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Abstract

Convolutional Neural Networks (CNNs) have shown great
power in various classification tasks and have achieved re-
markable results in practical applications. However, the dis-
tinct learning difficulties in discriminating different pairs of
classes are largely ignored by the existing networks. For
instance, in CIFAR-10 dataset, distinguishing cats from dogs
is usually harder than distinguishing horses from ships. By
carefully studying the behavior of CNN models in the training
process, we observe that the confusion level of two classes
is strongly correlated with their angular separability in the
feature space. That is, the larger the inter-class angle is, the
lower the confusion will be. Based on this observation, we
propose a novel loss function dubbed “Inter-Class Angular
Loss” (ICAL), which explicitly models the class correlation
and can be directly applied to many existing deep networks.
By minimizing the proposed ICAL, the networks can effec-
tively discriminate the examples in similar classes by en-
larging the angle between their corresponding class vectors.
Thorough experimental results on a series of vision and non-
vision datasets confirm that ICAL critically improves the
discriminative ability of various representative deep neural
networks and generates superior performance to the original
networks with conventional softmax loss.

Introduction
Over the past few years, Convolutional Neural Networks
(CNNs) have been successfully applied to various image
analysis tasks and gradually become one of the most pow-
erful machine learning approaches nowadays. In particular,
CNNs have achieved state-of-the-art results for a wide range
of challenging tasks such as object recognition (Krizhevsky,
Sutskever, and Hinton 2012; Li et al. 2016), hand-written
digit recognition (LeCun et al. 1989), image classification
(Deng et al. 2009; Gong et al. 2016; 2017), natural language
processing (Kim 2014; Lai et al. 2015; Liu, Qiu, and Huang
2016; Wang et al. 2017), etc.

Generally, the key components of a CNN for visual classi-
fication tasks includes stacked convolutional layers, pooling
layers, and a linear matrix with the softmax function. The
earliest CNN can be dated back to LeNet5 (LeCun et al.
1998), which has only five layers. Recently, He et al. (He

∗Corresponding author
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2016a) introduced the deep residual network with
more than 1000 layers, which is a huge breakthrough in
training extreme deep neural networks. Other typical CNNs
including (Simonyan and Zisserman 2015; Szegedy et al.
2015; Srivastava, Greff, and Schmidhuber 2015; Szegedy
et al. 2016; He et al. 2016a; Xie et al. 2017; Huang et al.
2017; Szegedy et al. 2017) have exhibited strong learning
ability and obtained superior performance to traditional
learning approaches on a variety of tasks. In summary, the
classical CNNs’ structure can be viewed as a convolutional
feature learning machine supervised by the softmax loss.
The convolutional layers extract the discriminative features
of an input image, and send the features into the softmax
layer for classification.

However, in classical CNNs’ structure, the softmax func-
tion ignores the distinct difficulties for discriminating the
examples in different categories. In fact, the inter-class
similarities between different categories are very different.
For instance, in CIFAR-10 (Krizhevsky and Hinton 2009)
dataset, distinguishing cats and dogs is usually harder than
distinguishing horses and ships for CNNs, as the cats often
share many similar local patterns with dogs. Unfortunately,
the softmax operation fails to explicitly consider the dif-
ferent distinguishability of inter-class pairs, which is an
important issue that has been largely neglected.

By a series of exploratory experiments, it is observed that
there exists a correlation between the angle of two classes
and the difficulty in correctly distinguishing them. As shown
in Fig. 1, the smaller the angle of a pair of classes is, the
harder will be for a network to distinguish them. From the
angular matrix shown in Fig. 1(a), we see that the angle
θcat,dog is smaller than angle θdog,plane, which is consistent
with our general understanding that separating cats and dogs
is actually more difficult than distinguishing between dogs
from planes.

To reduce the discriminative difficulty between the two
categories, especially the two similar ones, our method tries
to explicitly enlarge the angle of two classes as shown in
Fig. 1(d). To this end, Inter-Class Angular Loss (ICAL)
is proposed in this paper to enhance the discriminative
ability between hard category pairs in order to improve
the classification performance of CNNs. Specifically, ICAL
uses cosine distance on the class angle θ to measure the
similarity of two classes. The value of cosine distance
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Figure 1: The visualizations of Confusion Matrix and Angular Matrix of ResNet on CIFAR-10 (Krizhevsky and Hinton 2009)
dataset. The (a), (b) and (c) denote the different states of the model with the corresponding confusion matrix and angular
matrix between pairs of categories, respectively. Additionally, (d) shows the class vectors between the “cat” and “dog” with
the corresponding angles. As shown in (a) to (c), when the angle between the category pairs increases, the confusion level
between them decreases. In (d), the angle between the class vectors of hard example “cat” and “dog” increases, leading to the
improvement of discriminability between them.

between a pair of classes will gradually decrease with the
increase of θ. By applying the angular factor into the loss
function ICAL, our method is able to drive the inter-class
angle to be as large as possible.

Our numerical experiments are performed by applying the
proposed ICAL to several popular deep networks. The re-
sults of corresponding networks can be effectively enhanced
as revealed by rich experiments on various tasks related to
image and text. We visualize the class scores between hard
category pairs to demonstrate that the two similar categories
are indeed separated by our ICAL. Therefore, our proposed
ICAL is critical to boosting the discriminability of various
deep networks, leading to the improved final performance
for a variety of classification tasks.

Related Works
In the literature of machine learning and mathematical opti-
mization, a range of loss functions such as contrastive loss
(Hadsell, Chopra, and LeCun 2006), triplet loss (Schroff,
Kalenichenko, and Philbin 2015), center loss (Wen et al.
2016) and large-margin loss (Liu et al. 2016) have been
proposed. However, these approaches focus more on the
intra-class compactness, and partially ignore the distinct
difficulties in discriminating different category pairs.

In the triplet loss process, a three tuple containing three
examples xa, xp (the same class of xa), and xn (the
different class of xa) is built, which is to make the distance
between the feature expressions of xa and xp as small as
possible and the distance between the feature expressions of
xa and xn as large as possible. Triplet loss is usually used
at the individual level for fine-grained identification. Slow
convergence and overfitting problem exist in its applications,

and the establishment of three tuple is also a heavy cost.
Very recently, the principle of center loss (Wen et al.

2016) is presented based on the softmax loss. By maintain-
ing a clustering center in the feature space of each category
from the training set, center loss makes the samples in
the same class closer to their clustering center during the
training, in order to guarantee the intra-class compactness.
It only considers intra-class compactness without taking
into enough account of distinct confusion levels between
different class pairs.

Furthermore, the large-margin softmax (L-Softmax) loss
(Liu et al. 2016) is an extension of softmax loss as well.
It is done by incorporating a preset constant m multiplying
with the angle θ between the sample’s feature vector and
the ground truth class vector, hence making the samples
concentrated into their ground truth vectors. The large-
margin aims to narrow the angle between a sample and its
corresponding class vector. However, this method still has
several drawbacks. For one thing, L-Softmax Loss utilizes
the binomial approximation to compute the cosine value
of inter-class angle, in which only the first two terms are
preserved and the remaining high-order terms are directly
dropped. Therefore, the finally optimized result is inaccurate
and may not be the real optimal solution. For another,
the parameter m which explicitly controls the inter-class
angle is only allowed to choose from discrete values, so the
practical parameter tuning could be difficult and the peak
performance might be missed. Furthermore, the optimal m
is strongly related to the relative magnitude of class vectors
W1 and W2. Unfortunately, these class vectors are unknown
before implementing the algorithm, which also makes m
very difficult to tune. In contrast, our ICAL does not use
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Table 1: The top three minimal angles of the angular matrix at four different periods along with the overall performances. Acc
is short for Accuracy. As the angle between every category pairs increases, the overall accuracy improves.

Periods Epoch 4 (Acc 72%) Epoch 33 (Acc 85%) Epoch 100 (Acc 90%) Epoch 188 (Acc 95%)
Top 3 71◦ (dog/cat) 75◦ (dog/cat) 76◦ (truck/auto) 83◦ (truck/auto)

minimal 72◦ (truck/auto) 75◦ (truck/auto) 79◦ (dog/cat) 86◦ (dog/cat)
angles 80◦ (ship/plane) 83◦ (ship/plane) 86◦ (ship/plane) 88◦ (ship/plane)

Figure 2: Classification accuracies (%) of different methods
on CIFAR-10 dataset. The horizontal axis represents the
tuning parameters for different methods (i.e. the m for L-
Softmax Loss and λ for our ICAL). Note that the value
of parameter m is discrete, while our parameter λ is
continuous.

any approximate calculations and the parameter governing
the inter-class angle is continuous, therefore the output of
our method is accurate and the produced inter-class angle
can be more easily controlled. An intuitive comparison of
the two losses under different values of tuning parameter is
presented in Fig. 2. We see that compared to the L-Softmax
Loss, the performance of our method is not sensitive to
inter-class angular parameter (i.e. λ in Eq. (3)). Therefore,
the selection of parameter in our method is much easier
than L-Softmax Loss. The reason lies in that we have
normalized the class vectors in advance. Furthermore, the
backpropagation process induced by L-Softmax Loss cannot
be directly implemented by the existing neural network
toolkit such as Caffe and Tensorflow, as the gradient should
be manually calculated. In contrast, our ICAL is quite simple
of which the backpropagation process can be automatically
implemented without writing any code.

As a result, the ICAL is specifically designed in this paper
to enhance the discriminative ability between hard category
pairs to improve the classification performance of CNNs. We
use the experimental results and the corresponding analysis
to show how our Inter-Class Angular Loss works well.

Relationship between Inter-Class Angle and
Learning Difficulty

As illustrated above, the softmax loss does not explicitly
discriminate distinct difficulties in inter-classes. In contrast,
our proposed ICAL is able to obtain discriminative learning
results by enlarging the angle between confusing classes.
First, to give a direct motivation, we conduct a series of
explorations in this section.

On CIFAR-10 (Krizhevsky and Hinton 2009) dataset,

as shown in Fig. 1, we visualize the confusion matrix
and angular matrix on the test set during different training
periods. In the confusion matrix, the larger the element is,
the more confusion between the corresponding two classes
arises. In the angular matrix, the smaller the element is, the
similar the two classes are. One can see that every diagonal
element of the angular matrix is zero as it represents the self-
similarity of a certain class.

In Fig. 1(a), it is very clear that θcat,dog ≤ θdog,plane
and θtruck,auto ≤ θtruck,deer, and the confusion level of
cats and dogs, truck and auto are crucially high from the
corresponding confusion matrix. The level of confusion is
typically low, when the angle of some class pairs is larger
than 100 degrees (e.g. θtruck,dog > 100◦ in Fig. 1(c)).
As shown in Fig. 1(d), we give a visualization of class
vectors between “cat” and “dog”, which indicates that with
the increase of angles and the accuracies increase. The
confusion matrix and angular matrix are almost synchronous
in the process of their evolutions from (a) to (c). To further
confirm the relationship, we calculate the top three minimal
angles with the corresponding category pairs as shown in
Tab. 1. It shows that with the improvement of the overall
angle of the class pairs, the accuracy between class pairs
increases. By combing Tab. 1 with Fig. 1, it is clear that
the smaller the angle, the harder it is to distinguish the
corresponding classes.

Thus, our work tries to explicitly widen the angle of
inter-classes to improve the discriminating ability of hard
category pairs, as well as the generalizability of model.

Methodology
Preliminaries
We describe the discriminative difficulty between the two
classes to improve the traditional softmax loss via introduc-
ing the cosine distance. Given the example xi with the label
yi, the original softmax loss can be written as

L =
1

N

∑N

i=1
Li =

1

N

∑N

i=1
−log

(
efyi∑K
j=1 e

fj

)
, (1)

where fj denotes the j-th element (j = 1, 2, · · · ,K with K
being the number of classes) of the class score vector f , and
N is the number of training samples. fyi can also be written
as fyi = W T

yi
xi where Wyi is the yi-th column of W . Here

W is the weight of the last fully connected layer in CNN.
We further expand fyi

as fyi
= ‖Wyi

‖2‖xi‖2 cos (θyi
)

where θyi
is the angle between the class vector Wyi

and the
example xi. Therefore, our intuition is that the separability
between the example xi and the class vector Wyi

can be de-
composed into an amplitude component ‖Wyi

‖2‖xi‖2 and
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an angular component with cosine similarity cos (θyi). Sim-
ilarly, we may define the similarity between the two classes
c0 and c1 as W T

c0Wc1 = ‖Wc0‖2‖Wc1‖2 cos (θc0,c1),
where Wc0 and Wc1 correspond to the class vectors of
class c0 and c1, and θc0,c1 is the angle between the two
class vectors Wc0 and Wc1 . Therefore, in our approach, the
angle between two classes ci and cj (ci, cj = 1, 2, · · · ,K)
is modeled by θci,cj , which can be computed by θci,cj =

arccos(W T
ciWcj/

(
‖Wci‖2‖Wcj‖2

)
). Here Wci and Wcj

represent the class vectors of class ci and cj , respectively.

ICAL
According to the above explanation, the angle of the two
classes is defined as the angle between their corresponding
class vectors. The cosine function is used to measure the
angle of class vectors according to its property of mono-
tonically decreasing in [0◦, 180◦]. The smaller the cosine
value is, the larger the inter-class angle will be. To increase
the angle between the classes, we minimize the cos (θi,j)
(i, j = 1, 2, · · · ,K) for optimization. Therefore, the average
sum of cosine similarity (dubbed “AverageSim”) between
pairs of classes can be formulated as

AverageSim =
1

K2

∑K

i,j=1
cos
(
θi,j
)
. (2)

By combing softmax loss with the defined AverageSim,
the preliminary ICAL is

ICAL
(
θi,j
)
=

1

N

∑N

i=1
−log

(
efyi∑K
j=1 e

fj

)

+λ
1

K2

∑K

i,j=1
cos
(
θi,j
)
, (3)

where λ is the free parameter that needs to be manually
adjusted.

Moreover, Eq. (3) can be further simplified by expanding
the last term. By using θi,j to represent the angle between
the class vectors wi and wj (wi and wj are the i-th and j-th
rows of W ), we have∑K

i,j=1
cos (θi,j) =

∑K

i,j=1
wT

i wj/
(
‖wi‖2

∥∥wj

∥∥
2

)
.

(4)
Unfortunately, the complexity for computing Eq. (4) is as
high as O(K2). With the increase of the number of classes
K, the complexity of computing Eq. (4) will grow by square,
which affects the effectiveness in the presence of a large
amount of categories. By row-normalizing W and denoting
vi = wi/‖wi‖2, Eq. (4) is expressed as∑K

i,j=1
cos (θi,j) =

∑K

i,j=1
vT
i vj , (5)

where vi and vj are the normalized class vectors. Note that
when i = j, the cosine value of corresponding class vectors
is always 1. Therefore, we only consider the case of i 6= j in
Eq. (5), namely∑K

i,j=1(i 6=j)
vT
i vj =

∑K

i=1
vT
i

∑K

j=1
vj −

∑K

i=1
vT
i vi,

(6)

where vi
Tvi = 1. Thus the cosine function is reduced to∑K

i,j=1(i 6=j)
cos (θi,j) =

∑K

i=1
vT
i

∑K

j=1
vj −K. (7)

Comparing Eq. (4) and Eq. (7), the complexity for comput-
ing cosine function is reduced from O(K2) to O(K). By
putting Eq. (3) and Eq. (7) together and ignoring the constant
number, ICAL can be eventually written as

ICAL(θi,j) = L+ λ
1

K2

∑K

i=1
vT
i

∑K

j=1
vj . (8)

Optimization
The forward and backward propagation rule of our ICAL is
quite straightforward. Therefore, the conventional stochastic
gradient descent can be used for the optimization process.

By comparing ICAL with the original softmax loss, the
only difference is that ICAL have an extra cosine loss (i.e.
the second term in Eq. (8)), namely

D = λ
1

K2

∑K

i=1
vT
i

∑K

i=1
vi, vi = wi/‖wi‖2. (9)

As a result, we only need to consider D in deriving the
forward and backward propagation rule. For backward prop-
agation, we use the chain rules to calculate partial derivatives
of D to vi, which arrives at

∂D

∂vi
= λ

2

K2

∑K

i=1
vi. (10)

Note that each row of W should be normalized as men-
tioned above. To achieve this, in Eq. (9), we rescale the
weight matrix W during the feed forward process. Note that
such weight normalization is nested in the network, rather
than explicitly conducted after each iteration. Additionally,
we need to calculate the partial derivative of each element of
vi to wi in backward propagation, which is very similar to
Eq. (10) and thus is omitted here.

Discussion
The proposed ICAL has several nice properties:
• The ICAL is a general loss function and can be applied

to many typical deep neural networks such as data aug-
mentation, pooling functions and other modified network
architectures.

• The ICAL has a clear geometric explanation, and mini-
mizing it helps to reduce the confusion level between dif-
ferent classes, by which the distinguishability of network
can be substantially enhanced.

• The ICAL has only one parameter λ to tune, making it
very convenient for practical use.

Experiments
This section empirically studies the performance of the
proposed ICAL. Specifically, we evaluate our ICAL by
applying it to various existing deep neural networks on both
vision and non-vision classification tasks. Moreover, we also
compare ICAL with other similar loss functions with large-
margin softmax loss effect on a certain network.
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Table 2: Classification accuracies (%) of various methods on Fashion-MNIST, CIFAR-10 and CIFAR-100 datasets (“F-
MNIST”, “C10”, “C100” for short, respectively). The mark “+” indicates that the standard data augmentation (crop and/or
flip) is used. The better results are highlighted in bold.

Method Depth Params F-MNIST C10 C10+ C100 C100+
DenseNet-BC (l=100, k=12) (Huang et al. 2017) 100 0.8M 95.35 94.08 95.49 75.85 77.73
DenseNet-BC (l=100, k=12)+ICAL (ours) 100 0.8M 95.57 94.46 95.51 76.10 77.84
ResNet-110 (He et al. 2016b) 110 1.7M 95.10 90.31 95.05 68.82 76.85
ResNet-110+ICAL (ours) 110 1.7M 95.58 90.98 95.42 70.48 77.64
ResNeXt-29, 8×64d (Xie et al. 2017) 29 34.4M 95.44 92.36 96.35 73.33 82.23
ResNeXt-29, 8×64d+ICAL (ours) 29 34.4M 95.53 92.68 96.63 73.62 82.65
WRN-28-10 (Zhong et al. 2017) 28 36.5M 96.35 93.16 96.92 75.77 82.27
WRN-28-10+ICAL (ours) 28 36.5M 96.51 93.53 97.14 76.74 82.66

(a) (b) (d)(c)

Figure 3: Class scores of confused categories on CIFAR-10 dataset generated by softmax and ICAL.

Experiments on Vision Datasets
Datasets Description Three challenging image classifica-
tion datasets are used for the experiments, which include

• Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017) is a
dataset of clothes images containing a training set of 60K
examples and a test set of 10K examples. Each example is
a 28×28 grayscale image, associated with a label from 10
categories. It is intended to replace the original MNIST
(LeCun et al. 1998) dataset with Fashion-MNIST for
machine learning algorithms. Fashion-MNIST includes
many similar categories of clothes like “Shirt” and “T-
Shirt/Top”, which are very difficult to discriminate.

• CIFAR (Krizhevsky and Hinton 2009) dataset consists of
totally 60K colored natural scene images with the resolu-
tion of 32×32. The training set and test set contain 50K
images and 10K images, respectively. CIFAR contains
two versions, namely CIFAR-10 including 10 classes and
CIFAR-100 including 100 classes. Following (Huang et
al. 2017), here we also adopt a standard augmentation
scheme for CIFAR dataset. We denote this augmentation
setting by a “+” mark at the end of the dataset names
(e.g. C100+). In the CIFAR experiments, we evaluate our
ICAL on all four versions, namely CIFAR-10, CIFAR-
10+, CIFAR-100 and CIFAR-100+.

Baseline Networks To show advantages of the proposed
ICAL, we apply it to four advanced CNNs: Residual Net-
work (ResNet) (He et al. 2016a), ResNeXt (Xie et al.
2017), Wide Residual Networks (WRN) (Zagoruyko and
Komodakis 2016) and Densely Connected Convolutional
Networks (DenseNet) (Huang et al. 2017). Note that λ in
Eq. (8) is the only manually adjusted factor.

Network Training All the networks are trained using
SGD. The initial learning rate is set to 0.1, and is divided by
10 at 50% and 75% of the pre-set total number of training
epochs. Following (Huang et al. 2017), we use a weight
decay of 10−4 and momentum of 0.9 with dampening. The
experimental settings for Fashion-MNIST are identical to
those for CIFAR-10 dataset. The parameter λ for incorpo-
rating our ICAL is set to λ = 1.0 on CIFAR datasets, and
λ = 1.5 on F-MNIST dataset.

Performance and Analysis For a fair comparison, all the
network settings for our experiments are kept the same
with the original networks except the loss function, and
we particularly observe the performance gain caused by the
proposed ICAL.
• Classification Accuracy The main results are presented

in Tab. 2, which clearly indicate that the accuracy of
the original networks can be effectively increased by
equipping with our proposed ICAL, so ICAL is critical
for the popular CNNs to improve their performance. In
particular, the result of 110-layer ResNet with ICAL
(i.e. “ResNet+ICAL (ours)”) even outperforms the deeper
110-layer ResNet (i.e. “ResNet-110 (He et al. 2016b)”)
approximately 2% on CIFAR-100 dataset, which again
demonstrates the power of ICAL for image classification.

• Hard Example In Fig. 3, we visualize the classification
process of easily confused categories (i.e. “dog” and
“cat”, “truck” and “auto”) in neural networks. For the
image example with real label “dog” as revealed in
Fig. 3(a), the traditional ResNet incorrectly produces
higher response on “cat” class than the “dog” class. In
contrast, the ResNet with our ICAL is able to accurately
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Table 3: Classification accuracies (%) of various CNNs and RNNs models on the text classification datasets. The better results
are highlighted in bold.

Method MR CR Subj MPQA TREC
CNN-sen-rand (Kim 2014) 76.1 79.8 89.6 83.4 91.2
CNN-sen-rand+ICAL (ours) 77.6 80.6 90.8 85.2 92.0
CNN-sen-static (Kim 2014) 81.0 84.7 93.0 89.6 92.8
CNN-sen-static+ICAL (ours) 81.6 85.2 93.5 90.1 93.3
DCNN (Kalchbrenner, Grefenstette, and Blunsom 2014) 81.5 84.9 93.5 89.8 93.0
DCNN+ICAL (ours) 82.1 85.7 93.8 90.3 93.3
LSTM-RNN (Tai, Socher, and Manning 2015) 77.4 80.3 91.0 84.9 91.5
LSTM-RNN+ICAL (ours) 78.2 80.9 91.5 85.7 92.1
Bi-LSTM-RNN (Tai, Socher, and Manning 2015) 77.8 80.5 91.5 84.5 91.1
Bi-LSTM-RNN+ICAL (ours) 78.5 81.1 92.2 85.6 91.8

Figure 4: Classification accuracies (%) and inter-class angle
(◦) under different epochs on CIFAR-10 dataset.

determine the “dog” example and the margin between
class scores of “dog” and “cat” is as large as +8.22. Sim-
ilarly, the cat image shown in Fig. 3(b) is also mistakenly
classified as “dog” by the existing ResNet. However, by
employing our ICAL, the score of “cat” class surpasses
that of “dog” by a noticeable margin +9.45. Fig. 3(c)
and Fig. 3(d) show similar results. These results further
verify the effectiveness of ICAL to help discriminate the
examples of similar classes.

• Accuracy vs. Angle In order to see the enhancement
of ICAL, Fig. 4 presents the relationship of angle and
accuracy under different epochs on CIFAR-10 dataset.
Because the CIFAR-10 dataset has ten different cate-
gories, and thus we count the smallest angle in the
Angular Matrix for each epoch. The general trend is
that as the angle increases, the accuracy increases, which
further indicates that the angle is positively correlated
with the accuracy.

Experiments on Text Datasets
Datasets Description Five popular text classification
datasets are utilized for the experiments, which contain
• MR Movie Reviews dataset (Pang and Lee 2005), includ-

ing positive and negative emotional polarities.
• CR Customer Reviews (Hu and Liu 2004) of various

products (cameras, MP3s, etc.), and the task is to classify
positive/negative reviews.

• Subj Subjectivity (Pang and Lee 2004) dataset whose task
is to identify a sentence to be subjective or objective.

Table 4: Summary of the text datasets. c: Number
of classes. l: Average sentence length. N : Number of
sentences. |V |: Vocabulary size. |V pre|: The number
of words present in the set of pre-trained word vec-
tors. Test: Test mode (CV: 10-fold cross-validation).

Datasets c l N |V | |V pre| Test
MR (Pang and Lee 2005) 2 20 10662 18765 16448 CV
CR (Hu and Liu 2004) 2 19 3775 5340 5046 CV
Subj (Pang and Lee 2004) 2 23 10000 21323 17913 CV
MPQA (Wiebe, Wilson, and Cardie 2005) 2 3 10606 6246 6083 CV
TREC (Socher et al. 2013) 6 10 5952 9592 9125 500

• MPQA Opinion polarity (Wiebe, Wilson, and Cardie
2005) dataset containing news articles from a wide variety
of news sources.

• TREC (Socher et al. 2013) question dataset, and the task
is to classify a question into one of the six question types.

More details of the above five datasets are listed in Tab. 4.

Baseline Networks To show the adaptability of ICAL to
different networks with different classification tasks, we
apply ICAL to two types of convolutional neural networks
(CNNs) and two types of recurrent neural networks (RNNs)
for text classification, which include sentence-level convo-
lutional networks (CNN-sen) (Kim 2014), Dynamic Con-
volutional Neural Network (DCNN) (Kalchbrenner, Grefen-
stette, and Blunsom 2014), Long Short-Term Memory Net-
work (LSTM-RNN and Bi-LSTM-RNN) (Tai, Socher, and
Manning 2015).

Network Training For the datasets without providing a
standard test set, we randomly select 10% of the data as
the test set and conduct 10-fold cross-validation for all the
compared methods. The reported results are the average of
the outputs of 10 independent runs. Following (Kim 2014),
training is done through stochastic gradient descent over
shuffled mini-batches with the Adadelta (Zeiler 2012).

For the whole datasets, we use the first 40 words of each
sentence. And each sentence is zero-padded with less than
40 words. For CNNs, we use: filter windows (h) of 3,4,5
with 150 feature maps for each window, 0.5 for dropout
rate (p), and 50 for the min-batch size. In addition, the pre-
trained vectors fromword2vec 1. For RNNs, the settings are

1https://code.google.com/p/word2vec/
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Figure 5: Classification accuracies (%) and inter-class angle
(◦) under different epochs on MR and Subj datasets with
softmax and ICAL.

kept the same with original networks. The parameter λ for
incorporating our ICAL is set to λ = 0.1.

Performance and Analysis For a fair comparison, all the
experimental settings are made consistent with the original
networks except the developed ICAL.

• Classification Accuracy The main results are presented
in Tab. 3, which clearly show that the accuracy of the
original networks can be effectively improved by utilizing
the ICAL, so ICAL is critical for both CNNs and RNNs
to improve their performance. In particular, on MPQA
dataset, the CNN-sen-rand with ICAL (i.e. “CNN-sen-
rand+ICAL (ours)”) outperforms the CNN-sen-rand (i.e.
“CNN-sen-rand” (Kim 2014)) without ICAL by a margin
approximately 2%, which again shows the power of ICAL
for text classification.

• Accuracy vs. Angle We present the curves of accuracy
and angle under different epochs on MR and Subj datasets
in Fig. 5. The general trend is that as the angle increases,
the accuracy increases, which further indicates that ICAL
discriminates the examples of similar classes by enlarging
the angle between their corresponding class vectors.

• Applicability As shown in Tab. 3, we not only apply
ICAL to CNNs, but also to RNNs. In general, it shows that
the CNNs and RNNs equipped with ICAL are superior
to the original networks in the final performance, which
further demonstrates that the ICAL can cover different
neural networks on different classification tasks.

Comparison with Large-Margin Loss
Network Settings Liu et al. (Liu et al. 2016) developed a
large-margin (L-Softmax) loss function in their work, so it
is necessary to compare our ICAL with their loss as well as
other typical loss functions. To this end, we apply ICAL to
the same network structure as defined in (Liu et al. 2016),
and investigate the performance on CIFAR-10 and CIFAR-
100 datasets.

Performance and Analysis In Tab. 5, we list the results
produced by different large-margin loss functions and our
ICAL. Note that all reported results are directly taken from
(Liu et al. 2016) except the results of ICAL. According to

Table 5: Classification accuracies (%) on CIFAR-10 and
CIFAR-100 datasets (denoted as “C10”, “C100” for short,
respectively). The best result on each dataset is highlighted
in bold.

Method C10 C100
R-CNN (Liang and Hu 2015) 91.31 68.25
GenPool (Lee, Gallagher, and Tu 2016) 92.38 67.63
Hinge Loss 90.09 67.10
Softmax 90.95 67.26
L-Softmax (m=2) (Liu et al. 2016) 92.27 70.05
L-Softmax (m=3) (Liu et al. 2016) 92.34 70.13
L-Softmax (m=4) (Liu et al. 2016) 92.42 70.47
ICAL (λ=1.4) (ours) 92.99 70.94
ICAL (λ=1.6) (ours) 93.06 71.09
ICAL (λ=1.8) (ours) 93.04 70.98
ICAL (λ=2.0) (ours) 93.01 70.95

Fig. 2, we select the value of λ from 1.4 to 2.0 with an
interval of 0.2.

• Classification Accuracy From Tab. 5, we see that “L-
Softmax (m=4) (Liu et al. 2016)” (where m is an integer.
With larger m, the classification margin becomes larger
and the learning becomes harder) is the most competitive
comparator. However, our “ICAL (λ=1.6) (ours)” with
the same structure as “L-Softmax (m=4) (Liu et al.
2016)” can still able to improve its performance on both
CIFAR-10 and CIFAR-100 datasets. Therefore, ICAL
is more effective than the representative state-of-the-art
L-Softmax Loss functions, and the reasons have been
explained in the part of related works.

Conclusion
In this paper, we propose a novel general loss function
named “Inter-Class Angular Loss” (ICAL) for various rep-
resentative convolutional neural networks. By relating the
discriminative difficulty of different classes with their angu-
lar separability, ICAL is able to enlarge the angle between
the confusing classes, so the distinguishability of networks
can be substantially enhanced. The intensive experimental
results on both vision and non-vision benchmark datasets
confirm that ICAL generates superior performance to the
original networks with conventional softmax loss with the
consideration of class angular issue. In the future, we plan to
apply ICAL to more deep networks to solve more practical
problems.
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