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Abstract
We propose a probabilistic model for estimating population
flow, which is defined as populations of the transition be-
tween areas over time, given aggregated spatio-temporal pop-
ulation data. Since there is no information about individual
trajectories in the aggregated data, it is not straightforward
to estimate population flow. With the proposed method, we
utilize a collective graphical model with which we can learn
individual transition models from the aggregated data by an-
alytically marginalizing the individual locations. Learning a
spatio-temporal collective graphical model only from the ag-
gregated data is an ill-posed problem since the number of pa-
rameters to be estimated exceeds the number of observations.
The proposed method reduces the effective number of param-
eters by modeling the transition probabilities with a neural
network that takes the locations of the origin and the des-
tination areas and the time of day as inputs. By this mod-
eling, we can automatically learn nonlinear spatio-temporal
relationships flexibly among transitions, locations, and times.
With four real-world population data sets in Japan and China,
we demonstrate that the proposed method can estimate the
transition population more accurately than existing methods.

1 Introduction
Analyzing people flow is critical in a wide variety of ap-
plications, such as location-based advertisements (Dhar and
Varshney 2011), marketing (Kuo, Chi, and Kao 2002), urban
development (Ashworth and Voogd 1990), transportation
system planning (Koopmans 1949), and evacuation guid-
ance (Yi and Özdamar 2007). Using such sensor devices as
GPS, WiFi, Bluetooth, and infrared beacons, we can obtain
trajectories for each person. However, trajectory data are of-
ten aggregated to protect privacy. For example, mobile spa-
tial statistics (Terada, Nagata, and Kobayashi 2013) are the
hourly aggregated spatio-temporal population data of 500-
meter grid squares that are generated based on operational
data from mobile terminal networks so that individuals can-
not be tracked.

In this paper, we propose a probabilistic model for esti-
mating people flow given the aggregated data, which we call
the neural collective graphical models. Here the aggregated
data are the populations over time for each area, and the peo-
ple flow is the transition populations between areas. Fig. 1
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shows an example of the input aggregated spatio-temporal
population data and the output people flow. In our task, the
number of parameters to be estimated, which correspond to
the people flow over time, is (T − 1)LM , where T is the
number of time points, L is the number of areas, and M
is the number of neighboring areas, where we assume that
people move to the neighboring areas. On the other hand,
the number of observations, which correspond to the spatio-
temporal population data, is TL, which is much smaller than
the number of parameters. Learning the population flow only
from the aggregated data is an ill-posed problem.

To make the problem tractable, the proposed method as-
sumes that the transition probabilities at different locations
and time points are correlated to each other. For example, the
transition probabilities at closely located areas or those at the
same time of day resemble each other. Since the correlation
is unknown, we automatically learn it with neural networks
from the given aggregated data. The neural networks enable
us to flexibly extract nonlinear spatio-temporal dependence.
In the following discussion, we use the locations of the cen-
ter of the origin and destination areas and the time of day
as the input of a neural network. However, it can take other
auxiliary information as input, such as the day of the week
and the area’s weather. We can reduce the effective number
of parameters using a neural network whose parameter size
is less than (T−1)LM , where the neural network parameter
size is constant with respect to the number of areas and time
points.

Since no transition population data are given in our
task, standard supervised learning methods are inapplica-
ble because they require observations of target variables
for training. The proposed model uses the framework of
collective graphical models (Sheldon and Dietterich 2011;
Sheldon et al. 2013) to estimate the population flow, where
the locations of individual persons are analytically marginal-
ized out, and a probabilistic model is investigated about their
sufficient statistics. Sufficient statistics, which correspond
to the transition populations between areas, are modeled by
multinomial distributions, where the transition probability is
defined by the neural network described above. By maximiz-
ing the likelihood, we simultaneously estimate the transition
populations as well as the neural network parameters with
gradient-based optimization methods.

The remainder of this paper is organized as follows. Sec-
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(a) Input

(b) Output

Figure 1: Example of input aggregated spatio-temporal pop-
ulation data and output population flow: (a) Population for
each area over time and longitude and latitude of each area
are given. (b) Our task estimates transition populations be-
tween areas over time.

tion 2 reviews related work. In Section 3, we formulate our
task and propose a probabilistic model for estimating the
population flow from the aggregated spatio-temporal pop-
ulation data. Section 4 demonstrates the effectiveness of our
proposed model with experiments using real-world aggre-
gated population data. Finally, we present concluding re-
marks and discuss future work in Section 5.

2 Related Work
Collective graphical models have been successfully used in
a wide variety of applications, including modeling bird mi-
gration (Sheldon, Elmohamed, and Kozen 2007; Nguyen et
al. 2016), information diffusion (Kumar, Sheldon, and Sri-
vastava 2013), and contingency tables (Sheldon and Diet-
terich 2011). To the best of our knowledge, our work is the
first attempt to automatically learn dependence among the
parameters in collective graphical models with neural net-
works. Although this paper focuses on population flow, our
framework is applicable to other applications of collective
graphical models, where auxiliary information is available
to effectively estimate parameters.

A number of methods have been proposed for estimating
population flow from aggregated population data based on
collective graphical models (Kumar, Sheldon, and Srivas-
tava 2013; Du, Kumar, and Varakantham 2014; Sun, Shel-
don, and Kumar 2015; Iwata et al. 2017; Tanaka et al. 2018;
Akagi et al. 2018). The collective flow diffusion model (Ku-
mar, Sheldon, and Srivastava 2013) assumed static transi-
tion probabilities that do not change over time. Iwata et
al. (2017) modeled the temporal dependence of transition
probabilities by clustering time points using mixture mod-
els. Akagi et al. (2018) modeled spatial dependence using
the distance between the origins and destinations. However,
these methods do not consider spatio-temporal dependence.
In addition, they model it in a relatively simple parametric

Table 1: Notation
Symbol Description
T number of time points
L number of areas
zt``′ population who moves from area ` to area `′

at time t
yt` population in area ` at time t
N` set of neighboring areas of area `
x` longitude and latitude of area `
θt``′ transition probability that a person at area `

moves to area `′ at time t,
θt``′ ≥ 0,

∑
`′∈N`

θt``′ = 1
f(·;φ) neural network with parameter φ

model. On the other hand, our proposed method can flexibly
model nonlinear spatio-temporal dependence using neural
networks.

Great interest is being shown in developing methods for
predicting spatio-temporal populations (Zhang, Zheng, and
Qi 2017; Hoang, Zheng, and Singh 2016; Zhang et al. 2016;
2018; Li et al. 2018; Cheng et al. 2017; Xie et al. 2010;
Yu et al. 2016; Yao et al. 2018). For example, Zhang et
al. (2018) proposed a deep learning method for forecasting
future populations using spatio-temporal dependence as well
as external conditions, such as weather and events. However,
these methods do not estimate the transition populations be-
tween areas, which is our task. Xu et al. (2017) proposed a
method to recover individual trajectories given aggregated
population data and transition probabilities. This method re-
quires the calculation of the transition probabilities in ad-
vance. On the other hand, the proposed method does not
require transition probabilities, because both the transition
probabilities and the transition populations are simultane-
ously estimated by taking the aggregated data as inputs.

3 Proposed Method
Task
Suppose that we are given spatio-temporal population data
Y = {{yt`}L`=1}Tt=1, where yt` is the population in area
` ∈ {1, 2, · · · , L} at time t ∈ {1, 2, · · · , T}. For simplicity,
we assume that each area is a grid cell, but the proposed
method is applicable to any forms of disjoint areas. Each
area is associated with location information x` ∈ R2, e.g.,
the latitude and longitude of the area’s center. Our task is
to estimate the population flow between areas for each time
point Z = {{zt`}L`=1}

T−1
t=1 , zt` = {zt``′}`′∈N`

, where zt``′
is the number of people who move from area ` to area `′ at
time t andN` is the set of neighbors of area `. Table 1 shows
our notation.

Model
First, we consider a probabilistic model for individuals. Each
person moves independently based on transition probability
θt``′ , which is the probability that a person in area ` moves
to area `′ at time t, θt``′ ≥ 0, and

∑
`′∈N`

θt``′ = 1. Let
stn ∈ {1, · · · , L} be the location of person n at time t. Then
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the probabilistic generative process of individual locations
S = {{stn}Nn=1}Tt=1, where N is the total population, is as
follows:

1) For each time point t = 1, · · · , T − 1

2) For each person n = 1, · · · , N
3) st+1,n ∼ Categorical(θtstn).

Here, Categorical(θ) represents a categorical distribution
with event probability θ, and θt` = {θt``′}`′∈N`

. Given in-
dividual locations S, area population Y and transition pop-
ulation Z are calculated by yt` =

∑N
n=1 I(stn = `), and

zt``′ =
∑N

n=1 I(stn = `∧ st+1,n = `′), respectively, where
I(·) is the indicator function, i.e., I(A) = 1 if A is true and
I(A) = 0 otherwise. Therefore, we can estimate individual
locations S by maximizing the likelihood of observed area
population Y and then estimate transition population Z us-
ing estimated individual locations Ŝ. However, estimating
individual locations S is too expensive to compute when the
number of people is large.

To overcome this problem, we utilized the framework of
the collective graphical models, where individual locations
S are analytically marginalized out and a probabilistic model
of their sufficient statistics, i.e., transition population Z, is
obtained. Due to this marginalization, we do not need to ex-
plicitly estimate individual behaviors. In particular, the fol-
lowing is the generative process of transition population Z
of given area population Y:

1) For each time point t = 1, · · · , T − 1

2) For each area ` = 1, · · · , L
3) zt` ∼ Multinomial(θt`, yt`).

Here multinomial(θ, y) is the multinomial distribution with
event probability θ and number of trials y. The multinomial
distribution of transition population zt` is as follows:

p(zt`|θt`, yt`) =
yt`!∏

`′∈N`
zt``′ !

∏
`′∈N`

θ
zt``′
t``′ . (1)

The following two relationships exist between area popula-
tion Y and transition population Z:

yt` =
∑

`′∈N`

zt``′ , yt+1,` =
∑

`′∈N`

zt`′`, (2)

where the first equation indicates that the sum of the tran-
sition populations from an area equals the population in the
area, and the second equation indicates that the sum of the
transition populations to an area equals the population in the
area at the next time point.

The number of parameters in transition probabilities Θ =
{{θt`}L`=1}Tt=1 is O(TLM), where M is the number of
neighbors. On the other hand, since the number of observa-
tions Y is O(TL), the transition probabilities cannot be de-
termined when only these constraints are used. The proposed
method imposes more constraints on the transition popu-
lations by incorporating spatio-temporal correlation among
transition probabilities Θ. We model the transition probabil-
ities with neural network f(·), which takes time t, location

Figure 2: Example of proposed model with its four areas: A,
B, C and D, and location information xA, i.e., latitude and
longitude, is associated to each area. The transition probabil-
ity between areas θtAB at time t is calculated by nonlinear
function f , which is modeled by a neural network with pa-
rameter φ, taking time t, origin location xA, and destination
location xB as input.

of origin area x`, and location of destination area x`′ as the
input, as follows:

θt``′ = f(t,x`,x`′ ;φ), (3)
where φ is the parameters of the neural network. By this
modeling, related transition probabilities, e.g., those with
close time points, near locations and/or similar directions,
are constrained to have similar values to each other. The non-
linear correlation is automatically extracted from the given
data by learning the neural network parameters. Fig. 2 shows
an example of the proposed model.

We use the following input vector:
ut``′ = [τ̃(t), x̃`, x̃`′ − x̃`], (4)

where τ(t) represents the time of day of time t, x̃ indicates
the normalized value of x to a range of −0.5 to 0.5, [a, b]
indicates the concatenation of a and b, and ut``′ ∈ R5. Here
the transition probability depends on time of day τ(t), ori-
gin location x`, and the direction from the origin to destina-
tion x`′−x`. Note that our framework can straightforwardly
incorporate other auxiliary information for modeling transi-
tion probabilities, such as the day of the week and the area’s
weather, by concatenating the information to input vector
ut``′ .

We transform the input vector into a transition probabil-
ity by the following three-layered, feed-forward neural net-
work:

ht``′ = tanh(W1ut``′ + b1), (5)
θt``′ = softmax(w2ht``′ + b2), (6)

where ht``′ ∈ RH is the hidden unit of the neural network,
W1 ∈ RH×5,w2 ∈ RH ,b1 ∈ RH , b2 ∈ R are the weights
and bias parameters to be estimated,H is the number of hid-
den units, and φ = {W1,w2,b1, b2}. The proposed model
can handle different numbers of neighbors across different
locations since the number of neural network parameters
does not depend on the number of neighbors. The softmax
function in Eq. (6) outputs the transition probability normal-
ized over the neighbors.
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Estimation
We estimate transition population Z and neural network pa-
rameters φ based on the maximum likelihood with regular-
izers for the constraints. Using Eqs. (1) and (3), the log like-
lihood is given by

L(Z,φ) =

T−1∑
t=1

L∑
`=1

∑
`′∈N`

log p(zt`|θt`, yt`) (7)

∝
T−1∑
t=1

L∑
`=1

∑
`′∈N`

− log zt``′ ! + zt``′ log f(t,x`,x`′ ;φ)

≈
T−1∑
t=1

L∑
`=1

∑
`′∈N`

zt``′
(
1− log zt``′ + log f(t,x`,x`′ ;φ)

)
≡ L′(Z,φ), (8)

where Stirling’s approximation, log z! ≈ z log z− z, is used
in the third line. We incorporate the constraints in Eq. (2) as
regularizers and give the objective function to be maximized
as follows:

G(Z,φ) = L′(Z,φ)− λ
T−1∑
t=1

L∑
`=1

‖ yt` −
∑

`′∈N`

zt``′ ‖2

− λ
T−1∑
t=1

L∑
`=1

‖ yt+1,` −
∑

`′∈N`

zt`′` ‖2, (9)

where the second and third terms correspond to the soft con-
straints in Eq. (2) and λ > 0 is the hyperparameter. By us-
ing the regularizers, we can estimate neural network param-
eters φ as well as transition population Z with a gradient-
based optimization method, since the objective function is
differentiable with respective to the parameters. Here we
relax transition population zt``′ to take non-negative real
values instead of non-negative integers and parameterize it
by z′t``′ = log zt``′ through which the non-negative con-
straint becomes unnecessary. Algorithm 1 shows the estima-
tion procedure of the proposed model.

Hyperparameter λ is tuned using the following prediction
error of the area population at the next time step:

E =

T∑
t=2

L∑
`=1

‖ ŷt` − yt` ‖2 . (10)

The predictive value of area population ŷt` is calculated us-
ing the transition probability and the population at the pre-
vious time step as follows:

ŷt` =
∑

`′∈N`

θ̂t−1,`′`yt−1,`′ , (11)

where θ̂t``′ = f(t,x`,x`′ ; φ̂) is the transition probability
obtained by estimated neural network parameters φ̂.

4 Experiments
Data
We evaluated the proposed method using four real-world
population data sets: Tokyo, Osaka, Nagoya, and Bei-
jing (Iwata et al. 2017). Fig. 3 shows examples of them.

Algorithm 1 Estimation procedure for the proposed neural
collective graphical model
Require: Spatio-temporal population data Y, location in-

formation {x`}L`=1, neighbor information {N`}L`=1, hy-
perparameter λ;

Ensure: Population flow Z, estimated neural network pa-
rameters φ̂;
Initialize neural network parameters φ;
repeat

Calculate transition probability θt` by neural network
f(t,x`,x`′ ;φ) in (3) for t = 1 to T − 1, ` = 1 to L;
Calculate the objective function G(Z,φ) in (9) and its
gradient with respect to the population flow Z and neu-
ral network parameters φ;
Update the population flow Z and neural network pa-
rameters φ using the gradient;

until End condition is satisfied

The Tokyo, Osaka, and Nagoya data are spatio-temporal
aggregated population data in the areas of these three cities
in Japan. They were generated from individual trajectory
data and interpolated from geotagged tweets using railway
and road information (Sekimoto et al. 2011)1. The unit time
was 30 minutes, the grid size was 10 km×10 km, and the
number of grids was 16×14. The Tokyo data contained the
population data on July 1 and 7, October 7 and 13, and De-
cember 16 and 22 of 2013, where the total population of
each day was 6,432, 9,166, 6,822, 10,134, 6,646, 10,338,
respectively. The Osaka data contained the population data
on August 8 and 11, September 16 and 22, and December
24 and 29 of 2013, where the total population of each day
was 2,256, 3,034, 2,999, 3,569, 2,487, 3,480, respectively.
The Nagoya data contained the population data on July 22
and 28, September 16 and 22, and December 24 and 29 of
2013, where the total population of each day was 929, 1,332,
1,148, 1,460, 975, 1,570, respectively.

The Beijing data are spatio-temporal aggregated popula-
tion data in Beijing in China that were generated from T-
Drive trajectory data (Yuan et al. 2010; 2011), which con-
tained the trajectories of 10,357 taxis from February 3 to
7, 2008. The unit time was 15 minutes, the grid size was 2
km×2 km, and the number of grids was 20×16.

With all of the data sets, the neighbors were the surround-
ing eight cells with the addition of the cell itself.

Measurement
For the evaluation measurement, we used the following nor-
malized absolute error:

NAE =

∑L
`=1

∑T−1
t=1

∑
`′∈N`

|z∗t``′ − ẑt``′ |∑L
`=1

∑T−1
t=1 yt`

, (12)

1We used the following sources: SNS-based People Flow Data,
Nightley, Inc., Shibasaki & Sekimoto Laboratory, the University of
Tokyo, Micro Geo Data Forum, People Flow project, and Center
for Spatial Information Science at the University of Tokyo, http:
//nightley.jp/archives/1954
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(a) Tokyo (b) Osaka

0:00 9:00 18:00 0:00 9:00 18:00

(c) Nagoya (d) Beijing

0:00 9:00 18:00 0:00 9:00 18:00

Figure 3: Aggregated spatio-temporal population data: (a) Tokyo, (b) Osaka, (c) Nagoya, and (d) Beijing data sets. Darker red
colors represent higher populations in each area. A green line represents a main road.

which is the sum of the absolute errors between true tran-
sition population z∗t``′ and its estimation ẑt``′ for each time
step and for each neighbor area pair divided by the sum of
the total number of populations yt`. Note that we did not use
true transition populations z∗t``′ for training because they are
used only for evaluation.

Comparing methods
We compared the proposed method with the following four
methods: VCGMM, ICGM, CGM, and STAY. The STAY
method, which assumes that all people remain at the current
area without moving to other areas, estimates the transition
populations by zt``′ = yt` if ` = `′, zt``′ = 0 otherwise.
The CGM method is the collective graphical model, which
assumes that the transition probability does not change over
time θt``′ = θ``′ . The ICGM method is the inhomogeneous
transition probability collective graphical model, which as-
sumes that transition probabilities θt``′ are different across
different time points. VCGMM is the variational collective
graphical mixture models (Iwata et al. 2017), which cluster
the time of day using mixture models. With the proposed
method, we used ten hidden units and maximized the objec-
tive function by ADAM (Kingma and Ba 2014).

The number of parameters to be estimated with the pro-
posed method is O(H), where H is the number of hid-
den units. Those with VCGMM, ICGM and CGM are
O(KLM), O(TLM) and O(LM), respectively, where K
is the number of clusters, L is the number of locations, M is
the number of neighbors, and T is the number of time points.

Results
Table 2 shows the normalized absolute error averaged over
all the time points and all the area pairs. The proposed neural

Table 2: Normalized absolute errors on population flow es-
timation averaged over all time points

Proposed VCGMM ICGM CGM STAY
Tokyo 0.148 0.167 0.176 0.208 0.192
Osaka 0.186 0.250 0.265 0.280 0.272
Nagoya 0.227 0.250 0.281 0.291 0.269
Beijing 0.408 0.470 0.500 0.479 0.532

CGM achieved the lowest error among all of the data sets.
Fig. 4 shows the normalized absolute error for each time of
day. The error with the proposed method was lower than the
other methods, especially in the daytime, when the transition
populations are large. This result indicates that the proposed
method effectively learns the transition probabilities using
spatio-temporal dependencies with neural networks. The er-
ror with the STAY method was high in the daytime since it
cannot model transitions to different areas. The error with
the CGM method was high at night since it assumes that
the transition probability in the daytime and at night are the
same. VCGMM achieved lower error than ICGM because
it reduces the effective number of parameters by clustering
the time points. However, since VCGMM cannot utilize lo-
cation information nor flexibly model the temporal depen-
dence, its performance was worse than the proposed method,
which can model the nonlinear spatio-temporal dependence
using both location and time information. With the proposed
method, the error from 4:00 a.m. to 7:00 a.m. was relatively
high, because the transition probability drastically changes
in this period, and its switching was not learned properly.
Interesting future work will extend our framework to model
such switching transition probabilities using mixture of ex-
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(a) Tokyo (b) Osaka

(c) Nagoya (d) Beijing

Figure 4: Normalized absolute errors on people flow estimation over time of day.

perts (Jacobs et al. 1991).
Figure 5 shows the transition populations estimated by

the proposed method. Reasonable transitions were estimated
with all of the data sets. There were few transitions around
2:00 a.m. Around 8:00 a.m., people commuted to the city
centers from the suburbs. Around 2:00 p.m., many people
moved around, especially in the city centers. Around 8:00
p.m., people left the city centers and returned to their homes
in the suburbs.

5 Conclusion
We proposed neural collective graphical models for estimat-
ing spatio-temporal population flow given aggregated pop-
ulation data. With our proposed model, nonlinear spatio-
temporal dependence on transition probabilities are auto-
matically learned from the given data using neural net-
works. We experimentally confirmed that the proposed
model achieved higher performance on transition popula-
tion estimation than the existing methods. Although our re-
sults are encouraging, we must extend our approach in a
number of directions. First, we want to apply our frame-

work to other collective graphical model applications, such
as modeling contingency tables and information diffusion.
Our framework, which models multinomial distribution pa-
rameters with neural networks, is straightforwardly appli-
cable to them. Second, we plan to evaluate our proposed
model with higher order Markov transition models that con-
tain more parameters to be estimated. Our model would
more effectively reduce the number of parameters with mod-
els that have many parameters. Third, we want to investigate
using different types of neural networks, such as convolu-
tional neural networks for incorporating images, and recur-
rent neural networks for forecasting future transitions.
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road.
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