
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

GeniePath: Graph Neural Networks with Adaptive Receptive Paths

Ziqi Liu,† Chaochao Chen,† Longfei Li,† Jun Zhou,†
Xiaolong Li,† Le Song,†‡ Yuan Qi†

†Ant Financial Services Group, China, ‡Georgia Institute of Technology, Atlanta, USA
{ziqiliu, chaochao.ccc, longyao.llf, jun.zhoujun, xl.li, yuan.qi}@antfin.com, lsong@cc.gatech.edu

Abstract

We present, GeniePath, a scalable approach for learning adap-
tive receptive fields of neural networks defined on permuta-
tion invariant graph data. In GeniePath, we propose an adap-
tive path layer consists of two complementary functions de-
signed for breadth and depth exploration respectively, where
the former learns the importance of different sized neighbor-
hoods, while the latter extracts and filters signals aggregated
from neighbors of different hops away. Our method works
in both transductive and inductive settings, and extensive ex-
periments compared with competitive methods show that our
approaches yield state-of-the-art results on large graphs.

Introduction
In this paper, we study the representation learning task in-
volving data that lie in an irregular domain, i.e. graphs.
Many data have the form of a graph, e.g., social net-
works (Perozzi, Al-Rfou, and Skiena 2014), citation net-
works (Sen et al. 2008), biological networks (Zitnik and
Leskovec 2017), and transaction networks (Liu et al. 2017).
We are interested in graphs with permutation invariant prop-
erties, i.e., the ordering of the neighbors for each node is
irrelevant to the learning tasks. This is in opposition to tem-
poral graphs (Kostakos 2009).

Convolutional Neural Networks (CNN) have been proven
successful in a diverse range of applications involving im-
ages (He et al. 2016a) and sequences (Gehring et al. 2016).
Recently, interests and efforts have emerged in the litera-
ture trying to generalize convolutions to graphs (Hammond,
Vandergheynst, and Gribonval 2011; Defferrard, Bresson,
and Vandergheynst 2016; Kipf and Welling 2016; Hamil-
ton, Ying, and Leskovec 2017a), which also brings in new
challenges.

Unlike image and sequence data that lie in regular do-
mains, graph data are irregular in nature, making the re-
ceptive field of each neuron different for different nodes in
the graph. Assuming a graph G = (V, E) with N nodes
i ∈ V , |E| edges (i, j) ∈ E , the sparse adjacency matrix A ∈
RN×N , diagonal node degree matrix D (Dii =

∑
ij Aij),

and a matrix of node features X ∈ RN,P . Consider the fol-
lowing calculations in typical graph convolutional networks:
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H(t+1) = σ
(
φ(A)H(t)W (t)

)
at the t-th layer parameterized

by W (t) ∈ RK×K , where H(t) ∈ RN×K denotes the inter-
mediate embeddings ofN nodes at the t-th layer. In the case
where φ(A) = D−1A and we ignore the activation function
σ, after T times iterations, it yieldsH(T ) = φ(A)TH(0)W 1,
with the T -th order transition matrix φ(A)T (Gagniuc 2017)
as the pre-defined receptive field. That is, the depth of lay-
ers T determines the extent of neighbors to exploit, and any
node j which satisfies d(i, j) ≤ T , where d is the shortest
path distance, contributes to node i’s embedding, with the
importance weight pre-defined as φ(A)Tij . Essentially, the
receptive field of one target node in graph domain is equiva-
lent to the subgraph that consists of nodes along paths to the
target node.

Is there a specific path in the graph contributing mostly to
the representation? Is there an adaptive and automated way
of choosing the receptive fields or paths of a graph convo-
lutional network? It seems that the current literature has not
provided such a solution. For instance, graph convolution
neural networks which lie in spectral domain (Bruna et al.
2013) heavily rely on the graph Laplacian matrix (Chung
1997) L = I − D−1/2AD−1/2 to define the importance
of the neighbors (and hence receptive field) for each node.
Approaches that lie in spatial domain define convolutions
directly on the graph, with receptive field more or less
hand-designed. For instance, GraphSage (Hamilton, Ying,
and Leskovec 2017b) used the mean or max of a fixed-size
neighborhood of each node, or an LSTM aggregator which
needs a pre-selected order of neighboring nodes. These pre-
defined receptive fields, either based on graph Laplacian
in the spectral domain, or based on uniform operators like
mean, max operators in the spatial domain, thus limit us
from discovering meaningful receptive fields from graph
data adaptively. For example, the performance of GCN (Kipf
and Welling 2016) based on graph Laplacian could deterio-
rate severely if we simply stack more and more layers to
explore deeper and wider receptive fields (or paths), even
though the situation could be alleviated, to some extent, if
adding residual nets as extra add-ons (Hamilton, Ying, and
Leskovec 2017b; Veličković et al. 2017).

To address the above challenges, (1) we first formulate the
space of functionals wherein any eligible aggregator func-

1We collapse
∏T

i=0 W
(i) as W , and H(0) = X ∈ RN×P .
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tions should satisfy, for permutation invariant graph data;
(2) we propose adaptive path layer with two complementary
components: adaptive breadth and depth functions, where
the adaptive breadth function can adaptively select a set of
significant important one-hop neighbors, and the adaptive
depth function can extract and filter useful and noisy signals
up to long order distance. (3) experiments on several datasets
empirically show that our approaches are quite competitive,
and yield state-of-the-art results on large graphs. Another re-
markable result is that our approach is less sensitive to the
depth of propagation layers.

Intuitively our proposed adaptive path layer guides the
breadth and depth exploration of the receptive fields. As
such, we name such adaptively learned receptive fields as
receptive paths.

Graph Convolutional Networks
Generalizing convolutions to graphs aims to encode the
nodes with signals lie in the receptive fields. The out-
put encoded embeddings can be further used in end-to-end
supervised learning (Kipf and Welling 2016) or unsuper-
vised learning tasks (Perozzi, Al-Rfou, and Skiena 2014;
Grover and Leskovec 2016).

The approaches lie in spectral domain heavily rely on the
graph Laplacian operator L = I − D−1/2AD−1/2 (Chung
1997). The real symmetric positive semidefinite matrix L
can be decomposed into a set of orthonormal eigenvectors
which form the graph Fourier basis U ∈ RN×N such that
L = UΛU>, where Λ = diag(λ1, ..., λn) ∈ RN×N is the
diagonal matrix with main diagonal entries as ordered non-
negative eigenvalues. As a result, the convolution operator
in spatial domain can be expressed through the element-wise
Hadamard product in the Fourier domain (Bruna et al. 2013).
The receptive fields in this case depend on the kernel U .

Kipf and Welling (2016) further propose GCN to design
the following approximated localized 1-order spectral con-
volutional layer:

H(t+1) = σ
(
ÃH(t)W (t)

)
, (1)

where Ã is a symmetric normalization of A with self-loops,
i.e. Ã = D̂−

1
2 ÂD̂−

1
2 , Â = A + I , D̂ is the diagonal node

degree matrix of Â, H(t) ∈ RN,K denotes the t-th hidden
layer with H(0) = X , W (t) is the layer-specific parameters,
and σ denotes the activation functions.

GCN requires the graph Laplacian to normalize the neigh-
borhoods in advance. This limits the usages of such models
in inductive settings. One trivial solution (GCN-mean) in-
stead is to average the neighborhoods:

H(t+1) = σ
(
ÃH(t)W (t)

)
, (2)

where Ã = D̂−1Â is the row-normalized adjacency matrix.
More recently, Hamilton et al. (2017a) proposed Graph-

SAGE, a method for computing node representation in in-
ductive settings. They define a series of aggregator functions
in the following framework:

H(t+1) = σ
(

CONCAT
(
φ(A,H(t)), H(t)

)
W (t)

)
, (3)

Figure 1: A fraud detection case: accounts with high risk
(red nodes), accounts with unknown risk (green nodes), and
devices (blue nodes). An edge between an account and a de-
vice means that the account has logged in via the device dur-
ing a period.

where φ(·) is an aggregator function over the graph. For ex-
ample, their mean aggregator φ(A,H) = D−1AH is nearly
equivalent to GCN-mean (Eq. 2), but with additional resid-
ual architectures (He et al. 2016a). They also propose max
pooling and LSTM (Long short-term memory) (Hochre-
iter and Schmidhuber 1997) based aggregators. However,
the LSTM aggregator operates on a random permutation of
nodes’ neighbors that is not a permutation invariant function
with respect to the ordering of neighborhoods, thus makes
the operators hard to understand.

A recent work from (Veličković et al. 2017) pro-
posed Graph Attention Networks (GAT) which uses atten-
tion mechanisms to parameterize the aggregator function
φ(A,H; Θ). This method is restricted to learn a direct neigh-
borhood receptive field, which is not as general as our pro-
posed approach which can explore receptive field in both
breadth and depth directions.

Note that, this paper focuses mainly on works related
to graph convolutional networks, but may omit some other
types of graph neural networks.

Discussions
To summarize, the major effort put on this area is to de-
sign effective aggregator functions that can propagate sig-
nals around the T -th order neighborhood for each node. Few
of them try to learn the meaningful paths that direct the prop-
agation.

Why learning receptive paths is important? The reasons
could be twofold: (1) graphs could be noisy, (2) different
nodes play different roles, thus it yields different receptive
paths. For instance, in Figure 1 we show the graph pat-
terns from real fraud detection data. This is a bipartite graph
where we have two types of nodes: accounts and devices
(e.g. IP proxy). Malicious accounts (red nodes) tend to ag-
gregate together as the graph tells. However, in reality, nor-
mal and malicious accounts could connect to the same IP
proxy. As a result, we cannot simply tell from the graph pat-
terns that the account labeled in “green” is definitely a mali-
cious one. It is important to verify if this account behave in
the similar patterns as other malicious accounts, i.e. accord-
ing to the features of each node. Thus, node features could
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Figure 2: A motivated illustration of meaningful receptive
paths (shaded) given all two-hops neighbors (red and blue
nodes), with the black node as target node.

be additional signals to refine the importance of neighbors
and paths. In addition, we should pay attention to the num-
ber of hops each node can propagate. Obviously, the nodes
at frontier would not aggregate signals from a hub node, else
it would make everything “over-spread”.

We demonstrate the idea of learning receptive paths of
graph neural networks in Figure 2. Instead of aggregating all
the 2-hops neighbors to calculate the embedding of the tar-
get node (black), we aim to learn meaningful receptive paths
(shaded region) that contribute mostly to the target node.
The meaningful paths can be viewed as a subgraph associ-
ated to the target node. What we need is to do breadth/depth
exploration and filter useful/noisy signals. The breadth ex-
ploration determines which neighbors are important, i.e.
leads the direction to explore, while the depth exploration
determines how many hops of neighbors away are still use-
ful. Such signal filterings on the subgraphs essentially learn
receptive paths.

Proposed Approaches
In this section, we first discuss the space of functionals satis-
fying the permutation invariant requirement for graph data.
Then we design neural network layers which satisfy such
requirement while at the same time have the ability to learn
“receptive paths” on graph.

Permutation Invariant
We aim to learn a function f that maps G,H, i.e. the graph
and associatd (latent) feature spaces, into the range Y . We
have node i, and the 1-order neighborhood associated with
i, i.e.N (i), and a set of (latent) features in vector space RK
belongs to the neighborhood, i.e. {hj |j ∈ N (i)}. In the case
of permutation invariant graphs, we assume the learning task
is independent of the order of neighbors.

Now we require the (aggregator) function f acting on the
neighbors must be invariant to the orders of neighbors under
any random permutation σ, i.e.

f({h1, ..., hj , ...}|j ∈ N (i)) (4)
= f({hσ(1), ..., hσ(j), ...}|j ∈ N (i))

Algorithm 1: A generic algorithm of GeniePath.

Input: Depth T , node features H(0) = X , adjacency
matrix A.

Output: Θ and Φ
1 while not converged do
2 for t = 1 to T do
3 H(tmp) = φ(A,H(t−1); Θ) (breadth function)

4 H(t) = ϕ
(
H(tmp)|

{
H(τ)|τ ∈

{t− 1, ..., 0}
}

; Φ
)

(depth function)

5 end
6 Backpropagation based on loss L(H(T ), ·)
7 end
8 return Θ and Φ

Theorem 1 (Permutation Invariant) A function f operat-
ing on the neighborhood of i can be a valid function, i.e.
with the assumption of permutation invariant to the neigh-
bors of i, if and only if the f can be decomposed into the
form ρ(

∑
j∈N (i) φ(hj)) with mappings φ and ρ.

Proof sketch. It is trivial to show that the sufficiency con-
dition holds. The necessity condition holds due to the Fun-
damental Theorem of Symmetric Functions (Zaheer et al.
2017).

Remark 2 (Associative Property) If f is permutation in-
variant with respect to a neighborhood N (·), g ◦ f is
still permutation invariant with respect to the neighborhood
N (·) if g is independent of the order ofN (·). This allows us
to stack the functions in a cascading manner.

In the following, we will use the permutation invariant
requirement and the associative property to design propaga-
tion layers. It is trivial to check that the LSTM aggregator
in GraphSAGE is not a valid function under this condition,
even though it could be possibly an appropriate aggregator
function in temporal graphs.

Adaptive Path Layer
Our goal is to learn receptive paths while propagate signals
along the learned paths rather than the pre-defined paths.
The problem is equivalent to determining a proper subgraph
through breadth (which one-hop neighbor is important) and
depth (the importance of neighbors at the t-th hop away) ex-
pansions for each node.

To explore the breadth of the receptive paths, we learn an
adaptive breadth function φ(A,H(t); Θ) parameterized by
Θ, to aggregate the signals by adaptively assigning differ-
ent importances to different one-hop neighbors. To explore
the depth of the receptive paths, we learn an adaptive depth
function ϕ

(
h
(t)
i |
{
h
(τ)
i |τ ∈ {t − 1, ..., 0}

}
; Φ
)

parameter-
ized by Φ (shared among all nodes i ∈ V) that could fur-
ther extract and filter the aggregated signals at the t-th or-
der distance away from the anchor node i by modeling the
dependencies among aggregated signals at various depths.
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We summarize the overall “GeniePath” algorithm in Algo-
rithm 1.

The parameterized functions in Algorithm 1 are opti-
mized by the customer-defined loss functions. This may
includes supervised learning tasks (e.g. multi-class, multi-
label), or unsupervised tasks like the objective functions de-
fined in (Perozzi, Al-Rfou, and Skiena 2014).

Now it remains to specify the adaptive breadth and depth
functions, i.e. φ(.) andϕ(.). We make the adaptive path layer
more concrete as follows:

h
(tmp)
i = tanh

(
W (t)>

∑
j∈N (i)∪{i}

α(h
(t)
i , h

(t)
j ) · h(t)j

)
(5)

then

ii = σ(W
(t)
i

>
h
(tmp)
i ), fi = σ(W

(t)
f

>
h
(tmp)
i )

oi = σ(W
(t)
o

>
h
(tmp)
i ), C̃ = tanh(W

(t)
c

>
h
(tmp)
i )

C
(t+1)
i = fi � C

(t)
i + ii � C̃,

and finally,

h
(t+1)
i = oi � tanh(C

(t+1)
i ). (6)

The first equation (Eq. (5)) corresponds to φ(.) and the
rest gated units correspond to ϕ(.). We maintain for each
node i a memory Ci (initialized as C(0)

i ← ~0 ∈ RK)
, and gets updated as the receptive paths being explored
t = 0, 1, ..., T . At the (t + 1)-th layer, i.e. while we are
exploring the neighborhood {j|d(i, j) ≤ t+1}, we have the
following two complementary functions.

Adaptive breadth function. Eq. (5) assigns the impor-
tance of any one-hop neighbors’ embedding h(t)j by the pa-
rameterized generalized linear attention operator α(·, ·) as
follows

α(x, y) = softmaxy
(
v> tanh(W>s x+W>d y)

)
, (7)

where softmaxyf(·, y) = exp f(·,y)∑
y′ exp f(·,y′) .

Adaptive depth function. The gated unit ii with sig-
moid output (in the range (0, 1)) is used to extract newly
useful signals from C̃, and be added to the memory as
ii � C̃. The gated unit fi is used to filter useless signals
from the old memory given the newly observed neighbor-
hood {j|d(i, j) ≤ t+ 1} by fi �C(t)

i . As such, we are able
to filter the memory for each node i as C(t+1)

i while we ex-
tend the depth of the neighborhood. Finally, with the output
gated unit oi and the latest memory C(t+1)

i , we can output
node i’s embedding at (t+ 1)-th layer as h(t+1)

i .
The overall architecture of adaptive path layer is illus-

trated in Figure 3. We let h(0)i = W>x Xi with Xi ∈ RP as
node i’s feature. The parameters to be optimized are weight
matrix Wx ∈ RP,K , Θ = {W,Ws,Wd ∈ RK,K , v ∈ RK},
and Φ = {Wi,Wf ,Wo,Wc ∈ RK,K} that are extremely
compact (at the same scale as other graph neural networks).

Note that the adaptive path layer with only adaptive
breadth function φ(.) reduces to the proposal of GAT, but

Figure 3: A demonstration for the architecture of GeniePath.
Symbol

⊕
denotes the operator

∑
j∈N (i)∪{i} α(h

(t)
i , h

(t)
j ) ·

h
(t)
j .

with stronger nonlinear representation capacities. Our gen-
eralized linear attention can assign symmetric importance
with constraint Ws = Wd. We do not limit ϕ(·) as a LSTM-
like function but will report this architecture in experiments.

A variant. Next, we propose a variant called “GeniePath-
lazy” that postpones the evaluations of the adaptive depth
function ϕ(.) at each layer. We rather propagate signals up
to T -th order distance by merely stacking adaptive breadth
functions. Given those hidden units {h(0)i , ..., h

(t)
i , ..., h

(T )
i },

we add adaptive depth functionϕ(.) on top of them to further
extract and filter the signals at various depths. We initialize
µ
(0)
i = W>x Xi, and feed µ(T )

i to the final loss functions.
Formally given {h(t)i } we have:

ii = σ
(
W

(t)
i

>
CONCAT(h

(t)
i , µ

(t)
i )
)
, (8)

fi = σ(W
(t)
f

>
CONCAT

(
h
(t)
i , µ

(t)
i )
)
,

oi = σ(W (t)
o

>
CONCAT

(
h
(t)
i , µ

(t)
i )
)
,

C̃ = tanh(W (t)
c

>
CONCAT

(
h
(t)
i , µ

(t)
i )
)
,

C
(t+1)
i = fi � C(t)

i + ii � C̃,

µ
(t+1)
i = oi � tanh(C

(t+1)
i ).

Permutation invariant. Note that the adaptive breadth
function φ(·) in our case operates on a linear transforma-
tion of neighbors, thus satisfies the permutation invariant re-
quirement stated in Theorem 1. The function ϕ(·) operates
on layers at each depth is independent of the order of any
1-step neighborhood, thus the composition of ϕ ◦ φ is still
permutation invariant.

Efficient Numerical Computation
Our algorithms could be easily formulated in terms of linear
algebra, thus could leverage the power of Intel MKL (Intel
2007) on CPUs or cuBLAS (Nvidia 2008) on GPUs. The
major challenge is to numerically efficient calculate Eq. (5).
For example, GAT (Veličković et al. 2017) in its first version
performs attention over all nodes with masking applied by
way of an additive bias of −∞ to the masked entries’ coef-
ficients before apply the softmax, which results into O(N2)
in terms of computation and storage.
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Table 1: Dataset summary.
Dateset V E # Classes # Features Label rate (train / test)

Pubmed 19, 717 88, 651 3 500 0.3% / 5.07%
BlogCatalog1 10, 312 333, 983 39 0 50% / 40%
BlogCatalog2 10, 312 333, 983 39 128 50% / 40%

PPI 56, 944 818, 716 121 50 78.8% / 9.7%
Alipay 981, 748 2, 308, 614 2 4, 000 20.5% / 3.2%

Instead, all we really need is the attention entries in the
same scale as adjacency matrix A, i.e. |E|. Our trick is to
build two auxiliary sparse matrices L ∈ {0, 1}|E|,N andR ∈
{0, 1}|E|,N both with |E| entries. For the i-th row of L and
R, we have Lii′ = 1,Rij′ = 1, and (i′, j′) corresponds to an
edge of the graph. After that, we can doLHWs+RHWd for
the transformations on all the edges in case of generalized
linear form in Eq. (7). As a result, our algorithm complexity
and storage is still in linear with O(|E|) as other type of
GNNs.

Experiments
In this section, we first discuss the experimental results of
our approach evaluated on various types of graphs compared
with strong baselines. We then study its abilities of learning
adaptive depths. Finally we give qualitative analyses on the
learned paths compared with graph Laplacian.

Datasets
Transductive setting.

The Pubmed (Sen et al. 2008) is a type of citation net-
works, where nodes correspond to documents and edges to
undirected citations. The classes are exclusive, so we treat
the problem as a multi-class classification problem. We use
the exact preprocessed data from Kipf and Welling (2016).

The BlogCatalog1 (Zafarani and Liu 2009) is a type of
social networks, where nodes correspond to bloggers listed
on BlogCatalog websites, and the edges to the social rela-
tionships of those bloggers. We treat the problem as a multi-
label classification problem. Different from other datasets,
the BlogCatalog1 has no explicit features available, as a re-
sult, we encode node ids as one-hot features for each node,
i.e. 10, 312 dimensional features. We further build dataset
BlogCatalog2 with 128 dimensional features decomposed
by SVD on the adjacency matrix A.

The Alipay dataset (Liu et al. 2017) is a type of Account-
Device Network, built for detecting malicious accounts in
the online cashless payment system at Alipay. The nodes
correspond to users’ accounts and devices logged in by those
accounts. The edges correspond to the login relationships
between accounts and devices during a time period. Node
features are counts of login behaviors discretized into hours
and account profiles. There are 2 classes in this dataset, i.e.
malicious accounts and normal accounts. The Alipay dataset
is random sampled during one week. The dataset consists of
82, 246 disjoint subgraphs.

Inductive setting.

The PPI (Hamilton, Ying, and Leskovec 2017a) is a type
of protein-protein interaction networks, which consists of 24
subgraphs with each corresponds to a human tissue (Zitnik
and Leskovec 2017). The node features are extracted by po-
sitional gene sets, motif gene sets and immunological signa-
tures. There are 121 classes for each node from gene ontol-
ogy. Each node could have multiple labels, then results into
a multi-label classification problem. We use the exact pre-
processed data provided by Hamilton et al. (2017a). There
are 20 graphs for training, 2 for validation and 2 for testing.

We summarize the statistics of all the datasets in Table 1.

Experimental Settings

Comparison Approaches We compare our methods with
several strong baselines.

(1) MLP (multilayer perceptron), utilizes only the
node features but not the structures of the graph. (2)
node2vec (Grover and Leskovec 2016). Note that, this type
of methods built on top of lookup embeddings cannot work
on problems with multiple graphs, i.e. on datasets Alipay
and PPI, because without any further constraints, the entire
embedding space cannot guarantee to be consistent during
training (Hamilton, Ying, and Leskovec 2017a). (3) Cheby-
shev (Defferrard, Bresson, and Vandergheynst 2016), which
approximates the graph spectral convolutions by a trun-
cated expansion in terms of Chebyshev polynomials up to
T -th order. (4) GCN (Kipf and Welling 2016), which is
defined in Eq. (1). Same as Chebyshev, it works only in
the transductive setting. However, if we just use the nor-
malization formulated in Eq. (2), it can work in an induc-
tive setting. We denote this variant of GCN as GCN-mean.
(5) GraphSAGE (Hamilton, Ying, and Leskovec 2017a),
which consists of a group of pooling operators and skip con-
nection architectures as discussed in section . We will re-
port the best results of GraphSAGEs with different pooling
strategies as GraphSAGE∗. (6) Graph Attention Networks
(GAT) (Veličković et al. 2017) is similar to a reduced version
of our approach with only adaptive breadth function. This
can help us understand the usefulness of adaptive breadth
and depth function.

We pick the better results from GeniePath or GeniePath-
lazy as GeniePath∗. We found out that the residual archi-
tecture (skip connections) (He et al. 2016b) are useful for
stacking deeper layers for various approaches and will re-
port the approaches with suffix “-residual” to distinguish the
contributions between graph convolution operators and skip
connection architecture.
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Table 2: Summary of testing results on Pubmed, BlogCatalog and Alipay in the transductive setting. In accordance with former
benchmarks, we report accuracy for Pubmed, Macro-F1 for BlogCatalog, and F1 for Alipay.

Transductive
Methods Pubmed BlogCatalog1 BlogCatalog2 Alipay

MLP 71.4% - 0.134 0.741
node2vec 65.3% 0.136 0.136 -

Chebyshev 74.4% 0.160 0.166 0.784
GCN 79.0% 0.171 0.174 0.796

GraphSAGE∗ 78.8% 0.175 0.175 0.798
GAT 78.5% 0.201 0.197 0.811

GeniePath∗ 78.5% 0.195 0.202 0.826

Table 3: Summary of testing Micro-F1 results on PPI in the
inductive setting.

Inductive
Methods PPI

MLP 0.422
GCN-mean 0.71

GraphSAGE∗ 0.768
GAT 0.81

GeniePath∗ 0.979

Table 4: A comparison of GAT, GeniePath, and additional
residual “skip connection” on PPI.

Methods PPI

GAT 0.81
GAT-residual 0.914

GeniePath 0.952
GeniePath-lazy 0.979

GeniePath-lazy-residual 0.985

Experimental Setups In our experiments, we implement
our algorithms in TensorFlow (Abadi et al. 2016) with the
Adam optimizer (Kingma and Ba 2014). For all the graph
convolutional network-style approaches, we set the hyper-
parameters include the dimension of embeddings or hidden
units, the depth of hidden layers and learning rate to be same.
For node2vec, we tune the return parameter p and in-out
parameter q by grid search. Note that setting p = q = 1
is equivalent to DeepWalk (Perozzi, Al-Rfou, and Skiena
2014). We sample 10 walk-paths with walk-length as 80 for
each node in the graph. Additionally, we tune the penalty of
`2 regularizers for different approaches.

Transductive setting. In transductive settings, we allow
all the algorithms to access to the whole graph, i.e. all the
edges among the nodes, and all of the node features.

For pubmed, we set the number of hidden units as 16 with
2 hidden layers. For BlogCatalog1 and BlogCatalog2, we set
the number of hidden units as 128 with 3 hidden layers. For
Alipay, we set the number of hidden units as 16 with 7 hid-

den layers.
Inductive setting. In inductive settings, all the nodes in

test are completely unobserved during the training proce-
dure. For PPI, we set the number of hidden units as 256 with
3 hidden layers.

Classification

We report the comparison results of transductive settings in
Table 2. For Pubmed, there are only 60 labels available for
training. We found out that GCN works the best by stacking
exactly 2 hidden convolutional layers. Stacking 2 more con-
volutional layers will deteriorate the performance severely.
Fortunately, we are still performing quite competitive on this
data compared with other methods. Basically, this dataset is
quite small that it limits the capacity of our methods.

In BlogCatalog1 and BlogCatalog2, we found both GAT
and GeniePath∗ work the best compared with other meth-
ods. Another suprisingly interesting result is that graph con-
volutional networks-style approaches can perform well even
without explicit features. This works only in transductive
setting, and the look-up embeddings (in this particular case)
of testing nodes can be propagated to nodes in training.

The graph in Alipay (Liu et al. 2017) is relative sparse.
We found that GeniePath∗ works quite promising on this
large graph. Since the dataset consists of ten thousands of
subgraphs, the node2vec is not applicable in this case.

We report the comparison results of inductive settings on
PPI in Table 3. We use “GCN-mean” by averaging the neigh-
borhoods instead of GCN for comparison. GeniePath∗ per-
forms extremely promising results on this big graph, and
shows that the adaptive depth function plays way important
compared to GAT with only adaptive breadth function.

To further study the contributions of skip connection ar-
chitectures, we compare GAT, GeniePath, and GeniePath-
lazy with additional residual architecture (“skip connec-
tions”) in Table 4. The results on PPI show that GeniePath is
less sensitive to the additional “skip connections”. The sig-
nificant improvement of GAT on this dataset relies heavily
on the residual structure.

In most cases, we found GeniePath-lazy converges faster
than GeniePath and other GCN-style models.
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Figure 4: The classification measures with respect to the depths of propagation layers: PPI (left), Alipay (right).

Figure 5: Graph Laplacian (left) v.s. Estimated receptive paths (right) with respect to the black node on PPI dataset: we
retain all the paths to the black node in 2-hops that involved in the propagation, with edge thickness denotes the importance
wi,j = α(hi, hj) of edge (i, j) estimated in the first adaptive path layer. We also discretize the importance of each edge into 3
levels: Green (wi,j < 0.1), Blue (0.1 ≤ wi,j < 0.2), and Red (wi,j ≥ 0.2).

Depths of Propagation
We show our results on classification measures with re-
spect to the depths of propagation layers in Figure 4. As
we stack more graph convolutional layers, i.e. with deeper
and broader receptive fields, GCN, GAT and even Graph-
SAGE with residual architectures can hardly maintain con-
sistently resonable results. Interestingly, GeniePath with
adaptive path layers can adaptively learn the receptive paths
and achieve consistent results, which is remarkable.

Qualitative Analysis
We show a qualitative analysis about the receptive paths
with respect to a sampled node learned by GeniePath in
Figure 5. It can be seen, the graph Laplacian assigns im-
portance of neighbors at nearly the same scale, i.e. results
into very dense paths (every neighbor is important). How-
ever, the GeniePath can help select significantly important
paths (red ones) to propagate while ignoring the rest, i.e.
results into much sparser paths. Such “neighbor selection”
processes essentially lead the direction of the receptive paths
and improve the effectiveness of propagation.

Conclusion
In this paper, we studied the problems of graph convolu-
tional networks on identifying meaningful receptive paths.
We proposed adaptive path layers with adaptive breadth and
depth functions to guide the receptive paths. Our experi-
ments on large benchmark data show that GeniePath signifi-
cantly outperfoms state-of-the-art approaches, and are less
sensitive to the depths of the stacked layers, or extent of
neighborhood set by hand. The success of GeniePath shows
that selecting appropriate receptive paths for different nodes
is important. In future, we expect to further study the spar-
sification of receptive paths, and help explain the potential
propagations behind graph neural networks in specific appli-
cations. In addition, studying temporal graphs that the order-
ing of neighbors matters could be another challenging prob-
lem.
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