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Abstract

Many successful methods have been proposed for learn-
ing low dimensional representations on large-scale networks,
while almost all existing methods are designed in insepara-
ble processes, learning embeddings for entire networks even
when only a small proportion of nodes are of interest. This
leads to great inconvenience, especially on super-large or dy-
namic networks, where these methods become almost im-
possible to implement. In this paper, we formalize the prob-
lem of separated matrix factorization, based on which we
elaborate a novel objective function that preserves both local
and global information. We further propose SepNE, a simple
and flexible network embedding algorithm which indepen-
dently learns representations for different subsets of nodes in
separated processes. By implementing separability, our algo-
rithm reduces the redundant efforts to embed irrelevant nodes,
yielding scalability to super-large networks, automatic im-
plementation in distributed learning and further adaptations.
We demonstrate the effectiveness of this approach on several
real-world networks with different scales and subjects. With
comparable accuracy, our approach significantly outperforms
state-of-the-art baselines in running times on large networks.

1 Introduction

Learning low dimensional representations of network data,
or network embedding (NE), is a challenging task on large
networks, of which the scales can reach billion-level and
is growing rapidly. For example, the number of monthly-
active users of Facebook reaches 2.23 billion and increases
11% yearly. ! At the same time, although sizes of networks
may infinitely grow as data accumulates, it is often the case
that only small proportions of nodes are of interest in down-
stream applications. This is the starting point of this paper:
can we respectively learn representations for different sub-
sets of nodes-very small compared to the collectivity-while
preserving information of the entire network? If so, we can
obtain good representations for the requested nodes without
the redundant efforts to embed irrelevant ones.

*This work was supported by the National Natural Science
Foundation of China (Grant No. 61876006 and No. 61572041).
fCorresponding author. Email: gjsong@pku.edu.cn
Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: Inseparable and separable NE processes.

Efficiency is a major aspect of contemporary NE studies,
and various methods that are applicable to large-scale net-
works have been proposed (Perozzi, Al-Rfou, and Skiena
2014; Tang et al. 2015; Grover and Leskovec 2016). Almost
all of these methods embed entire networks with inseparable
processes, in which the representation of one node depends
on represented outcomes of every other node. A globally-
defined optimum can be achieved under this framework,
while it also causes great inconvenience: the maximum net-
work size such methods can handle is eventually limited. For
example, it takes LINE (2015), one of the fastest algorithms,
several hours to embed a million-level network. Thousands
of hours may be spent to achieve equivalent performance on
billion-level networks. Another type of methods learns mod-
els in an inductive manner and conduct inferences over un-
seen data (Hamilton, Ying, and Leskovec 2017). These mod-
els have convenient inference processes, while they cannot
variate over time and rely on large training data and time to
achieve good performance.

The efficiency problem over super-scale networks is im-
possible to solve directly, as the running time of algorithms
inevitably grows proportionally to problem scales. There-
fore, we bring up a new perspective of solving efficiency
problems: separability. The separability of an algorithm in-
dicates an ability of being conducted by different workers



without exchanging information and merging outputs. In
plain words, a separable algorithm divides the original prob-
lem into different self-standing sub-problems and separately
solves each, and the solution to the sub-problems are directly
usable answers instead of intermediate results. As networks
are naturally composed of nodes and their relationships, an
instinctive way to design separable NE algorithms is to par-
tition the entire node set into small subsets and to separably
embed each set. The solutions to the sub-problems yield di-
rect meanings as the representations of the corresponding set
of nodes.

In this paper, we implement separability in NE problems
under matrix-factorization-based framework. We formalize
the problem of separated matrix factorization (SMF) and
elaborate a novel loss function that preserves matrix infor-
mation on local, global and landmark level. We then propose
SepNE (SEParated Network Embedding), a separable NE
method based on SMF. Figure 1 illustrates the major differ-
ence between SepNE and existing methods. SepNE first par-
titions the node set into small subsets. A special landmark
set is then established as references for partitioned subsets
to implement comparability, that representations of differ-
ent sets lie in the same linear space. After the landmarks are
embedded, representations of different subsets are derived
from the objective function defined in SMF.

Separability in NE problems yields several specific ad-
vantages. Firstly, separability makes it available to embed
only the requested nodes and thus reduces the vain efforts
in embedding irrelevant ones; in addition, the optimization
complexity of SepNE is relevant only to the number of re-
quested nodes instead of the entire network scale, leading
to scalability to super-large networks. Secondly, even if en-
tire networks are on request, SepNE shows higher speed
than state-of-the-art algorithms due to its simplicity, while
yielding comparable accuracy. Thirdly, separability leads to
automatic implementations in multi-agent systems and fur-
ther adaptations in dynamic networks. We evaluated SepNE
with real-world networks of different sizes and topics. With
equivalent or better accuracy, SepNE is at least 50% faster
than current NE methods including DeepWalk (2014) and
LINE.

A potentially more important contribution of this paper is
the generalization of SMF. Maintaining competent perfor-
mance, SMF reduces the complexity of MF problems from
cubic to almost linear. This leads to intriguing further appli-
cations in the massive collectivity of MF-based algorithms.

2 Separated Matrix Factorization
2.1 Preliminaries
Given a matrix M, matrix factorization (MF) aims to find
two matrices W and C' that both satisfy given constraints

and minimize the residuals of reconstructing M with M =
WTC. Denoted in formulas, we have

min |M — W7TC|. ()
w.C

W, C have lower ranks than M. In the embedding task of
an n-node network, M is of size (n X n), in which each
entry indicates a proximity between the two corresponding
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nodes. The proximities can be defined in various metrics,
such as edge weights between nodes. Columns in W are de-
sired representations. Columns in C' are interpreted as rep-
resentations of nodes when regarded as contexts.

2.2 Problem Definition

Directly factorizing matrices of large-scale networks can
be unacceptably time-costly. Therefore, we propose SMF, a
new optimization problem, as a trade-off between speed and
accuracy. To implement separability, SMF divides the prob-
lem with a partition over the node set, and correspondingly
partitions the proximity matrix. Below is a formal definition
of separated matrix factorization (SMF) in NE scenarios.

SMF takes a network G = (V, E),|V| = n, its prox-
imity matrix M, and a partition setup f : V — V,V =
{V4,---,Vs} as inputs. The task is to derive representations
(Wy,--+,Ws) and (C4, - - -, C;) for the partitioned sets that
optimally reconstruct M. The loss of the reconstruction is
defined the same as Problem (1). 2 Without loss of generos-
ity, we permute and partition M according to V as

My My
Msl Mss

where M;; indicates the proximities between V; and V;. To
achieve independence between sections, SMF restricts that
the embedding section of every set is conducted (i) with only
the proximities related to itself (the section of embedding
V; can leverage only M;; and Mj;, j = 1,---,5), and (ii)
without any outcomes of other sections.

2.3 Method

Partitioning the nodes is the first step to separability. How-
ever, representations in the partitioned sets can be incompa-
rable due to the limitation over the access to proximities. In
another word, representations of different sets do not have a
unified constraint that bounds them in the same linear space.
To implement comparability, we establish landmarks with
highly interactive nodes in the network, which serve as in-
variant references for different subsets. For the factoriza-
tion process, preserving only local information is a simple
way to reconstructs micro-structures of networks at a loss of
global references. Combining landmark solves the compara-
bility problem, while it still ignores the interactions between
different subsets. Therefore, we elaborate a novel objective
function for SMF that preserves local, global and landmark
information, which achieves state-of-the-art performances.

Local information. The proximities in the partitioned ma-
trix are naturally divided into two types, namely local infor-
mation and global information. Local information refers to
the proximities within every set, or sub-matrices on the di-
agonal; global information refers to the proximities between
all pairs of different sets, or the off-diagonal sub-matrices.

Frobenius forms are usually adopted in SMEF, since the Frobe-
nius form of a matrix is additive of all its entries, and therefore can
be decomposed into sums of all the Frobenius forms of its parti-
tioned sub-matrices.



We start modeling SMF with a naive simplification that pre-
serves only local information by factorizing s matrices on
the diagonal:

VIVr}la | M — WZTC’iH’i —1,---,s

This primitive approach discards all interactions between
different sets, leading to incomparable representations.

Landmark information. To implement comparability, we
resort to a third type of information, landmark information.
Landmark information indicates the proximities between
subsets and manually established landmarks, a special set
of nodes (denoted as Vj) that are chosen as references for
different subsets. The improved approach sets a unified con-
straint over landmark information in different sets and solves
the problem in two stages, formulated as

: T
min || Moo — &Y, ()
min My Moy; _ Ty <I>T0i
W;,C; M; M;; WZT\I/ WZTCl ’
i=1,---,5. (3

The first stage embeds the landmarks (W, = &, Cy = V)
in Problem (2), and the second stage derives representations
for rest sets by solving Problem (3) with calculated ® and
. If Frobenius forms are used, the loss in Problem (3) can
be explicitly decomposed into local and landmark loss as

, 1
‘Cﬁ(‘(W7C) = §||MH_WTC”%" )
1
Lm(w,0) = §||M0z‘—‘1>TCH%
1
+§HM2‘0 - W% )

Global information. To further combine global informa-
tion into the objective function, we elaborate a global loss
by first transforming Problem (3) into an equivalent form.
We denote k := |V and assume calculated ®, ¥ € R(4**)
are of rank d. > W;, C; € R(@*IVil) can then be represented
as linear combinations of columns in ®, ¥, formulated in
matrix denotation as

W;
o

where A;, B; € R *IVil) are the coefficient matrices.
Consider a simple case where s = 2, 1} is the set of land-

marks and V is the target subset to embed. After the trans-
formation, global information is preserved through

: _ AT HT
j{l,lélz ||M12 Al(b \I/BQH

DA,
\IJB%

i:1a25"'a$a

(6

min ||Ma; — AT ®TUB,||. @)

A2,B1

Problem (6)(7) are not separable, for the results of embed-
ding V5 (As,B>) exist in V; problem. However, a surprising

3This can be guaranteed with SVD decomposition if k > d.
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property emerges after the transformation, that ®7' W B,
WI'Cy = Moy can be well-approximated with Mos if rep-
resentations of V5 are required to preserve landmark infor-
mation, AT ®T' W similarly. Therefore, Problem (6)(7) can be
substituted as

II’AiIl HM12 — A’{MOQ” (8)
1

min | M2y — Moo By |l ©)
1

and separability is achieved.

The idea can be generalized to any given s and V; by sim-
ply substituting all Vs-related variables to V;-related ones,
where V; = Ujg{o,z'} V;. The approximation still holds if

landmark information is preserved in all sets. For any set V,
the global loss function is defined as

1
£3"(A, B) = (| Mz — AT M % + || M5 — My B ).

2.4 Final Optimization Problem

Combined with A-scaled global loss and regularization over
A, B, the final loss function of SMF becomes

AL (A, B) + S(IAIG + B3,

where L1 and £ are redefined in A, B-denotation, namely

(an

. 1
LI°(A,B) §||Mn‘ — AT®TUB||%,

1
LA, B) §||M0i — ®"UB||%

1
+5 1Mo — ATOTW 7. (12)

Accordingly, the final optimization problem of SMF is for-
mulate as

WO = (1)7 Oo =WV,
A, By = argr/rlligﬁi(A,B), i=1,2,--,8.

3 SepNE: Separated Network Embedding

In this section, we propose SepNE, a simple and separable
NE approach based on SMF. A general framework of SepNE
is presented in Algorithm 1. We then illustrate the details
of SepNE, including the partition setups, landmark-selecting
approaches and optimization method.

SepNE takes a given network as input and outputs node
representations. In the preparation stage, landmarks are se-
lected and embedded, and rest nodes are partitioned under a
certain setup. In the second stage, partitioned sets are inde-
pendently embedded by optimizing the SMF problem. The
second stage is designed in a separable manner, so that if
a small proportion of nodes are requested, Loop 4 in Algo-
rithm 1 can be conducted only on the sets containing these
nodes. Besides, separability allows cycles in the loop to be
run distributedly.



Algorithm 1 General framework of SepNE.
Input: G = (V,E),|V|=n.
Output: Node embeddings for partitioned sets of nodes.
1: Partition rest nodes in set V' into s subsets as V;
2: Sample k landmarks as set Vj;
3: Conduct SVD on calculated proximity matrix My and
calculate ¢, W:

Moo = UaZqV,],
b = Ud\/zd,\l’ = Vd\/z )
WO = CI);

for:=1,2,---,sdo

bl

6:  Calculate relevant proximity matrices My;, Mo, M;,
Mﬁ" Mii; )
7:  Optimize the loss functions:

A;, By = inC;(A, B):
i» Bi argrgllglﬁl( ,B);

8:  Calculate embeddings for set V;:
W; =®A;,C; =UB;
end for

return (Wy, Wy, --- W)

For the proximity matrix to be factorized, two metrics are
adopted in SepNE. The first metric defines M = A + A2,
where A is the transition matrix of PageRank (1999) #. The
second metric simplifies the first one with M = [ + A.
Our metrics are similar to TADW (2015), which proved an
equivalency between factorizing A and A + A2 and Deep-
Walk (2014) with very short walks. A more instinctive un-
derstanding of the metrics can be derived from the perspec-
tive of proximity orders. A can be interpreted as a measure-
ment of first-order proximity, and A + A2 a combination of
first-order and second-order proximity. These concepts were
proposed and further discussed in (Tang et al. 2015).

3.1 Partition Setups

We propose three different partition setups for SepNE in
this paper. SepNE-LP (Louvain Partition) partitions a net-
work according to its communities using Louvain (2008).
Leveraging community structures conforms matrix local in-
formation to network local information 3, which serves as an
empirical approach to improve performance.

However, as SepNE leverages all the information of the
proximity matrix, community-based partitions are not nec-
essary. We further propose SepNE-RP (Random Patition)
which randomly assigns nodes to sets, and SepNE-IO (In-
terested Only) which simply puts the requested nodes into
one or more sets and ignores all unrequested ones.

3.2 Landmark Selection

Landmark-selecting approaches influence not only represen-
tations of the landmarks, but also the loss of all sets in the
entire SMF problem. As the key intention of setting land-
marks is to establish references for different sets, landmarks

*A;; = 1/d; if (4,§) € E and 0 otherwise, where d; is the
degree of node .
SWhich refers to connections within real-world communities.
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are expected (i) to have as much connection with rest nodes
as possible; (ii) to have the connection cover as many sets as
possible.

Approaches that select nodes with high degrees gener-
ally work well if k is loosely controlled. However, on real-
world networks, nodes with the highest degrees tend to dis-
tribute in a few giant and highly connected communities.
When £ is strictly confined, choosing these nodes actually
limits the number of sets these landmarks adjoin. To relieve
this problem, we propose GDS (Greedy Dominating Set), an
approach that greedily maximizes the number of nodes the
landmarks adjoins.

GDS first forms a maximum heap using degrees of nodes
and initialize the landmark set as empty. After initialization,
GDS iteratively examines the top of the heap. The top is
simply removed if dominated by the current landmark set,
otherwise added into the set and then removed. The pro-
cess continues until the heap is empty or the size reaches k.
Experiments show that GDS well captures the informative
structure of a network when k is strictly confined.

While serving as good references, landmarks selected
with GDS are completely one-hop isolated. As a conse-
quence, if only one-hop proximity is leveraged, My, of GDS
is supposed to be a diagonal matrix. Furthermore, if k£ > d,
SVD will generate null representations for some landmarks.
Therefore, we only use GDS when higher order proximity is
adopted or k£ = d. Otherwise, we implement degree-based
approaches.

3.3 Optimization

The optimization problem in SepNE is solved similarly to
(Yu et al. 2014), where A, B are iteratively optimized as

A+ arg mjn Li(A, B(t)),

B+ arg mBinﬁi(A(tH),B).

As explicit calculation of the loss function value involves

large matrix multiplications, A, B are calculated by solving
. .. . . oL _ oL _ .

the gradient-minimization problem §% = §% = 0 in each

iteration. Cholesky decomposition is adopted as the matrix

in the gradient problem is always positive-definite.

3.4 Complexity Analysis

The complexity of the preparation stage is O(nlogn + k3),
while empirically the time expenses are low especially when
random partitions are implemented. If M = [ + A, the av-
erage complexity of each section is O(k x (deg + iter x
k) x n;), including both the time in calculating proximity
matrices and in optimization.

With separability implemented, SepNE is available to
only embed a proportion of nodes. Besides, when small pro-
portions of nodes are requested, the complexity of SepNE in
the second stage is irrelevant to the entire scale of the net-
work. This property yields strong scalability of SepNE to
super-scale networks.

4 Experiments

We evaluated SepNE on several publicly available real-
world networks with different sizes and topics, including



Dataset Directed Nodes Links
Wiki directed 2,405 17,981
Cora directed 2,708 5,429
Citeseer directed 3,312 4,732
Flickr undirected | 1,715,255 | 22,613,981
Youtube undirected | 1,157,827 4,945,382
Wiki-Gen | directed 2| ~T7.5x20

Table 1: Statistics of datasets used in this paper.

three document networks and two social networks. Perfor-
mances over three benchmark tasks were evaluated: (i) ma-
trix reconstruction on document networks, (ii) multi-class
classification tasks on document networks and (iii) multi-
label classification tasks on social networks.

4.1 Experiment Setups

Datasets. Five real-world networks were used in this pa-
per. Wiki, Cora and Citeseer are thousand-level document
networks. ® Wiki contains Wikipedia pages of 19 classes;
Cora contains machine learning papers from 7 classes
and Citeseer contains publications from 6 classes. Links
between documents are pointers or citations. Flickr and
Youtube are million-level social networks. ” Users and their
relationships are represented as nodes and links on the net-
works, and real-world communities are available. Wiki-Gens
are a series of networks generated by implementing Kron-
fit (2010) on Wiki. Table 1 shows the statistics of all datasets.

Comparison Algorithms and Parameters. Algorithms
and their parameters are briefly introduced below. We did
not compare SepNE with algorithms that are not scalable to
large networks. Except otherwise noted, the representation
dimension for all algorithms was d = 128.

e SVD was conducted over the full proximity matrices. As
SVD theoretically generates the optimal rank-d approxi-
mations in F-norm, it was proposed as the strongest pos-

sible baseline for matrix reconstruction.

Nystrom Method (Drineas and Mahoney 2005) is a fast
monte-carlo method of approximating matrix multiplica-
tions. It was taken as a representative of probabilistic MF
algorithms. The number of landmarks in Nystrom method
is set the same as SepNE for fair comparison.

LINE (2015) embeds a network by optimizing an objec-
tive function of edge reconstruction. The parameters were
set the same as the original paper, namely py = 0.025,
negative sampling K = 5 and sample size 7' = 10'°.

DeepWalk (2014) embeds nodes by regarding them in
random walk sequences as words in sentences. The pa-
rameters were set as window size win = 10, walk length
t = 40 and walks per node v = 40.

SepNE was evaluated under all three partition setups
(SepNE-LP, SepNE-RP and SepNE-IO). On document
networks, parameters were set as iter = 100, A = 0.4

8 Available at https://lings.soe.ucsc.edu/data
7 Available at http://socialnetworks.mpi-sws.org/datasets.htm]
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Table 2: Running time comparison over flickr.

SepNE-1O 6.2mins
SepNE-RP 43.8mins
SepNE-LP 68.8mins
LINE(1st) | 138.1mins
DeepWalk >24hrs
151'(5) = SepNE-I0 g 18 - P T —
01 —*— SepNE-| 2 —+— Preparation Time —
4.0 SepNE-RP pd z 1200 Y
7331 —— sepnELP g g 6001
31 L
220 . ~209
=15 8 151 —— Optimization Time
1.0 20
05 [, 2 o] e — . .
0.0 g ;
6 8 0 2 4 6 8

Number of edges (x107) Number of edges (x107)

Figure 2: Scalability of SepNE, demonstrated on Wiki-Gens.
andn = 0.1, M = A+ A% and k

networks, parameters were iter = 9,
M =1+ Aandk = 1000.

200; on social

A=050,n=1,

4.2 Running Time

To demonstrate the speed advantage of SepNE, we com-
pared the running time of SepNE, LINE and DeepWalk on
Flickr network.  The nodes in the five biggest communi-
ties of Flickr (75,338 nodes, 4.39%) were regarded as inter-
ested for SepNE-IO. Results are presented in Table 2. With
better performance (introduced below), our method was sig-
nificantly faster than LINE (for 50.2%) and DeepWalk even
in embedding the entire network; when requested to embed
only the nodes of interest, SepNE completed the task in a
very short time. °

We also evaluated the trend of running time with network
scales increasing on Wiki-Gens and the number of requested
nodes for SepNE-IO fixed as 10,000. Figure 2 (a) shows
a linear trend in all three setups. Figure 2 (b)(c) show the
trends of preparation and optimization time in SepNE-IO.
Preparation time increased linearly mainly due to the time
used in reading data, while optimization time remained in-
variant. The results all corroborate that SepNE is scalable to
super-large networks.

4.3 Matrix Reconstruction

The performance of reconstructing proximity matrix is a di-
rect metric of representation quality. We evaluated matrix
reconstruction performances of different algorithms on all
document datasets. As the results were similar, we took Wiki
as a representative. Two metrics were used, including the R?

8All efficiency experiments were conducted on a single ma-
chine with 128GB memory, 32 cores 2.13GHz CPU with 16 work-
ers.

“Data are saved as edge lists in the experiments for fair compar-
ison. If adjacent lists are available, the time of SepNE-IO can still
be reduced significantly.
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score over all entries (74;;) and non-zero entries (7,,,):

| — M3
Tall = 1_77
[T
T - x B
g

where x indicates element-wise multiplication and B;; = 1
if M;; # 0 otherwise 0.

We evaluated Nystrom method, SVD and SepNE with
different k over both metrics. We then compared different
landmark-selecting approaches with different k£ and d, in-
cluding four: DD (Degree Deterministic) picking nodes with
the k£ highest degrees; DP (Degree Probabilistic) sampling
landmarks using degrees as weights; UF (Uniform) uni-
formly selecting landmarks; and GDS.

According to Figure 3 (a)(b), SepNE significantly outper-
forms Nystrém method for up to 38.3% and shows compe-
tent performance compared with SVD. SVD shows its ad-
vantage on r,;;, while preserving non-zero entries can be
more important than zero entries on real-world networks
due to the existence of unobserved links. When £ is large
enough, SepNE outperforms SVD on 7,,.. This is because
non-zero entries are more densely distributed inside com-
munities and better reconstructed by SepNE.

In Figure 3 (c)(d), when k is slightly larger than d, or
to say that k is strictly confined, GDS shows its signifi-
cant advantages. However, the r,;; of GDS decreases when
k > 2d due to the null representations generated in SVD.
At the same time, degree-based approaches gradually get rid
of their biases as & increases, and therefore show continuous
improvements of performance.

4.4 Classification

We implemented two types of classification tasks on docu-
ment and social networks. A simple logistic regression was
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Figure 4: Performances of multi-label classification under
different parameter settings on Flickr network.

used as the classifier for both tasks. The representations were
all normalized before used as features. All results were av-
eraged over 10 runs.

Multi-class classification. We implemented multi-class
classification on three document networks which predicts
the subject category a given document is in. Table 3 reports
the performances. Macro F1 results are not shown due to the
similarity. Despite the minimum information SepNE lever-
ages, it outperforms DeepWalk in the majority (4 out of 6) of
cases. This is because SepNE incorporates a more robust and
elegant way to leverage proximities between nodes. LINE is
struggling to capture information on smaller networks, while
SepNE is as well competent.

Multi-label classification. The multi-label classification
task on social networks was defined as predicting whether
a given node is in each community. The five largest in Flickr
and communities with more that 1,000 members in Youtube
were extracted as labels. As labels were sparse, we con-
ducted training and predicting processes over the nodes that
have at least one label. The training percentage was varied
from 1% to 90%. Table 4 and Table 5 show the results.
SepNE shows significant advantages on Flickr. Using
10% training data, SepNE-LP outperforms LINE and Deep-
Walk using 90%. Representations from SepNE are more pre-
dictive than DeepWalk even if only one-hop proximity is
leveraged. The reason may be that as Flickr has relatively
high average degree, the larger window size of DeepWalk
actually encumbers it in determining the importance of in-
formation. All three setups of SepNE show good perfor-
mances, while SepNE-LP shows its advantage over the other
two setups. This shows the effectiveness of the empirical
method of partitioning networks according to communities,
while the time cost of SepNE-LP is significantly higher than
the other two simplified setups. The task on Youtube is more
challenging as both the network and labels are much sparser.
DeepWalk outperforms both LINE and SepNE due to its
ability in leveraging remote proximities with its larger win-
dow size, which successfully relieves the problem of spar-



Table 3: Multi-class prediction results over document networks (micro-averaged F1 scores). Best performances are bolded.

Wiki Cora Citeseer

Yotrain 10% 90% 10% 90% 10% 90%

LINE(Ist)  0.4488 0.5937 0.4657 0.6009 0.3206 0.4259

LINE(2nd) 0.3298 0.4787 0.2637 0.3297 0.2221 0.2561

DeepWalk  0.5737 0.6893 0.7509 0.8187 0.5086 0.5813

SepNE 0.5764 0.6867 0.7365 0.8220 0.5157 0.6072

Table 4: Multi-label prediction results over Flickr network (micro-averaged F1 scores). Best performances are bolded.
Yotrain 1% 3% 5% 10% 20% 30% 50% 90%
LINE(1st) 03683 0.4118 0.4165 04219 04270 0.4273 0.4296 04274
LINE(2nd) 0.3450 0.3824 0.3955 0.3973 0.4032 0.4056 0.4069 0.4068
DeepWalk  0.4072 0.4353 0.4433 0.4481 0.4518 0.4564 0.4585 0.4592
SepNE-IO  0.4065 0.4341 0.4477 0.4562 0.4582 0.4607 0.4630 0.4622
SepNE-RP 0.4061 0.4388 0.4502 0.4601 0.4628 0.4634 0.4636 0.4658
SepNE-LP  0.4269 0.4468 0.4562 0.4623 0.4645 0.4656 0.4674 0.4677
Table 5: Multi-label prediction results over Youtube network (micro-averaged F1 scores). Best two performances are bolded.

Yotrain 1% 3% 5% 10% 20% 30% 50% 90%
LINE(1st)  0.1031 0.2322 0.2745 0.3141 0.3410 0.3520 0.3594 0.3673
LINE(2nd) 0.0782 0.1839 0.2158 0.2643 0.2987 0.3159 0.3280 0.3350
DeepWalk  0.2037 0.3397 0.3739 0.4105 0.4355 0.4438 0.4501 0.4556
SepNE-IO  0.2035 0.3325 0.3574 0.3885 0.4041 04129 04170 0.4216
SepNE-RP  0.2256 0.3355 0.3633 0.3920 04115 0.4157 0.4214 0.4273
SepNE-LP  0.2253 0.3361 0.3620 0.3882 0.4118 0.4170 0.4218 0.4277

sity at the cost of much higher time expenses. SepNE out-
performs both LINE(1st) and LINE(2nd), which again cor-
roborates its stronger ability to leverage near proximities.

4.5 Parameter Sensitivity

Figure 4 shows the effect of iter, k, A\, n and d. Iter, k
and 1 do not show significant influences. The performance
of SepNE is good with even one iteration, probably indicat-
ing that local information on Flickr is less important. Fig-
ure 4 (c) shows that larger A\ generally leads to better perfor-
mance, converging with A > 100. The higher performances
of larger s, particularly compared with A = 0, show the
effectiveness of the elaborated global loss.

5 Related Work

There are massive literature proposed over NE problems.
Traditional dimension reduction approaches (Roweis and
Saul 2000; Tenenbaum, de Silva, and Langford 2000; Belkin
and Niyogi 2002) are applicable on network data through
Graph Laplacian Eigenmaps or proximity MF. Recently,
various skip-gram-based NE models and applications were
proposed (Perozzi, Al-Rfou, and Skiena 2014; Grover and
Leskovec 2016; Du et al. 2018). Besides, the pioneering
work of (Levy and Goldberg 2014) proved an equivalency
between skip-gram models and matrix factorization, which
further leads to new proximity metrics under the proximity
MF framework (Yang et al. 2015; Cao, Lu, and Xu 2015;
Qiu et al. 2018). Edge reconstruction algorithms (Tang et al.
2015) were proposed to gain scalability on large networks.
Neural networks, including autoencoders (Wang, Cui, and
Zhu 2016; Tu et al. 2018) and CNNs (Kipf and Welling
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2016; Hamilton, Ying, and Leskovec 2017) were also lever-
aged in NE problems. There is also a new trend (Ribeiro,
Saverese, and Figueiredo 2017) that leverages structural in-
formation instead of proximity in NE.

The most similar work to ours is (Ahmed et al. 2013), in
which a similar partition was adopted to achieve separabil-
ity, while other parts of the work had major differences with
ours. Besides, it focused mainly on technical issues in dis-
tributed learning and preserved only link information, while
SepNE is more generalized idea with a more elaborated op-
timization goal.

6 Conclusion

In this paper, we formalized the problem of separated matrix
factorization, based on which we proposed SepNE, an sepa-
rable network embedding method which outperforms strong
baselines in both efficiency and performance.

The key contribution of SepNE is providing a novel per-
spective of evaluating network embedding methods: sepa-
rability. A separable method is stronger than a distributable
one, as partly conducting a separable task provides meaning-
ful outputs. This property provides an option of embedding
only a proportion of nodes and yields strong significance in
distributed learning, super-large network embedding and dy-
namic network embedding. Furthermore, SMF reduces the
complexity of MF from cubic to linear with the generaliz-
ability over all MF-based algorithms.

SepNE is still a simple framework. For future work, one
intriguing direction is to incorporate more complex infor-
mation into the framework without loss of efficiency. Also,
a theoretical proof of a lower bound over the loss in matrix



reconstruction, and a more theoretical explanation of SMF
can be extremely informative. Should there be such work,
it will be theoretically-founded to apply SMF on all matrix-
factorization-based algorithms.
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