=j

L(fw, (xi, yi), (xj , yj)) +
cVn
2
‖w‖2︸ ︷︷ ︸

Fi,j(w)


where each function Fi,j : Rd → R is a smooth convex
function. Note that, the regularization term cVn

2 ‖w‖
2 not

only avoids overfitting, but also ensures that the problem is
strongly convex.

Statistical Accuracy in Pairwise Learning
Problems

In this section, we first analyze the relationship between
statistical accuracy and empirical risk Ln(w), then analyze
the relationship between statistical accuracy and regularized
empirical risk Rn(w).

Statistical Accuracy and Empirical Risk
There have been several works to give the upper bounds of
the difference between the expected risk L and the empir-
ical risk Ln for AUC maximization (Agarwal et al. 2005),
bipartite ranking (Agarwal and Niyogi 2009), and metric
learning (Cao, Guo, and Ying 2016). Recently, Lei, Lin, and
Tang (2018) provided a unified upper bound on the differ-
ence between the expected and empirical risks for pairwise
learning. To make this paper self-contained, we provide this
generalized upper bound as follows.

Theorem 1. (Lei, Lin, and Tang 2018) Given an i.i.d. train-
ing set S = {(xi, yi)}ni=1 for pairwise learning, we have an
upper bound on the difference between the expected risk L
and the empirical risk Ln for all w ∈ Rd as follows:

E
[

sup
w∈Rd

|Ln(w)− L(w)|
]
≤ Vn , (4)

where Vn = O
(

1√
n

)
.

According to Theorem 1, we have that the optimal values
of the expected loss and empirical loss are within a Vn dis-
tance at least of each other. Based on Theorem 1, we con-
clude that there is no gain in improving the optimization
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Table 2: Representative adaptive sample size algorithms. (CRS is the abbreviation of convergence rate of subsolver.)

Algorithm Reference Loss function CRS Complexity
DynaSAGA Daneshmand, Lucchi, and Hofmann (2016) Univariate Linear O(n)
AdaNewton Mokhtari et al. (2016) Univariate Quadratic O(n)

AdaAGD Mokhtari and Ribeiro (2017) Univariate Linear O(n
5
4 )

AdaSVRG Mokhtari and Ribeiro (2017) Univariate Linear O(n)
AdaDSG Our Pairwise Sublinear O(n)

error of minimizing Ln beyond the constant Vn. In other
words, if we find an approximate solution wn such that the
optimization error is bounded by Ln(wn)− Ln(w†n) ≤ Vn,
where w†n = argminw∈Rd Ln(w), finding a more accurate
solution to reduce the optimization error is not beneficial.
This conclusion is confirmed by Theorem 2 (the detailed
proof to Theorem 2 can be found in our Appendix).

Theorem 2. Given an i.i.d. training set S = {(xi, yi)}ni=1.
Define wn as a δn optimal solution of the risk Ln in expec-
tation, i.e., E

[
Ln(wn)− Ln(w†n)

]
≤ δn. We have that

E [Ln(wn)− L(w∗)] ≤ δn + 3Vn . (5)

Thus, it is easy to see that Vn is an important theoretical
quantity. In this paper, we define Vn as the statistical accu-
racy as follows.

Definition 1 (Statistical accuracy). The statistical accuracy
on an i.i.d. training set S = {(xi, yi)}ni=1 is defined as Vn =

O
(

1√
n

)
.

Remark 1 (Relationship between Vn and Ln). According
to Theorem 2 and Definition 1, we say that wn solves the
empirical risk problem in (2) within its statistical accuracy
if it satisfies Ln(wn)− Ln(w†n) ≤ Vn.

Statistical Accuracy and Regularized Empirical
Risk
Now, let’s consider the training set Sm with m samples as
a subset of the full i.i.d. training dataset S, i.e., Sm ⊂ S.
First, we solve the problem corresponding to the set Sm
such that the approximate solution wm satisfies the condi-
tion E[Rm(wm) − Rm(w∗m)] ≤ δm. Next, we consider an-
other training subset Sm′ such that Sm′ contains the set Sm,
i.e., Sm ⊂ Sm′ ⊆ S. Thirdly, we use wm as an initial solu-
tion of the problemRm′ and solve the subproblem related to
the set Sm′ .

A key question for the above procedure is that how much
accuracy is enough for solving the subproblem Sm. To an-
swer this question, we derive an upper bound on the ex-
pected suboptimality of the variable wm w.r.t. the problem
Rm′ in Theorem 3, which is built on the accuracy of wm
w.r.t. the previous problem Rm associated to the training set
Sm. The detailed proof can be found in our Appendix. Based
on Theorem 3 and Remark 2, we conclude that there is no
gain in solving the subproblem Rm beyond its statistical ac-
curacy Vm, if m′ = 2m.

Theorem 3. Let Lm and Lm′ denote the empirical risks on
the sets Sm and Sm′ , respectively, where they are chosen

such that Sm ⊂ Sm′ . Further, define wm as an δm optimal
solution of the risk Rm in expectation, i.e., E[Rm(wm) −
Rm(w∗m)] ≤ δm. Moreover, recall w∗ as the optimal solu-
tion of the expected risk L as defined in (1). We have that:

E [Rm′(wm)−Rm′(w∗m′)] (6)

≤ δm + 2(Vm′ + Vm) +
c(Vm − Vm′)

2

(
4

c
+ ‖w∗‖2

)
Remark 2 (Relationship between Vm and Rm). According
to Theorem 3, if setting m′ = 2m, we have that

E [R2m(wm)−R2m(w∗2m)] (7)

≤ δm +

(
4 +

c(1− 1√
2
)

2
‖w∗‖2

)
Vm

The inequality (7) shows that there is no need to solve the
subproblem Rm beyond its statistical accuracy Vm. Specif-
ically, even if δm is zero, the expected sub-optimality will
be of the order O(Vm), i.e., E [R2m(wm)−R2m(w∗2m)] ≤
O(Vm). Based on the inequality (7), the required preci-
sion δm for solving the subproblem Rm should be order of
O(Vm).

Adaptive Doubly Stochastic Gradient
Algorithm

In this section, we follow the the relationship between sta-
tistical accuracy and regularized empirical risk Rn(w) re-
vealed in Remark 2 to propose our adaptive doubly stochas-
tic gradient (i.e., AdaDSG) algorithm. Next, we also provide
the complexity analysis of AdaDSG algorithm.

AdaDSG Algorithm
As mentioned in Remark 2, we consider two subsets Sm and
S2m of the full i.i.d. training set such that Sm ⊂ S2m. The
conclusion suggests that there is no benefit to solve the sub-
problem Rm beyond its statistical accuracy. Thus, we start
by a small number of samples and use an inner solver to
solve the corresponding problem with its statistical accu-
racy. After that, we double the size of the training set and
use the solution of the previous problem with half samples
as a warm start for the new problem. We repeat this proce-
dure until the selected training set becomes identical to the
given training set S which contains n samples. We summa-
rize our AdaDSG algorithm in Algorithm 1.

In this paper, we use the vanilla doubly stochastic gradient
descent (DSGD) algorithm to solve multiple subproblems
Rm(w) which is summarized in Algorithm 2. Specifically,
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we randomly select a pair of samples (xi, yi) and (xj , yj) at
the t-th iteration, and compute the stochastic gradient on the
pair of samples (xi, yi) and (xj , yj) as follows:

∇Fi,j(wt) = ∇L(fwt , (xi, yi), (xj , yj)) + cVmw
t (8)

Given the learning rate γt = 1
µ(t+1) where µ is the strong

convexity parameter defined in Assumption 2, we update the
solution as wt+1 ← wt − γt∇Fi,j(wt).
Remark 3 (Difference to the existing algorithms). AdaDSG
is different to the existing adaptive sample size algorithms
(Mokhtari et al. 2016; Mokhtari and Ribeiro 2017) in check-
ing the termination condition of the inner solver. Theorem
4 suggests that running DSGD only with O(m) steps can
reach the statistical accuracy Vm for the subproblem Rm.
Our AdaDSG runs a fixed number (i.e., O(m)) of itera-
tions instead of explicitly checking the termination condi-
tion ‖∇Rm(wm)‖ <

√
2cVm as did in the existing adaptive

sample size algorithms.

Algorithm 1 Adaptive doubly stochastic gradient algorithm
(AdaDSG)

Input: Initial sample size m0, and initial solution w0 such
that Rm0

(w0)−Rm0
(w∗m0

) ≤ Vm0
.

Output: wS .
1: Initialize ws = w0 and m = m0.
2: while m ≤ n do
3: Increase the samples sizes m = min{2×m,n}.
4: Call DSGD to solve Rm(w) with the initial solution

ws and an inner loop number O(m).
5: Set ws+1 = w̃, where w̃ is the solution returned by

DSGD on the training set with the size of m.
6: end while

Algorithm 2 DSGD algorithm

Input: Learning rate γt = 1
µ(t+1) , loop number T , and ini-

tial solution w0.
Output: wT .

1: for t = 0, 1, 2, · · · , T − 1 do
2: Pick (xi, yi) and (xj , yj) uniformly at random from

the set Sm.
3: Update wt+1 ← wt − γt∇Fi,j(wt).
4: end for

Complexity Analysis
We first give the assumptions of Lipschitz smoothness (As-
sumption 1), strong convexity (Assumption 2) and bounded
variance (Assumption 3), which are critical to the analysis
of our AdaDSG.
Assumption 1 (Lipschitz smoothness). The function Fi,j
(∀i ∈ S and ∀j ∈ S) in (3) is Lipschitz smooth with the
Lipschitz constant L ≥ cVn, which means that ∀w ∈ Rd
and ∀w′ ∈ Rd, we have:

‖∇Fi,j(w)−∇Fi,j(w′)‖ ≤ L‖w − w′‖ (9)

As shown in the formulation (3), Fi,j includes a regu-
larization term cVn

2 ‖w‖
2. If the pairwise loss function L is

smooth, we have that Fi,j is at least cVn-Lipschitz smooth.

Assumption 2 (Strong convexity). The differentiable func-
tion Rn(w) in (3) is strongly convex with parameter µ ≥
cVn, which means that ∀w ∈ Rd and ∀w′ ∈ Rd, we have

Rn(w) ≥ Rn(w
′) + 〈∇Rn(w

′), w − w′〉+
µ

2

∥∥w − w′∥∥2 (10)

If the pairwise loss function L is convex, we have that
Rn(w) is at least cVn-strongly convex.

Assumption 3 (Bounded variance). We assume that the
second moment of the stochastic gradient generated from
DSGD algorithm is upper bounded. Specifically, given an
initial solution w0, there exists a constant c̄ such that

E‖∇Fi,j(wt)‖2 ≤ c̄
(
Rn(w0)−Rn(w∗n)

)
(11)

Based on Assumptions 1, 2 and 3, we prove the follow-
ing conclusions. The detailed proof can be found in our Ap-
pendix.

1. The inner loop number for DSGD is O(m′) which can
guarantee E [Rm′(wm′)−Rm′(w∗m′)] ≤ Vm′ (i.e., The-
orem 4).

2. The overall computational complexity of AdaDSG is
O(n) which can guarantee AdaDSG to achieve the sta-
tistical accuracy on the full training set (i.e., Theorem 5).

Before proving Theorem 4, we provide Lemma 1 which
shows that DSGD algorithm has a sublinear convergence
rate.

Lemma 1. Suppose Assumptions 1, 2 and 3 hold. For the
DSGD Algorithm, we have

ERn(wT )−Rn(w∗) (12)

≤
Lmax{‖w0 − w∗‖2, c̄µ2

(
Rn(w0)−Rn(w∗)

)
}

2T

Remark 4. Lemma 1 provides a sublinear linear conver-
gence rate to DSGD algorithm which is similar to the
one of traditional SGD algorithm. Further, according to
Lemma 1, we have that the overall computational com-
plexity of DSGD is O(n

√
n) 1 to make the solution satisfy

E [Rn(wn)−Rn(w∗n)] ≤ Vn. To highly reduce the overall
computational cost of achieving the statistical accuracy on
the whole samples, we propose an adaptive sample size ver-
sion to DSGD (i.e., AdaDSG).
Theorem 4. Consider the variable wm as a Vm-
suboptimal solution of the risk Rm in expectation, i.e.,
E [Rm(wm)−Rm(w∗m)] ≤ Vm. Consider the sets Sm ⊂
Sm′ ⊆ S such that m′ = 2m, and suppose Assumptions
1, 2 and 3 hold. To make the solution of DSGD satisfy
E [Rm′(wm′)−Rm′(w∗m′)] ≤ Vm′ , the inner loop number
Tm′ of DSGD at the stage of Sm′ should satisfy:

Tm′ ≥
max

{
2
√
m′, c̄m

′

c

}
L
(
5 + (1− 1√

2
) c

2
‖w∗‖2

)
√
2c

(13)

1This conclusion can be easily derived from Lemma 1.
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Remark 5. Let wm (a Vm-suboptimal solution of
Rm) be the initial solution of the problem Rm′ .
Theorem 4 clearly shows that, if we want to have
E [Rm′(wm′)−Rm′(w∗m′)] ≤ Vm′ , we only need to run the
DSGD algorithm with O(m′) inner loops.

Based on Theorem 4, we provide the complexity analysis
of AdaDSG in Theorem 5.
Theorem 5. Suppose Assumptions 1, 2 and 3 hold. To reach
the statistical accuracy Vn on the full training set S, the
overall computational complexity of AdaDSG is given by

max

{
√
n

2
√

2√
2− 1

,
2c̄n

c

}
L
(

5 + (1− 1√
2
) c2‖w

∗‖2
)

c
√

2
(14)

Remark 6. Theorem 5 shows that, the overall com-
putational complexity of AdaDSG is O(n) to make
the solution satisfy the statistical accuracy (i.e.,
E [Rn(wn)−Rn(w∗n)] ≤ Vn). Compared with the
overall computational complexity O(n

√
n) of DSGD, our

AdaDSG algorithm is much more efficient. To the best of
our knowledge, the overall computational complexity O(n)
is the best theoretical result for pairwise learning to achieve
the statistical accuracy.

Experimental Results
Experimental Setup
Design of Experiments: Because there has been great in-
terest in AUC maximization in recent data science research,
we consider the pairwise learning on the AUC maximization
problem in this paper. We conduct experiments not only to
verify the effectiveness of our AdaDSG algorithm, but also
to show that our AdaDSG algorithm has significantly better
scalability and efficiency than the existing pairwise learning
algorithms.

To verify the effectiveness of AdaDSG, we compare the
convergence speeds of DSGD and AdaDSG by observing
the AUC on the testing set vs. iteration number curves. To
verify the superiority of our AdaDSG algorithm on the scal-
ability and efficiency, we compare the AUC on the testing
set vs. training time for different AUC maximization algo-
rithms. The state-of-the-art AUC maximization algorithms
compared in the experiments are the online pairwise (OLP)
algorithm (Kar et al. 2013), the OPAUC algorithm (Gao et
al. 2013), the SOLAM algorithm (Ying, Wen, and Lyu 2016)
and our AdaDSG algorithms which are summarized in Table
1.

Implementation Details: Our experiments were per-
formed on an 8-core Intel Xeon E3-1240 machine. We
implemented our AdaDSG algorithm in MATLAB. We
used the MATLAB code from http://lamda.nju.edu.cn/files/
OPAUC.zip as the implementation of the OPAUC algo-
rithm. We used the MATLAB code from https://www.
albany.edu/∼yy298919/nips16 solam.zip as the implemen-
tation of the SOLAM algorithm. We used the MATLAB
and C mixed code from https://www.cse.iitk.ac.in/users/
purushot/code.php as the implementation of the OLP algo-
rithm (Kar et al. 2013), where the core function was im-
plemented by C. Note that, even though C implementation

Table 3: The real-world dasetsets used in the experiments.

Dataset Feature size Sample size
A9a 123 32,561

Covtype 54 581,012
Ijcnn1 22 49,990

Phishing 68 11,055
Usps 256 7,291
Mnist 780 60,000
Rcv1 47,236 20,242

Real-sim 20,958 72,309

is significantly more efficient than a pure MATLAB im-
plementation, the experimental results still show that our
AdaDSG with MATLAB code is much faster than OLP with
C code.

For the OLP algorithm, we set the parameter s = 500
in the experiments. For the OPAUC algorithm on high di-
mensional datasets (feature size larger than 10,000), we used
the low-rank version, and set the rank parameter τ = 100.
For our AdaDSG algorithm, the initial learning rate γ0 was
tuned from 1 to 10−4, and the outer loop number was set
as 20. In each experiment, the AUC value is the average
of 25 trials. We randomly partitioned each dataset into 75%
for training and 25% for testing. Regularization parameters
were used in (Gao et al. 2013) and our model. We fixed the
regularization parameters as 1 in our experiments. In the im-
plementation of our AdaDSG algorithm, we set Vn = 1√

n
,

and set the inner loop number of DSGD for the subproblem
Rm as m.

Datasets: Table 3 summarizes the eight real-world bench-
mark datasets used in our experiments. They are the A9a,
Covtype, Ijcnn1, Phishing, Usps, Mnist, Rcv1 and Real-
sim datasets from the LIBSVM repository2. For multi-class
datasets (i.e., Usps and Mnist), we transformed them into
binary classification problems by randomly partitioning the
data into two groups, where each group includes the same
number of classes. Please note that, to test the scalability of
different algorithms, all the datasets used in the experiments
are with large sample size or large feature size.

Results and Discussions
Figure 1 provides the convergence results of testing AUC
vs. iteration number of our AdaDSG algorithm and DSGD
algorithm on the Covtype, Ijcnn1, Mnist and Rcv1 datasets.
The results show that AdaDSG can converge to a good AUC
value with less time compared with DSGD. The results ver-
ify the effectiveness of AdaDSG, i.e., AdaDSG reduces a
lot of computing time to achieve the statistical accuracy on
the whole samples, which supports the theoretical result in
Remark 6.

Figure 2 provides the convergence results of testing AUC
vs. training time of AdaDSG algorithm and three state-of-
the-art AUC maximization algorithms, i.e., the OLP (Kar et

2The LIBSVM repository is available at https://www.csie.ntu.
edu.tw/∼cjlin/libsvmtools/datasets/.
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Figure 1: Testing AUC vs. iteration number curves of our AdaDSG algorithm and DSGD algorithm.
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Figure 2: Testing AUC vs. training time curves of AdaDSG algorithm and three state-of-the-art AUC maximization algorithms,
i.e., the OLP (Kar et al. 2013), OPAUC (Gao et al. 2013) and SOLAM (Ying, Wen, and Lyu 2016) algorithms. Note that the
OLP curves are missing on the Rcv1 and Real-sim datasets because the program of OLP crashes on these large-scale datasets.

al. 2013), OPAUC (Gao et al. 2013), and SOLAM (Ying,
Wen, and Lyu 2016) algorithms on the A9a, Covtype,
Ijcnn1, Phishing, Usps, Mnist, Rcv1 and Real-sim datasets.
Please note that the OLP curves are missing on the Rcv1
and Real-sim datasets because the program of OLP crashes
on these large-scale datasets. Although the OLP (Kar et al.
2013) and SOLAM (Ying, Wen, and Lyu 2016) algorithms
solve the empirical risk (2) and the OPAUC (Gao et al. 2013)
and our AdaDSG algorithms solve the regularized empirical
risk (3), the results still clearly show that our AdaDSG has
significantly better scalability and efficiency than the exist-
ing pairwise learning algorithms.

Conclusion
In this paper, we first analyzed the relationship between the
statistical accuracy and the regularized empire risk for pair-
wise loss. Based on the relationship, we proposed a scalable
and efficient adaptive doubly stochastic gradient algorithm
(i.e., AdaDSG) for regularized pairwise learning problems.
We believe AdaDSG is a breakthrough to pairwise learn-

ing for the following four reasons. First, AdaDSG works
for general forms of pairwise learning problems, loss func-
tions and hypothesis functions. Second, the pivotal step of
AdaDSG is computing doubly stochastic gradients on a pair
of samples which make the computation of AdaDSG much
scalable and efficient. Third and most importantly, we prove
that the overall computational cost of AdaDSG is O(n) to
reach the statistical accuracyO( 1√

n
) on the training set with

the size of n, which is the best theoretical result for pair-
wise learning to the best of our knowledge. At last, we con-
ducted the experiments on the application of the AUC maxi-
mization. The experimental results on real-world benchmark
datasets not only confirm the effectiveness of AdaDSG, but
also show that AdaDSG has significantly better scalability
and efficiency than existing pairwise learning algorithms.
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