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Abstract

We propose a hybrid approach to temporal anomaly detection
in access data of users to databases — or more generally,
any kind of subject-object co-occurrence data. We consider a
high-dimensional setting that also requires fast computation
at test time. Our methodology identifies anomalies based on a
single stationary model, instead of requiring a full temporal
one, which would be prohibitive in this setting. We learn a
low-rank stationary model from the training data, and then fit a
regression model for predicting the expected likelihood score
of normal access patterns in the future. The disparity between
the predicted likelihood score and the observed one is used
to assess the “surprise” at test time. This approach enables
calibration of the anomaly score, so that time-varying normal
behavior patterns are not considered anomalous. We provide a
detailed description of the algorithm, including a convergence
analysis, and report encouraging empirical results. One of
the data sets that we tested is new for the public domain. It
consists of two months’ worth of database access records from
a live system. This data set and our code are publicly available
at https://github.com/eyalgut/TLR anomaly detection.git.

1 Introduction
Consider a security analyst examining user access logs of a
large database system. A blatant security breach might in-
volve a user with insufficient clearance attempting to access
a restricted database table. However, there could be more
subtle indicators of suspicious activity, such as users access-
ing database tables that are atypical of their past behavioral
pattern, or at unusual times. Moreover, in a distributed attack,
perhaps no single user has done anything particularly out of
the ordinary, but the general pattern of access to different
database tables is atypical in terms of frequency, time of day,
identity of the users involved, and so forth.

The difficulty stemming from the nebulous definition of
potentially suspicious activity is compounded by the fact
that severe anomalies, by their very nature, are extremely
rare occurrences, and when the goal is to learn to identify
them, we generally do not expect the available training data
to contain any positive examples. Furthermore, due to the
large number of users and database tables in a typical system,
a naive solution, which classifies all previously unseen access
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events as anomalies, will tend to trigger many false alarms.
The latter issue is exacerbated further by the problem of cold
start (Su and Khoshgoftaar 2009) — that is, the activity of
previously unseen users (say, new employees). This activity
should not automatically be classified as an anomaly, or else
too many false alarms will be issued. Additionally, unseen
accesses invoked by known users and tables could also cause
a similar problem. Thus, a key difficulty in anomaly detection
of temporal events from a complex system is to calibrate the
surprise level associated with incoming events — and this is
the central challenge that we address.

Problem description. We address the problem of unsu-
pervised anomaly detection in a high-dimensional temporal
sequence of user-object access events. The events might be
company employees accessing database tables, users interact-
ing with a website, customers executing transactions, and so
on. We assume that the users and the objects are atomic (that
is, known by a name or identification number only). Time is
discretized into fixed units (such as hours), and for each time
unit, the access activity is recorded in a binary user-object
incidence matrix.

Our goal is to develop an anomaly detection method which
allows identifying distributed attacks. Such attacks cannot be
characterized by a single suspicious access event — the latter
can be handled by more direct means, such as a permissions
system; instead, they are characterized by system-wide suspi-
cious access patterns. Thus, our goal is to detect anomalous
time intervals, i.e., segments of activity that contain atypical
behavior. Our proposed method can also be adapted to diag-
nosing a specific user’s behavior, or a specific object’s access
pattern, as anomalous within a time interval. We leave the
details of this extension to future work.

Our setting is similar to the problem of anomaly detection
in sequences of traffic matrices in communication engineer-
ing (Roughan et al. 2012), where typically the traffic matrix
of each time unit contains the number of packets (or bytes)
transferred from source to destination IP. In our problem, we
consider more general user-object incidence matrices (but,
being binary, these only register the presence or absence of
an access). In addition, we assume high-dimensional data,
and require a fast and efficient computation at test time.

From a bird’s eye view, our approach consists of two or-
thogonal components: (1) fitting a generative model of the
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data based on a training set and (2) assigning an anomaly
score to new time segments based on the model that we
learned. For (1), given the high number of users and objects,
as well as their atomicity, we propose a model based on a low-
rank assumption. This allows decomposing users and objects
into latent factors (Srebro, Alon, and Jaakkola 2004), and
discovering abnormal behavior patterns based on the latent
factors of a user or object. We extend to our setting previous
theoretical results on the sample complexity of learning such
a model. Several previous works on anomaly detection for
traffic matrices, which we discuss in Section 2, use low-rank
models; however, in these works the low-rank model is over
the space of (user-object pairs) × (time intervals), while our
low-rank model is over the significantly lower-dimensional
space of users× objects. As a result, our approach can handle
higher-dimensional data sets, while requiring less working
memory. In addition, our approach performs fast real-time
anomaly detection after the model-training phase, while pre-
vious approaches do not distinguish between the phases—
resulting in a heavy computational burden during the anomaly
detection phase.

Our main methodological innovation is in step (2). Here,
the likelihood assigned to an observed behavior pattern, based
on the fitted model, is used to calculate an anomaly score. We
learn the expected likelihood score from the training data, as
an independent regression problem, and then use the disparity
between the predicted and observed likelihood scores as
a measure of surprise. This compensates for characteristic
discrepancies between the learned model and the observed
behavior at certain times. For instance, a different activity
pattern is expected during different hours of the day. However,
learning separate models for each possible activity type is
prohibitive, for both statistical and computational reasons.
Our approach enables us to learn a single model, yet adapt
the anomaly score to time-varying normal behavior patterns.

This work was motivated by studying a real database
monitoring system which performs anomaly detection. We
provide a new data set, which we call TDA (Temporal
Database Accesses). It was generated by recording user ac-
cesses in a live database system (of the kind often mon-
itored for anomalous behavior) over a two-month period.
The data set records accesses of thousands of users into
thousands of database tables, and the rate of events was ap-
proximately 20,000 per hour. The data is provided in the
form of binary access matrices, indicating whether each
user accessed each table during each one-hour-long inter-
val. The full data set and our code are publicly available at
https://github.com/eyalgut/TLR anomaly detection.git.

2 Related Work
Intrusion detection methods can be roughly clustered into
two basic categories: rules-based and learning-based methods
(Santos, Bernardino, and Vieira 2014). Some approaches
(Chung, Gertz, and Levitt 1999; Kamra, Terzi, and Bertino
2008; Srivastava, Sural, and Majumdar 2006; Spalka and
Lehnhardt 2005; Mathew et al. 2010; Lee, Low, and Wong
2002) require full sequential event information. In contrast,
in this work we focus on the case where accesses in each
interval are aggregated, and sequence data is not available.

The problem of change-point detection (Takeuchi and Ya-
manishi 2006; Tartakovsky et al. 2006; Höhle 2010; Khaleghi
and Ryabko 2014), while not strictly a subset of anomaly or
intrusion detection, is of some relevance to the temporal
setting. Another natural approach is to model the temporal
process via a Markov Model or a Hidden Markov Model, as
was done in Görnitz, Braun, and Kloft; Soule et al. (2015;
2005). These approaches, however, are infeasible in our set-
ting: due to the large number of users and objects that we are
dealing with (typically in the thousands), billions of parame-
ters would need to be estimated, which is impossible to do
from a reasonable amount of data.

Variants of association rules are used in Chan, Ma-
honey, and Arshad; Das and Schneider; Das, Schneider,
and Neill (2003; 2007; 2008); these are less suitable for
handling new instances and large spaces. Some supervised
and semi-supervised approaches have also been suggested
(Günnemann, Günnemann, and Faloutsos 2014; Rendle 2010;
Ahmed, Coates, and Lakhina 2007). These are applicable
when there is supervision data on anomalies.

The problem of anomaly detection in sequences of traffic
matrices seems the most similar to our setting. The traffic ma-
trix of each time unit contains the amount of data transferred
from source IP address to destination IP address. Roughan et
al. (2012) propose the SRMF (Sparsity Regularized Matrix
Factorization) algorithm. A matrix is constructed by vector-
izing the traffic matrices into the columns of a new matrix,
whose width is the number of time intervals in the data set,
and whose height is square the number of IPs in the data set.
Each row in this matrix corresponds to a single IP-IP pair, and
each column corresponds to a single time interval. Temporal
smoothness is assumed. A smooth and low-rank approxima-
tion is obtained for this matrix via regularized optimization,
and used as a baseline to detect anomalous time intervals. In
our setting, SRMF can be used by replacing the vectorized
(IP address)×(IP address) matrices with vectorized user ×
object access matrices. Lakhina, Crovella, and Diot (2004)
construct a similar matrix, but obtain a low-rank model using
PCA. Candès et al. (2011) propose a Robust PCA algorithm
for finding anomalies in a sequence of images, again us-
ing a similar matrix with vectorized matrices (images) as
columns. These methods all look for low-rank structures in
the space of (user-object pairs) × (time intervals). Kolda
and Sun (2008) propose MET, a tensor decomposition tech-
nique, which searches for a low rank structure in the space
of users × objects × time-intervals. We compare our algo-
rithm to these approaches in our experiments in Section 5.
Zhou et al. (2017) and Azzouni and Pujolle (2017) propose
deep-learning approaches for anomaly detection on matrices.
These methods require a fully-connected input layer, which
in our case would include millions of features, and are not
applicable to the high-dimensional data sets that we study
here.

3 Our approach
To detect anomalous access patterns, we define a probabilistic
model for normal access patterns. We learn a baseline low-
rank stationary model for a user-object incidence matrix, and
then model the deviation of the temporal model from the
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stationary one. This enables learning and detection using a
feasible number of parameters.

Denote the number of different users by n and the number
of different objects by m. For simplicity of notation we fix
m and n; however, in practice they need not be known to
the algorithm in advance. We assume that the data is pro-
vided as a sequence of consecutive time intervals, where for
each time interval t an access matrix Bt ∈ {0, 1}n×m is
provided, where Bt(i, j) = I[user i accessed object j]. The
length of a time interval is an external application-specific
parameter. The goal of the algorithm is to assign an anomaly
score to each new access matrix Bt which is observed after
the training phase. The distribution of Bt could be modeled
using a matrix πt ∈ [0, 1]n×m, where πt(i, j) is the prob-
ability that user i accesses object j during time interval t,
and different entries in Bt are assumed statistically indepen-
dent. Thus, at time interval t, any possible observation matrix
G ∈ {0, 1}n×m would be assigned a probability of

Pπt [Bt = G] :=
∏

i∈[n],j∈[m]

πt(i, j)
G(i,j)(1− πt(i, j))1−G(i,j).

(1)

This model allocates a separate set of parameters for each
time interval, and is incapable of extrapolating beyond past
observations. Hence, we instead posit a single baseline
matrix π̄ ∈ [0, 1]n×m, which approximates a stationary
(time-independent) distribution. This baseline matrix can
be thought of as a rough approximation of πt for all time
intervals t. It induces a distribution on observation matrices
in a manner analogous to (1): P[Bt = G] := Pπ̄[Bt = G].
This model is similar to the one proposed in Davenport et
al. (2014) for a non-temporal variant of matrix completion
from probabilistic binary observations. We take the standard
approach of assuming that π̄ is low-rank, motivated by the
intuition that the relevance of a user to an object can be ex-
plained by a small number of latent factors (see, e.g., Su and
Khoshgoftaar; Sindhwani et al.; Leskovec, Rajaraman, and
Ullman 2009; 2010; 2014).

Let π̂ be an estimator for π̄, which is used to approximate π̄.
In Section 4.1 we give our procedure for obtaining π̂. Having
obtained an approximation π̂ to π̄ based on the training set,
we can calculate the log-likelihood of an observation matrix
G at time-interval t, as induced by the parameters π̂:

LL(G, π̂) := logPπ̂[G] =∑
i,j

(G(i, j) log π̂(i, j) + (1−G(i, j)) log(1− π̂(i, j))) .

At this point, one might consider assigning time-interval t
an anomaly score based on the value LL(Bt, π̂), where Bt is
the actual matrix observed at time t: a lower log-likelihood
value would indicate a higher anomaly level. The problem
with this proposal is that it is likely that some time intervals
will systematically exhibit behavior that deviates significantly
from that of π̄, and these systematic deviations should not
be classified as anomalies. In fact, it would be completely
normal for these deviations to occur, and less normal if they
do not occur. For instance, it is expected that access patterns
should be different between night and day, weekdays and

weekends, holidays and workdays, and so on, as well as be
affected by application-specific circumstances. For instance,
if the application monitors a software company’s database
accesses, scheduled days of major version updates would
likely have patterns different from other days. Thus, we need
some way of accounting for systematic, non-anomalous, dif-
ferences between time intervals.

We address this issue by proposing a compromise between
the overly constraining stationary model defined by π̄ and the
overly rich model in (1). We model the similarity between
πt and π̄ in terms of the properties of the time interval t.
This similarity can be formalized using the cross-entropy
between π̄ and πt. Recall that the cross-entropy between
two discrete distributions p, q isH(p, q) := −

∑
i pi log(qi).

For two distributions defined as above by matrices π1, π2 ∈
[0, 1]m×n, we have

H(π1, π2) =
∑
i,j

HBer(π1(i, j), π2(i, j)),

where HBer(a, b) for a, b ∈ [0, 1] is the cross-entropy be-
tween the distributions Bernoulli(a) and Bernoulli(b). The ex-
pected value of the measured log-likelihood score LL(Bt, π̂)
satisfies

EBt∼πt
[LL(Bt, π̂)] = −H(πt, π̂).

Therefore, if the actual log-likelihood score LL(Bt, π̂) is far
from −H(πt, π̂), this can be considered an anomalous be-
havior. The value of H(πt, π̂) cannot be computed, since
πt is unknown. Instead, we train a predictor that estimates
it. We represent each time-interval t by a vector vt ∈ Rd of
d natural time-dependent real-valued features, such as time-
of-day, day-of-weak, auto-regressive features (such as the
log-likelihood in a previous interval) and possibly application-
specific features, such as a binary indicator for times of ver-
sion updates in a software company. We fit a linear regres-
sion model vt 7→ 〈ŵ, vt〉 parametrized by ŵ ∈ Rd, where
LL(Bt, π̂) ≈ 〈ŵ, vt〉 on the training set.1 We then define the
anomaly score of a new observed time interval t by

Deviation(π̂, Bt, t) = |LL(Bt, π̂)− 〈ŵ, vt〉|. (2)

This approach enables identifying anomalous behavior, while
avoiding many of the false alarms resulting from normal
differences between time intervals. Our definition of devia-
tion identifies cases of a high likelihood also as anomalous,
since they might indicate that the interval is less noisy than
expected, which might also indicate a possible issue.

Lastly, we address the issue of cold-start (Su and Khosh-
goftaar 2009), in which new users and objects can appear for
the first time in the test set, without ever having appeared in
the training set. For instance, in the database-access setting,
new employees and new database tables can be added over
time. If the application monitors an open environment such
as a public web site, then the users and objects modeled in
π̄ could be a small minority of the set of users and objects
observed during the deployment of the system. We address

1Central to this approach is the assumption that anomalous inter-
vals are very rare, and so the model is trained almost exclusively on
non-anomalous behavior.
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this issue by applying a process commonly known as folding
(e.g., Deerwester et al.; Manning and Schütze 1990; 1999)
to incorporate the new users or objects into the model on the
fly.

In the next section we give a detailed account of the full
anomaly detection algorithm.

4 The Algorithm
We describe the two phases of the algorithm: training and
testing. In the training phase the model is learned. In the
testing phase new intervals come in and are assigned an
anomaly score based on the learned model.

In the training phase, the algorithm receives a training
set S = (B1, . . . , BT ), of consecutive access matrices.
We split S into two parts, S1 = (B1, . . . , BT1), S2 =
(BT1+1, . . . , BT ). S1 is used to find an estimator π̂ for the
probabilistic stationary model π̄, while S2 is used to fit the
log-likelihood regressor ŵ. The full training algorithm is
described in Section 4.2.

In the anomaly-detection (testing) phase, an access matrix
is provided as input for each time interval, and the algorithm
outputs an anomaly score for each such matrix using Eq. (2).
The monitoring system now has a ranking of all the intervals
by anomaly score, and it can display the full ranking or the top
few, as specified by the desired user interface. For instance, if
the security analyst can study 10 events a day then the top 10
suspected anomalies will be presented. Thus the threshold of
anomalies to display depends on the capacity of the security
analyst and the definitions of the monitoring system.

For simplicity of presentation, We first describe the two
phases of the algorithm assuming that no new users or objects
appear after the model π̂ is estimated in the training phase. We
then explain, in Section 4.3, how the algorithm is seamlessly
adapted to handle new users or objects.

Computational complexity The most computationally ex-
pensive step in the algorithm, which we detail below, is an
SVD procedure. A naive implementation of SVD is can be
cubic in the matrix dimensions. However, since in our applica-
tion the matrices are usually sparse, a sparse SVD algorithm
can be used to speed up computation (e.g., Larsen 2000). All
other procedures that our algorithm employs are linear in m
and/or n.

Below we use several matrix norms: for a matrix A ∈
Rm×n, denote the nuclear (trace) norm by ‖A‖tr =

∑
i σi,

where σi are the singular values of A. The Frobenius norm
is ‖A‖F = (

∑m
i=1

∑n
j=1A

2
i,j)

1
2 , and the spectral norm is

‖A‖sp = maxσi.

4.1 Estimating the matrix model
Our probabilistic estimation problem in the first part of the
training process is to estimate a low-rank probability matrix
π̂ based on the sequence of matrices S1 = (B1, . . . , BT1

). In
our simplified probabilistic model, the Bt’s are assumed to
be drawn i.i.d. according to some low-rank matrix π̄.

A standard approach for finding a low-rank estimate (Fazel
2002) is to minimize the mean-squared error of the matrix
difference, and regularize using the trace norm, which is a

convex relaxation of the low-rank constraint. Previous works
assume that only a single access matrix drawn from π̄ is avail-
able (Davenport et al. 2014; Hsieh, Natarajan, and Dhillon
2015), while in our setting several matrices are provided at
training time. To estimate π̄, we define a single average ma-
trix B̄ = 1

T1

∑T1

t=1Bt, and solve the following optimization
problem.

F (B̄, λ) := min
π̂ ∈[0,1]n×m

‖π̂ − B̄‖2F + λ‖π̂‖tr. (3)

Here λ > 0 balances the trade-off between fidelity to B and
the low-rank structure.

We prove the following generalization bound for F (B̄, λ):
For a matrixA and a distributionD over matrices, let `(A,D)
be an L-Lipschitz measure of the quality of A as a model
for D. Then, ∀π̂ ∈ [0, 1]n×m such that ‖π̂‖tr ≤ γ, with high
probability,

|`(π̂,Dπ̄)− `(π̂, S)| = O

(
Lγ√
T

)
,

where S is an i.i.d. sample of size T drawn fromDπ̄. The full
proof of this new convergence result can be found in the full
version of this work (Gutflaish et al. 2017). We further show
in the full version that this result holds, in particular, for the
Mean Squared Error loss, thus implying that the minimizer of
(3) over the sample of matrices converges to the best possible
stationary model for the given distribution.

Minimizing (3) without requiring π̂ ∈ [0, 1]n×m can be
done efficiently, where the result is a model in Rn×m. This
is shown in Mazumder, Hastie, and Tibshirani (2010): For
a real-valued matrix A, let SVD(A) be the Singular Value
Decomposition of A. Let r be the rank of the matrix B̄, and
let (U,D, V T) = SVD(B̄). Then the minimizer of F (B̄, λ)
is UDλ/2V

T, where Dλ = [max(d1 − λ, 0), ...,max(dr −
λ, 0)]. Note that for λ ≥ 2||B̄||sp, the minimizer is zero,
which provides an upper bound on the valid range for λ.

We employ this unconstrained minimization approach to
get a model in Rn×m, and then convert it into a solution π̂
that satisfies π̂ ∈ [0, 1]n×m using the clipping strategy pro-
posed in Shamir and Shalev-Shwartz (2014). This approach
is much lighter computationally than solving the full con-
strained minimization, yet it reportedly results in very similar
solutions. This matches our empirical observations in our
experiments as well.

The procedure described above for finding a model matrix
π̂ is given in Alg. 1 as the procedure FindModel.

Algorithm 1 FindModel(λ, S): Find model matrix
Require: λ > 0, training data S = (B1, . . . , BK)
Ensure: π̂

1: B̄ ← 1
K

∑K
i=1Bt.

2: (U,D, V T)← SVD(B̄).
3: π′ ← UDλ/2V

T.
4: for i ∈ [m], j ∈ [n] do
5: π̂(i, j)← min(1,max(π̂′(i, j), 0)).
6: end for
7: Return π̂.

3758



Note that while in the rest of our algorithm we use the
log-likelihood as a measure of fit between the model π̂ and
the observed matrix Bt, in (3) the Frobenius norm is used
instead, and our generalization bound holds for the Mean
Squared Error. This is because the Frobenius norm is more
stable for low-rank approximation, and because optimizing
over the log-likelihood under the constraints is significantly
more computationally demanding, making it impractical in
our setting. Our experiments show that this approach works
well in practice.

4.2 The full training algorithm
In the first step of the training algorithm, which uses the first
part of the training set, S1, the value of the regularization
parameter λ is selected by cross-validation, and the selected
λ is used to find the estimated model π̂.

1. A set of values Λ is initialized for cross-validation. We use
the set {‖B̄‖sp/2i}Ki=0, where K is selected adaptively, by
identifying when decreasing λ further does not improve
the log-likelihood on the validation set.

2. k-fold cross-validation (k = 10) is performed to select
λ ∈ Λ: In fold i, S1 is divided to a training part St1(i) and
a validation part Sv1 (i), and a model π̂λ(i) is calculated by
π̂λ(i)← FindModel(λ, St1(i)). The score of λ is set to
the average

L(λ) =
1

k

k∑
i=1

1

|Sv1 (i)|
∑

Bt∈Sv
1 (i)

LL(Bt, π̂λ(i)).

3. The regularization parameter is set to λ∗ ← argmaxL(λ).

4. The estimated model is set to π̂ ← FindModel(λ∗, S1).

The second step of the training step uses S2 as follows:
Having found a model estimate π̂, we now find a regressor ŵ
for the expected log-likelihood for time-interval t.

1. A training set {(vt, yt)}Tt=T1+1 for regression is calculated
from S2 as follows:

(a) The vector of time-dependent features vt is calculated
using the definition of the features for t (e.g., time-of-
day, day-of-weak, etc.)

(b) yt ← LL(Bt, π̂).

2. The regressor is set to

ŵ ← argmin
w∈Rd

T∑
t=T1+1

(yt − 〈w, vt〉)2.

The outputs of the training phase are π̂ and ŵ, where π̂ is
given as a low-rank matrix decomposition π̂ = UΛV T of
some rank k, with U ∈ Rn×k,Λ ∈ Rk×k, V ∈ Rm×k,
where Λ is diagonal. These values are then used at the
anomaly-detection phase to calculate the anomaly score given
in Eq. (2).

4.3 Unseen objects: cold start
We now explain how we handle the cold start problem (Su
and Khoshgoftaar 2009), which refers to the fact that objects

might be observed for the first time after the training phase
and the estimation of π̂. The challenge is to assign likelihood
scores to matrices Bt which include new rows or columns
that do no appear in π̂. Previous solutions to the cold start
problem in the context of collaborative filtering have sug-
gested finding an existing user whose pattern of accesses
most resembles that of the new user, and assigning the new
user the same prediction as the existing user or a weighted
score of the most similar users (Shardanand and Maes 1995).
Our setup is slightly different, since we are not attempting
to predict the values of specific matrix entries. In our algo-
rithm, to calculate the log-likelihood of a matrix Bt which
includes rows or columns not present in π̂, we calculate a
new version of π̂ which extends to these rows and columns.
This is based on finding similar users/objects in latent space,
the low-rank space spanned by π̂. Each new user or object is
projected onto latent space, via a process commonly known
as folding (Manning and Schütze 1999). Then, we find its
nearest neighbor in the existing π̂, based on the distances in
latent space. Finally, we assign the new row/column the same
probability vector as its nearest neighbor. Using distances in
latent space reduces the risk of overfitting, and also allows
storing and searching over smaller matrices.

Formally, let B̄1 = 1
T1

∑T1

i=1Bi ∈ Rn×m be the matrix
representing the aggregate access data from the training set
S1. Let π̂ = UΛV T be the rank-k model estimated in the
first step of the training phase. Let G = B̄1V ∈ Rn×k and
H = B̄T

1 U ∈ Rm×k. Let Gi be the i’th row in G, and let Hj

be the j’th row in H . These are the latent representations of
user i and object j from B̄1, respectively. Alg. 2 gives the
procedure FoldedLL for calculating the folded log-likelihood
of a new observation matrix Bt, assuming for simplicity that
all new users/objects appear in the last rows/columns of Bt
and its dimensions are n′,m′. The training and anomaly-
detection algorithm described above are made to handle the
cold start by replacing LL in the regression learning step and
in the anomaly score step with FoldedLL.

Algorithm 2 FoldedLL(Bt, π̂, G,H,U, V )

1: π̂fold ← π̂
2: for Each row ul in Bt, for l ∈ {n+ 1, . . . , n′} do
3: u′ ← ul(1 : m) · V
4: i← argmini ‖u′ −Gi‖2.
5: Append row i of π̂fold to the end of π̂fold.
6: end for
7: for each column vl in Bt for l ∈ {m+ 1, . . . ,m′} do
8: v′ ← vTl (1 : n) · U
9: j ← argminj ‖v′ −Hj‖2.

10: Append column j of π̂fold to the end of π̂fold.
11: end for
12: Return LL(Bt, π̂fold)

5 Experiments
We tested our algorithm on several data sets. The properties
of each data set are given in Table 1.

The first data set is TDA, which is described in Section
1 and is publicly available. TDA records accesses of users
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Data Set Interval # intervals users objects
length in data set

TDA 1 hour 1488 4702 11654
Amazon 1 day 1894 17612 6451

Movielens 1 day 1822 29120 24401
Netflix 1 day 1565 165405 12938

TDA (small) 1 hour 1488 1000 1000
Amazon (small) 1 day 1894 1000 1000

Table 1: Properties of the tested data sets

to database tables in a live real-world system, during one-
hour intervals over a two-month period. The second data set
is from Amazon (Lichman 2013). It specifies user permis-
sions to resources inside the company during the time period
3.25.05 — 8.31.10. The data set specifies which user had per-
missions to which resource at each day. We further tested on
the movie-rating data sets MovieLens (Harper and Konstan
2016) and Netflix (Bennett, Lanning, and others 2007). In
these two data sets, the objects are movies, and an access oc-
curs when a user rates a movie. It should be noted that while
no single user-movie pair is repeated in the movie-rating data
sets, anomalous behavior (e.g. users rating movies of a genre
they seldom rate) can still be identified using latent-factor
analysis as performed by our algorithm. We used MovieLens
data from the years 2010-2014, during which the level of
activity was fairly stable. We used Netflix data from the dates
12.8.99 — 4.19.14, for which complete data was available.

The available data sets do not contain known anomalous
accesses. Thus, in our experiments we injected anomalous
behavior into random intervals, as explained below. We com-
pare our algorithm (termed TLR in the figures below) to
five baselines: First, the four algorithms described in Section
2: SRMF (Roughan et al. 2012), PCA (Lakhina, Crovella,
and Diot 2004) , RobustPCA (Candès et al. 2011) and MET
(Kolda and Sun 2008). A fifth baseline, which we call MEAN,
is similar to our algorithm, except that the deviation score
is calculated with respect to the mean log-likelihood of the
regression training set, without any adjustments based on
regression. In each of the first four baselines, we used the de-
fault parameters as recommended by the authors. For SRMF,
PCA and MET, the anomaly scores were generated by eval-
uating the norm of the residual score on each interval. For
RobustPCA, the anomaly score was generated by evaluating
the norm of the sparse component of the interval.

The first four baseline algorithms all process the entire
data set at once. As a result, due to the size of our data sets,
it was impossible to run these baselines on the full data sets
on a reasonably high-capacity multicore server. Indeed, an
important advantage of our algorithm is that it does not pro-
cess the entire data set at once, and thus can handle much
higher-dimensional data sets without requiring a large mem-
ory. Since we could not run these baselines on the full data
sets, we ran a full comparison on a down-sampled version
of the TDA and Amazon data sets, each including only 1000
users and 1000 objects, selected at random from each data set:
this size was the largest that was feasible for all algorithms.

We term these data sets below “TDA (small)” and “Amazon
(small)”. Down-sampling the Movielens and Netflix data set
proved ineffective, since the result was so sparse that all al-
gorithms failed completely. For the full data sets, we report
the results of our algorithm and of the MEAN baseline.

For our algorithm, we used the following natural time-
dependent features for regression, inspired by Rendle (2010):
A binary “weekend” feature, the log-likelihood of the pre-
vious interval and of the one 24 hours ago (for TDA) or
a week ago (for the others), the number of accesses in the
current interval, the number of intervals since the last train-
ing set interval, day-of-the-week, and for TDA also hour
of the day h ∈ {1, . . . , 24} and shifted hour of the day
((h+ 12) mod 24).

Accuracy of regression. Figure 1 shows, for each full data
set, the true log-likelihood of each test interval against the
predicted log-likelihood based on the learned regressor ŵ.
A straight diagonal line would indicate a perfect prediction.
Indeed, the prediction is quite successful for these data sets,
and the correlation coefficients (ρ) are very close to one,
indicating that using linear regression here is reasonable.

Figure 1: True vs. predicted log-likelihood on the test set (in
arbitrary units).

Experiment I: Random accesses. In this experiment, an
anomalous interval is simulated by adding random accesses
to it: Each bit in the interval’s access matrix is changed to
1 with an independent probability of ε > 0. We ran the
algorithms 100 times on each data set, each time randomly
selecting a single interval to simulate as anomalous. For each
noise level, we calculated the AUC (Area under the curve)
of the combined ROC curve, and plotted it against the value
of log10(ε). The results of our algorithm and of MEAN on
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the full data sets, as well as the results of all algorithms on
the down-sampled data sets, are reported in Figure 2. It can
be seen that the regression model improved the identification
of the anomaly in a wide range of noise levels, and that our
algorithm is usually better than all baselines.

Figure 2: The AUC as a function of the log of the noise in
the random access experiment.

Experiment II: Accesses at an anomalous time. We sim-
ulated a behavior which is normal at one time, but possibly
anomalous at a different time, by replacing two randomly
chosen intervals with each other. This moves intervals to a
time in which they might be unexpected, hence should be
identified as anomalies. We ran the algorithms 100 times
on each data set, each time replacing intervals of a single
random pair. Figure 3 shows the ROC curves generated from
the anomaly scores of each of the algorithms. Note that if the
times of the intervals in the pair are similar, e.g., both in the
morning of a workday, then no anomaly should be identified.
Thus, even the best algorithm could have an AUC which is
not very close to one. Figure 3 shows that our algorithm is
the most successful here. With the exception of SRMF, the
other algorithms are not better than random guessing on this
task. This should not be surprising, since these algorithms do
not take into account the dependence on the timing of events.

Run time and memory The baseline algorithms operate
on a single matrix/tensor which includes the entire data set,
and with no distinction between training time and test time.
As a result, the memory requirements of these algorithms
are prohibitive for large data sets. In contrast, our algorithm
processes single-interval matrices one by one. Therefore, it
requires significantly less memory. In addition, our algorithm

Figure 3: ROC curves for the anomalous time experiment.
The AUC is given in parentheses.

performs matrix optimization only during training time, while
the calculation of anomaly scores during test time is fast, and
requires a small memory footprint for the trained model. This
allows real-time anomaly detection as new matrices appear.
Table 2 reports the run time of each of the algorithms on the
tested data sets. The baseline algorithms could only be run on
the reduced data sets due to their memory requirements. Our
approach shows a clear run-time advantage, during training
and more so during testing.

Data Set TLR (train) TLR (test) SRMF PCA RobustPCA MET
TDA 946 0.0029 - - - -

Amazon 16621 0.0141 - - - -
MovieLens 4652 0.0024 - - - -

Netflix 1964 0.0071 - - - -
TDA (small) 45 0.0042 229 140 338 50

Amazon (small) 209 0.0027 279 571 451 354

Table 2: Run-time (seconds) on an 2.8GHz Xeon CPU with
40 cores and 256 GB RAM.

6 Conclusions
The experiments demonstrate that our approach obtains su-
perior results to previous algorithms, while requiring signifi-
cantly less computational resources. While we focused here
on identifying anomalous time intervals, this approach can
be adapted to identifying specific users or objects which are
anomalous. An additional important challenge is to develop
a streaming version of the training stage. These adaptations
will be studied in future work.
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