
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Similarity Learning via Kernel Preserving Embedding

Zhao Kang,1∗ Yiwei Lu,1,2 Yuanzhang Su,3 Changsheng Li,1 Zenglin Xu1∗
1School of Computer Science and Engineering, University of Electronic Science and Technology of China, China
2Department of Computer Science, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
3School of Foreign Languages, University of Electronic Science and Technology of China, Sichuan 611731, China
Zkang@uestc.edu.cn, luy2@cs.umanitoba.ca, syz@uestc.edu.cn, lichangsheng@uestc.edu.cn, zlxu@uestc.edu.cn

Abstract

Data similarity is a key concept in many data-driven applica-
tions. Many algorithms are sensitive to similarity measures.
To tackle this fundamental problem, automatically learning of
similarity information from data via self-expression has been
developed and successfully applied in various models, such
as low-rank representation, sparse subspace learning, semi-
supervised learning. However, it just tries to reconstruct the
original data and some valuable information, e.g., the mani-
fold structure, is largely ignored. In this paper, we argue that
it is beneficial to preserve the overall relations when we ex-
tract similarity information. Specifically, we propose a novel
similarity learning framework by minimizing the reconstruc-
tion error of kernel matrices, rather than the reconstruction
error of original data adopted by existing work. Taking the
clustering task as an example to evaluate our method, we ob-
serve considerable improvements compared to other state-of-
the-art methods. More importantly, our proposed framework
is very general and provides a novel and fundamental build-
ing block for many other similarity-based tasks. Besides, our
proposed kernel preserving opens up a large number of possi-
bilities to embed high-dimensional data into low-dimensional
space.

Introduction
Nowadays, high-dimensional data can be collected every-
where, either by low-cost sensors or from the internet (Chen
et al. 2012). Extracting useful information from massive
high-dimensional data is critical in different areas like text,
images, videos and more. Data similarity is especially im-
portant since it is the input for a number of data anal-
ysis tasks, such as spectral clustering (Ng et al. 2002;
Chen et al. 2018), nearest neighbor classification (Wein-
berger, Blitzer, and Saul 2005), image segmentation (Li et
al. 2016), person re-identification (Hirzer et al. 2012), im-
age retrieval (Hoi, Liu, and Chang 2008), dimension re-
duction (Passalis and Tefas 2017), and graph-based semi-
supervised learning (Kang et al. 2018a). Therefore, similar-
ity measure is crucial to the performance of many techniques
and is a fundamental problem in machine learning, pattern
recognition, and data mining communities (Gao et al. 2017;
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Towne, Rosé, and Herbsleb 2016). A variety of similar-
ity metrics, e.g., Cosine, Jaccard coefficient, Euclidean dis-
tance, Gaussian function, are often used in practice for
convenience. However, they are often data-dependent and
sensitive to noise (Huang, Nie, and Huang 2015). Conse-
quently, different metrics lead to a big difference in the
final results. In addition, several other similarity measure
strategies are popular in dimension reduction techniques.
For example, in the widely used locally linear embedding
(LLE) (Roweis and Saul 2000), isomeric feature mapping
(ISOMAP) (Tenenbaum, De Silva, and Langford 2000), and
locality preserving projection (LPP) (Niyogi 2004) methods,
one has to construct an adjacency graph of neighbors. Then,
k-nearest-neighborhood (knn) and ε-nearest-neighborhood
graph construction methods are often utilized. These ap-
proaches also have some inherent drawbacks, including 1)
how to determine neighbor number k or radius ε; 2) how to
choose an appropriate similarity metric to define neighbor-
hood; 3) how to counteract the adverse effect of noise and
outliers; 4) how to tackle data with structures at different
scales of size and density. Unfortunately, all these factors
heavily influence the subsequent tasks (Kang et al. 2018b).

Recently, automatically learning of similarity information
from data has drawn significant attention. In general, it can
be classified into two categories. The first one is adaptive
neighbors approach. It learns similarity information by as-
signing a probability for each data point as the neighborhood
of another data point (Nie, Wang, and Huang 2014). It has
been shown to be an effective way to capture the local man-
ifold structure.

The other one is self-expression approach. The basic idea
is to represent every data point by a linear combination of
other data points. In contrast, LLE reconstructs the original
data by expressing each data point as a linear combination
of its k nearest neighbors only. Through minimizing this re-
construction error, we can obtain a coefficient matrix, which
is also named similarity matrix. It has been widely applied
in various representation learning tasks, including sparse
subspace clustering (Elhamifar and Vidal 2013; Peng et al.
2016), low-rank representation (Liu et al. 2013), multi-view
learning (Tao et al. 2017), semi-supervised learning (Zhuang
et al. 2017), nonnegative matrix factorization(NMF) (Zhang
et al. 2017).

However, this approach just tries to reconstruct the origi-
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nal data and has no explicit mechanism to preserve manifold
structure information about the data. In many applications,
the data can display structures beyond simply being low-
rank or sparse. It is well-accepted that it is essential to take
into account structure information when we perform high-
dimensional data analysis. For instance, LLE preserves the
local structure information.

In view of this issue with the current approaches, we pro-
pose to learn the similarity information through reconstruct-
ing the original data kernel matrix, which is supposed to
preserve overall relations. By doing so, we expect to ob-
tain more accurate and complete data similarity. Consider-
ing clustering as a specific application of our proposed sim-
ilarity learning method, we demonstrate that our framework
provides impressive performance on several benchmark data
sets. In summary, the main contributions of this paper are
threefold:

• Compared to other approaches, the use of the kernel-
based distances allows to work on preserving the sets of
overall relations rather than individual pairwise similari-
ties.

• Similarity preserving provides a fundamental build-
ing block to embed high-dimensional data into low-
dimensional latent space. It is general enough to be ap-
plied to a variety of learning problems.

• We evaluate the proposed approach in the clustering task.
It shows that our algorithm enjoys superior performance
compared to many state-of-the-art methods.

Notations. Given a data set {x1, x2, · · · , xn}, we denote
X ∈ Rm×n with m features and n instances. Then the
(i, j)-th element of matrix X are denoted by xij . The `2-
norm of a vector x is represented by ‖x‖ =

√
xT · x,

where T denotes transpose. The `1-norm of X is defined
as ‖X‖1 =

∑
ij |xij |. The squared Frobenius norm is rep-

resented as ‖X‖2F =
∑
ij x

2
ij . The nuclear norm of X

is ‖X‖∗ =
∑
σi, where σi is the i-th singular value of

X . I is the identity matrix with a proper size. ~1 repre-
sents a column vector whose every element is one. Z ≥ 0
means all the elements of Z are nonnegative. Inner product
< xi, xj >= xTi · xj .

Related Work
In this section, we provide a brief review of existing auto-
matic similarity learning techniques.

Adaptive Neighbors Approach

In a similar spirit of LPP, for each data point xi, all the data
points {xj}nj=1 can be regarded as the neighborhood of xi
with probability zij . To some extent, zij represents the sim-
ilarity between xi and xj (Nie, Wang, and Huang 2014).
The smaller distance ‖xi− xj‖2 is, the greater the probabil-
ity zij is. Rather than prespecifying Z with the deterministic
neighborhood relation as LPP does, one can adaptively learn

Z from the data set by solving an optimization problem:

min
zi

n∑
j=1

(‖xi− xj‖2zij +αz2ij) s.t. z
T
i
~1 = 1, 0 ≤ zij ≤ 1,

(1)
where α is the regularization parameter. Recently, a variety
of algorithms have been developed by using Eq. (1) to learn
a similarity matrix. Some applications are clustering (Nie,
Wang, and Huang 2014), NMF (Huang et al. 2018), and fea-
ture selection (Du and Shen 2015). This approach can effec-
tively capture the local structure information.

Self-expression Approach
The so-called self-expression is to approximate each data
point as a linear combination of other data points, i.e., xi =∑
j xjzij . The rationale here is that if xi and xj are simi-

lar, weight zij should be big. Therefore, Z also behaves like
the similarity matrix. This shares the similar spirit as LLE,
except that we do not predetermine the neighborhood. Its
corresponding learning problem is:

min
Z

1

2
‖X −XZ‖2F + αρ(Z) s.t. Z ≥ 0, (2)

where ρ(Z) is a regularizer of Z. Two commonly used as-
sumptions about Z are low-rank and sparse. Hence, in many
domains, we also call Z as the low-dimensional representa-
tion of X . Through this procedure, the individual pairwise
similarity information hidden in the data is explored (Nie,
Wang, and Huang 2014) and the most informative “neigh-
bors” for each data point are automatically chosen.

Moreover, this learned Z can not only reveal low-
dimensional structure of data, but also be robust to data scale
(Huang, Nie, and Huang 2015). Therefore, this approach has
drawn significant attention and achieved impressive perfor-
mance in a number of applications, including face recog-
nition (Zhang, Yang, and Feng 2011), subspace clustering
(Liu et al. 2013; Elhamifar and Vidal 2013), semi-supervised
learning (Zhuang et al. 2017). In many real-world applica-
tions, data often present complex structures. Nevertheless,
the first term in Eq. (2) simply minimizes the reconstruction
error. Some important manifold structure information, such
as overall relations, could be lost during this process. Pre-
serving relation information has been shown to be important
for feature selection (Zhao et al. 2013). In (Zhao et al. 2013),
new feature vector f is obtained by maximizing fT K̂f ,
where K̂ is the refined similarity matrix derived from origi-
nal kernel matrix K with element K(x, y) = φ(x)Tφ(y). In
this paper, we propose a novel model to preserve the overall
relations of the original data and simultaneously learn the
similarity matrix.

Proposed Methodology
Since our goal is to obtain similarity information, it is very
necessary to retain the overall relations among the data sam-
ples when we build a new representation. However, Eq. (2)
just tries to reconstruct the original data and does not take
overall relations information into account. Our objective is

4058



finding a new representation which preserves overall rela-
tions as much as possible.

Given a data matrix X , one of the most commonly used
relation measures is the inner product. Specifically, we try to
minimize the inconsistency between two inner products: one
for the raw data and another for reconstructed data XZ. To
make our model more general, we build it in a transformed
space,i.e., X is mapped by φ (Xu et al. 2009). We have

min
Z
‖φ(X)T · φ(X)− (φ(X)Z)T · (φ(X)Z)‖2F (3)

(3) can be simplified as

min
Z
‖K − ZTKZ‖2F . (4)

With certain assumption about the structure of Z,
our proposed Similarity Learning via Kernel preserving
Embedding (SLKE) framework can be formulated as

min
Z

1

2
‖K − ZTKZ‖2F + γρ(Z) s.t. Z ≥ 0, (5)

where γ > 0 is a tradeoff parameter and ρ is a regularizer on
Z. If we use the nuclear norm ‖ · ‖∗ to replace ρ(·), we have
a low-rank representation. If the `1-norm is adopted, we ob-
tain a sparse representation. It is worth pointing out that Eq.
(5) enjoys several nice properties:
1) The use of kernel-based distance preserves the sets of
overall relations, which will benefit the subsequent tasks;
2) This learned low-dimensional representation or similarity
matrix Z is general enough to be utilized to solve a variety
of different tasks, where similarity information is needed;
3) The learned representation is particularly suitable to prob-
lems that are sensitive to data similarity, such as clustering
(Kang et al. 2018c), classification (Wright et al. 2009), rec-
ommender systems (Kang, Peng, and Cheng 2017a);
4) Its input is the kernel matrix. This is also desirable, as
not all types of data can be represented in numerical fea-
ture vectors form (Xu et al. 2010). For instance, we need
to group proteins in bioinformatics based on their structures
and to divide users in social media based on their friendship
relations.
In the following section, we will show a simple strategy to
solve problem (5).

Optimization
It is easy to see that Eq. (5) is a fourth-order function of Z.
Directly solving it is not so straightforward. To circumvent
this problem, we first convert it to the following equivalent
problem by introducing two more auxiliary variables

min
Z

1

2
‖K − JTKW‖2F + γρ(Z)

s.t. Z ≥ 0, Z = J, Z =W.
(6)

Now we resort to the alternating direction method of mul-
tipliers (ADMM) method to solve (6). The corresponding
augmented Lagrangian function is:

L(Z, J,W, Y1, Y2) =
1

2
‖K − JTKW‖2F + γρ(Z)+

µ

2

(
‖Z − J +

Y1
µ
‖2F + ‖Z −W +

Y2
µ
‖2F
)
,

(7)

where µ > 0 is a penalty parameter and Y1, Y2 are the la-
grangian multipliers. The variables Z, W , and J can be up-
dated alternatingly, one at each step, while keeping the other
two fixed.

To solve J , we observe that the objective function (7) is a
strongly convex quadratic function in J which can be solved
by setting its first derivative to zero, we have:

J = (µI +KWWTKT )−1(µZ + Y1 +KWKT ), (8)

where I ∈ Rn×n is the identity matrix.
Similarly,

W = (µI +KTJJTK)−1(µZ + Y2 +KTJK). (9)

For Z, we have the following subproblem:

min
Z
γρ(Z) + µ

∥∥∥∥∥Z − J +W − Y1+Y2

µ

2

∥∥∥∥∥
2

F

. (10)

Depending on different regularization strategies, we have
different closed-form solutions for Z. Define H =
J+W−Y1+Y2

µ

2 , we can write its singular value decomposition
(SVD) as Udiag(σ)V T . Then, for low-rank representation,
i.e., ρ(Z) = ‖Z‖∗, we have,

Z = Udiag(max{σ − γ

2µ
, 0})V T . (11)

For sparse representation, i.e., ρ(Z) = ‖Z‖1, we can up-
date Z element by element as,

Zij = max{|Hij | −
γ

2µ
, 0} · sign(Hij). (12)

For clarity, the complete procedures to solve the problem (5)
are outlined in Algorithm 1.

Algorithm 1: The algorithm of SLKE
Input: Kernel matrix K, parameters γ > 0, µ > 0.
Initialize: Random matrix W and Z, Y1 = Y2 = 0.
REPEAT

1: Calculate J by (8).
2: Update W according to (9).
3: Calculate Z using (11) or (12).
4: Update Lagrange multipliers Y1 and Y2 as

Y1 = Y1 + µ(Z − J),
Y2 = Y2 + µ(Z −W ).

UNTIL stopping criterion is met.

Complexity Analysis
With our optimization strategy, the complexity for J is
O(n3). Updating W has the same complexity as J . Both
J and W involve matrix inverse. Fortunately, we can avoid
it by resorting to some approximation techniques when we
face large-scale data sets. Depending on the choice of reg-
ularizer, we have different complexity for Z. For low-rank
representation, it requires an SVD for every iteration and
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its complexity is O(n3). Since we seek a low-rank matrix
and so only need a few principle singular values. Package
like PROPACK can compute a rank k SVD with complex-
ity O(n2k) (Larsen 2004). To obtain a sparse solution of Z,
we need O(n2) complexity. The updating of Y1 and Y2 cost
O(n2).

Experiments
To assess the effectiveness of our proposed method, we ap-
ply the learned similarity matrix to do clustering.

Data Sets

Table 1: Description of the data sets

# instances # features # classes
YALE 165 1024 15
JAFFE 213 676 10
ORL 400 1024 40
COIL20 1440 1024 20
BA 1404 320 36
TR11 414 6429 9
TR41 878 7454 10
TR45 690 8261 10
TDT2 9394 36771 30

We conduct our experiments with nine benchmark data
sets, which are widely used in clustering experiments. We
show the statistics of these data sets in Table 1. In summary,
the number of data samples varies from 165 to 9,394 and
feature number ranges from 320 to 36,771. The first five data
sets are images, while the last four are text data.

Specifically, the five image data sets contain three face
databases (ORL, YALE, and JAFFE), a toy image database
COIL20, and a binary alpha digits data set BA. For example,
COIL20 consists of 20 objects and each object was taken
from different angles. BA data set contains images of dig-
its of “0” through “9” and letters of capital “A” through
“Z”. YALE, ORL, and JAFEE consist of images of the per-
son. Each image represents different facial expressions or
configurations due to times, illumination conditions, and
glasses/no glasses.

Data Preparation
Since the input for our proposed method is kernel ma-
trix, we design 12 kernels in total to fully examine its
performance. They are: seven Gaussian kernels of the
form K(x, y) = exp(−‖x − y‖22/(td2max)) with t ∈
{0.01, 0.05, 0.1, 1, 10, 50, 100}, where dmax denotes the
maximal distance between data points; a linear kernel
K(x, y) = xT y; four polynomial kernels K(x, y) = (a +
xT y)b of the form with a ∈ {0, 1} and b ∈ {2, 4}. Besides,
all kernels are rescaled to [0, 1] by dividing each element by
the largest element in its corresponding kernel matrix. These
kernels are commonly used types in the literature, so we can
well investigate the performance of our method.

Comparison Methods
To fully examine the effectiveness of the proposed frame-
work on clustering, we choose a good set of methods
to compare. In general, they can be classified into two
categories: similarity-based and kernel-based clustering
methods.

• Spectral Clustering (SC) (Ng et al. 2002): SC is a widely
used clustering method. It enjoys the advantage of ex-
ploring the intrinsic data structures. Its input is the graph
Laplacian, which is constructed from the similarity ma-
trix. Here, we directly treat kernel matrix as the similar-
ity matrix for spectral clustering. For our proposed SLKE
method, we employ learned Z to do spectral clustering.
Thus, SC serves as a baseline method.

• Robust Kernel K-means (RKKM)1 (Du et al. 2015):
Based on classical k-means clustering algorithm, RKKM
has been developed to deal with nonlinear structures,
noise, and outliers in the data. RKKM demonstrates su-
perior performance on a number of real-world data sets.

• Simplex Sparse Representation (SSR) (Huang, Nie, and
Huang 2015): SSR method has been proposed recently. It
is based on adaptive neighbors idea. Another appealing
property of this method is that its model parameter can
be calculated by assuming a maximum number of neigh-
bors. Therefore, we don’t need to tune the parameter any
more. In addition, it outperforms many other state-of-the-
art techniques.

• Low-Rank Representation (LRR) (Liu et al. 2013):
Based on self-expression, subspace clustering with low-
rank regularizer achieves great success on a number of ap-
plications, such as face clustering, motion segmentation.

• Sparse Subspace Clustering (SSC) (Elhamifar and Vi-
dal 2013): Similar to LRR, SSC assumes a sparse solu-
tion of Z. Both LRR and SSC learn similarity matrix by
reconstructing the original data. In this aspect, SC, LRR,
and SSC are baseline methods w.r.t. our proposed algo-
rithm.

• Clustering with Adaptive Neighbor (CAN) (Nie, Wang,
and Huang 2014). Based on the idea of adaptive neigh-
bors, i.e., Eq.(1), CAN learns a local graph from raw data
for clustering task.

• Twin Learning for Similarity and Clustering (TLSC)
(Kang, Peng, and Cheng 2017b): Recently, TLSC has
been proposed and has shown promising results on real-
world data sets. TLSC does not only learn similarity ma-
trix via self-expression in kernel space, but also have op-
timal similarity graph guarantee. Besides, it has good the-
oretical properties, i.e., it is equivalent to kernel k-means
and k-means under certain conditions.

• SLKE: Our proposed similarity learning method with
overall relations preserving capability. After obtaining
similarity matrix Z, we use spectral clustering to conduct
clustering experiments. We test both low-rank and sparse

1https://github.com/csliangdu/RMKKM
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regularizer. We denote them as SLKE-R and SLKE-S, re-
spectively2.

Evaluation Metrics
To quantitatively and effectively assess the clustering perfor-
mance, we utilize the two widely used metrics (Peng et al.
2018), accuracy (Acc) and normalized mutual information
(NMI).

Acc discovers the one-to-one relationship between clus-
ters and classes. Let li and l̂i be the clustering result and the
ground truth cluster label of xi, respectively. Then the Acc
is defined as

Acc =

∑n
i=1 δ(l̂i,map(li))

n
,

where n is the sample size, Kronecker delta function δ(x, y)
equals one if and only if x = y and zero otherwise, and
map(·) is the best permutation mapping function that maps
each cluster index to a true class label based on Kuhn-
Munkres algorithm.

Given two sets of clusters L and L̂, NMI is defined as

NMI(L, L̂) =

∑
l∈L,l̂∈L̂

p(l, l̂)log( p(l,l̂)

p(l)p(l̂)
)

max(H(L), H(L̂))
,

where p(l) and p(l̂) represent the marginal probability distri-
bution functions of L and L̂, respectively. p(l, l̂) is the joint
probability function of L and L̂. H(·) is the entropy func-
tion. The greater NMI means the better clustering perfor-
mance.

Results
We report the extensive experimental results in Table 2.
Except SSC, LRR, CAN, and SSR, we run other methods
on each kernel matrix individually. As a result, we show
both the best performance among those 12 kernels and the
average results over those 12 kernels for them. Based on
this table, we can see that our proposed SLKE achieves the
best performance in most cases. To be specific, we have the
following observations:
1) Compared to classical k-means based RKKM and
spectral clustering techniques, our proposed method SLKE
has a big advantage in terms of accuracy and NMI. With
respect to the recently proposed SSR and TLSC methods,
SKLE always obtains better results.
2) SLKE-R and SLKE-S often outperform LRR and SSC,
respectively. The accuracy increased by 8.92%, 8.76% on
average, respectively. That is to say, kernel-based distance
approach indeed performs better than original data recon-
struction technique. This verifies the importance of retaining
relation information when we learn a low-dimensional rep-
resentation, especially for sparse representation.

3) With respect to adaptive neighbors approach CAN,
we also obtain better performance on those datasets ex-
cept COIL20. For COIL20, our results are quite close to

2https://github.com/sckangz/SLKE

CAN’s. Therefore, compared to various similarity learning
techniques, our method is very competitive.
4) Regarding low-rank and sparse representation, it is hard
to conclude which one is better. It totally depends on the
specific data.

Furthermore, we run t-SNE (Maaten and Hinton 2008) al-
gorithm on the JAFFE data X and the reconstructed data
XZ from the best result of our SLKE-R. As shown by Fig-
ure 1, we can see that our method can well preserve the clus-
ter structure of the data.
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(a) Original data
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(b) Reconstructed data

Figure 1: JAFFE data set visualized in two dimensions.

To see the significance of improvements, we further ap-
ply the Wilcoxon signed rank test (Peng, Cheng, and Cheng
2017) to Table 2. We show the p-values in Table 3. We note
that the testing results are under 0.05 in most cases when
comparing SLKE-S and SLKE-R to other methods. There-
fore, SLKE-S and SLKE-R outperform SC, RKKM, SSC,
and SSR with statistical significance.
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(a) Accuracy(%)

Data SC RKKM SSC LRR SSR CAN TLSC SLKE-S SLKE-R
YALE 49.42(40.52) 48.09(39.71) 38.18 61.21 54.55 58.79 55.85(45.35) 61.82(38.89) 66.24(51.28)
JAFFE 74.88(54.03) 75.61(67.89) 99.53 99.53 87.32 98.12 99.83(86.64) 96.71(70.77) 99.85(90.89)
ORL 58.96(46.65) 54.96(46.88) 36.25 76.50 69.00 61.50 62.35(50.50) 77.00(45.33) 74.75(59.00)
COIL20 67.60(43.65) 61.64(51.89) 73.54 68.40 76.32 84.58 72.71(38.03) 75.42(56.83) 84.03(65.65)
BA 31.07(26.25) 42.17(34.35) 24.22 45.37 23.97 36.82 47.72(39.50) 50.74(36.35) 44.37(35.79)
TR11 50.98(43.32) 53.03(45.04) 32.61 73.67 41.06 38.89 71.26(54.79) 69.32(46.87) 74.64(55.07)
TR41 63.52(44.80) 56.76(46.80) 28.02 70.62 63.78 62.87 65.60(43.18) 71.19(47.91) 74.37(53.51)
TR45 57.39(45.96) 58.13(45.69) 24.35 78.84 71.45 48.41 74.02(53.38) 78.55(50.59) 79.89(58.37)
TDT2 52.63(45.26) 48.35(36.67) 23.45 52.03 20.86 19.74 55.74(44.82) 59.61(25.40) 74.92(33.67)

(b) NMI(%)

Data SC RKKM SSC LRR SSR CAN TLSC SLKE-S SLKE-R
YALE 52.92(44.79) 52.29(42.87) 45.56 62.98 57.26 57.67 56.50(45.07) 59.47(40.38) 64.29(52.87)
JAFFE 82.08(59.35) 83.47(74.01) 99.17 99.16 92.93 97.31 99.35(84.67) 94.80(60.83) 99.49(81.56)
ORL 75.16(66.74) 74.23(63.91) 60.24 85.69 84.23 76.59 78.96(63.55) 86.35(58.84) 85.15(75.34)
COIL20 80.98(54.34) 74.63(63.70) 80.69 77.87 86.89 91.55 82.20(73.26) 80.61(65.40) 91.25(73.53)
BA 50.76(40.09) 57.82(46.91) 37.41 57.97 30.29 49.32 63.04(52.17) 63.58(55.06) 56.78(50.11)
TR11 43.11(31.39) 49.69(33.48) 02.14 65.61 27.60 19.17 58.60(37.58) 67.63(30.56) 70.93(45.39)
TR41 61.33(36.60) 60.77(40.86) 01.16 67.50 59.56 51.13 65.50(43.18) 70.89(34.82) 68.50(47.45)
TR45 48.03(33.22) 57.86(38.96) 01.61 77.01 67.82 49.31 74.24(44.36) 72.50(38.04) 78.12(50.37)
TDT2 52.23(27.16) 54.46(42.19) 13.09 64.36 02.44 03.97 58.35(46.37) 58.55(15.43) 68.21(28.94)

Table 2: Clustering results obtained on benchmark data sets. The average performance of those 12 kernels is put in parenthesis.
The best results among those kernels are highlighted in boldface.
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Figure 2: The effect of parameter γ on the YALE data set.

Table 3: Wilcoxon Signed Rank Test on all Data sets.
Method Metric SC RKKM SSC LRR SSR CAN TLSC

SLKE-S Acc .0039 .0039 .0117 .2500 .0078 .0391 .0391
NMI .0078 .0039 .0195 .6523 .0391 .0547 .3008

SLKE-R Acc .0039 .0039 .0039 .0977 .0039 .0039 .0117
NMI .0039 .0078 .0039 .0742 .0039 .0078 .0391
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Parameter Analysis
In this subsection, we investigate the influence of our model
parameter γ on the clustering results. Take Gaussian kernel
with t = 100 of YALE and JAFFE data sets as examples,
we plot our algorithm’s performance with γ in the range
[10−6, 10−5, 10−4, 10−3, 10−2, 10−1] in Figure 2 and 3, re-
spectively. As we can see that our proposed methods work
well for a wide range of γ, e.g., from 10−6 to 10−3.
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Figure 3: The effect of parameter γ on the JAFFE data set.

Conclusion
In this paper, we present a novel similarity learning frame-
work relying on an embedding of kernel-based distance. Our
model is flexible to obtain either low-rank or sparse repre-
sentation of data. Comprehensive experimental results on
real data sets well demonstrate the superiority of the pro-
posed method on the clustering task. It has great potential
to be applied in a number of applications beyond cluster-
ing. It has been shown that the performance of the proposed
method is largely determined by the choice of kernel func-
tion. In the future, we plan to address this issue by develop-

ing a multiple kernel learning method, which is capable of
automatically learning an appropriate kernel from a pool of
input kernels.
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