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Abstract

CycleGAN is capable of learning a one-to-one mapping be-
tween two data distributions without paired examples, achiev-
ing the task of unsupervised data translation. However, there
is no theoretical guarantee on the property of the learned
one-to-one mapping in CycleGAN. In this paper, we experi-
mentally find that, under some circumstances, the one-to-one
mapping learned by CycleGAN is just a random one within
the large feasible solution space. Based on this observation,
we explore to add extra constraints such that the one-to-one
mapping is controllable and satisfies more properties related
to specific tasks. We propose to solve an optimal transport
mapping restrained by a task-specific cost function that re-
flects the desired properties, and use the barycenters of opti-
mal transport mapping to serve as references for CycleGAN.
Our experiments indicate that the proposed algorithm is capa-
ble of learning a one-to-one mapping with the desired prop-
erties.

Introduction
Image-to-image translation aims at learning a mapping be-
tween a source distribution and a target distribution, which
can transform an image from the source distribution to that
from the target distribution. It covers a variety of computer
vision problems including image denoising (Buades, Coll,
and Morel 2005), segmentation (Long, Shelhamer, and Dar-
rell 2015), and saliency detection (Goferman, Zelnik-Manor,
and Tal 2012). Along with the recent popularity of deep su-
pervised learning, many algorithms based on paired training
data and deep convolution neural networks have been pro-
posed for specific image-to-image translation tasks. Among
them, Pix2pix (Isola et al. 2016) proposed an image-to-
image translation framework utilizing adversarial training
technique to force the translation results being indistinguish-
able from the target distribution.

In practice, it is usually difficult to collect a large amount
of paired training data, while unpaired data can usually
be obtained more easily, hence unsupervised learning algo-
rithms have also been widely studied. Particularly, genera-
tive adversarial networks (GANs; (Goodfellow et al. 2014))
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and dual consistency (He et al. 2016) are extensively studied
in image-to-image translation. CycleGAN (Zhu et al. 2017),
DiscoGAN (Kim et al. 2017) and DualGAN (Yi et al. 2017)
adopt these two techniques for solving unsupervised image-
to-image translation where GAN loss is used to ensure the
generated images being indistinguishable from real images
and cycle consistency loss helps to establish a one-to-one
mapping between source distribution and target distribution.
In this paper, to simplify the terminology, we will use Cycle-
GAN as a representative for these three similar frameworks
combining GANs and the idea of cycle consistency.

CycleGAN can establish a one-to-one mapping between
two data distributions unsupervisedly with the help of the
cycle consistency losses in both directions. However, the-
oretically, there is no claim on the detailed properties of
the mapping established by CycleGAN, which results in a
large feasible solution space. Consequently, without metic-
ulously designed network and hyper-parameters, the one-to-
one mapping learned by CycleGAN will be a random one
within this large space.

For many cross-domain translation tasks, people actually
have expected properties on the learned mapping, e.g. in
language translation task, people would expect the seman-
tic meaning keeps unchanged. Hence, it will be more satis-
factory if we can add explicit constraints on the one-to-one
mapping within CycleGAN to control the mapping’s prop-
erties, so as to meet the requirements of specific tasks.

Among the many potential feasible maps between two
data distributions, it is more promising to find the optimal
one according to some measure. Optimal transport (OT)
aims at finding a transportation plan (Kantorovich 1942) that
holds the least cost of transporting the source distribution to
the target distribution, given a cost function that specifies
the transportation cost between any pair of samples from the
two distributions.

It is worth mentioning that the cost function in optimal
transport is very flexible. For specific tasks, it is possible to
define a cost function to reflect the underlining expectation
of the desired mapping properties. For example, given a set
of handbags and shoes, if one would like to pair the hand-
bags with the shoes such that they have matched colors, one
can specify the cost function to be the distance between their
color histograms, and then the optimal transport would find
the mapping that has the least overall difference in color dis-
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tribution.
In summary, CycleGAN lacks the control of the one-to-

one mapping, while optimal transport holds the ability to
establish a mapping towards the desired property. However,
the optimal transport mapping, i.e., transportation plan, is
usually not a one-to-one mapping, but many-to-many in-
stead; that is, we cannot directly use optimal transport to
build a desired one-to-one mapping. We thus propose to use
optimal transport as a reference to endow CycleGAN with
the ability of learning a one-to-one mapping with desired
properties.

The contributions of this paper has been summarized as
below.

• We study the properties of the one-to-one mapping
learned by CycleGAN and verify that under some circum-
stances the one-to-one mapping learned by CycleGAN is
just a random one within the large feasible solution space,
which is due to the lack of constraint on the one-to-one
mapping established by CycleGAN.

• We propose to use the optimal transport with respect to
a task-specific metric to guide CycleGAN on learning a
one-to-one mapping with desired properties. Our experi-
ments on several datasets demonstrate the effectiveness of
the proposed algorithm on learning a desired one-to-one
mapping.

Related Work
Generative Adversarial Networks (GANs), consisting of a
generator network and a discriminator network, is origi-
nally proposed as a generative model to match the distri-
bution of generated samples to the real distribution, where
the discriminator is trained to distinguish generated sam-
ples from real ones while the generator learns to generate
samples that fool the discriminator. Researchers have been
working hard on improving the stability of training and ex-
ploiting the capacity of GANs for various computer vision
tasks. For instance, (Radford, Metz, and Chintala 2015) pro-
poses a deep convolutional architecture that stabilizes the
training; WGAN (Arjovsky, Chintala, and Bottou 2017) pro-
poses to utilize Wasserstein-1 distance (or Earth Mover’s
distance/EMD) as an alternative metric.

Conditional GANs (cGANs; (Mirza and Osindero 2014;
Odena, Olah, and Shlens 2016; Zhou et al. 2017)) proposes
to extend GANs to a conditional model by conditioning
some extra information, such as class label, on both gen-
erator and discriminator in GANs so that it can generate
images conditioned on class labels and so on. (Reed et al.
2016) extends cGANs with conditional information being
text features. Pix2pix (Isola et al. 2016) proposed a unified
image-to-image translation framework based on conditional
GANs, with conditional information being images.

In practice, it is always hard to collect a large amount of
paired training data, while unpaired data can always be ob-
tained more easily. In order to make better use of unpaired
data in real world, CycleGAN (Zhu et al. 2017), Disco-
GAN (Kim et al. 2017) and DualGAN (Yi et al. 2017) adopt
the idea of dual consistency, which was firstly proposed in
language translation (He et al. 2016), together with GANs to

simultaneously train a pair of generators and discriminators
for translation in both directions and applied cycle consis-
tency loss on both data distributions, which forces the map-
ping to be a one-to-one mapping. However, theoretically,
there is no explicit constraint on the properties of the one-
to-one mapping within CycleGAN, which results in a large
feasible solution space and the learned one-to-one mapping
being a random one within this space.

Optimal transport (Villani 2008) aims to find a mapping
between two distributions that can transport the source dis-
tribution to the target distribution with the least transporta-
tion cost. In many cases, the mapping between two distribu-
tions, where each source point only maps to a single target
point (the Monge’s problem) does not exist. The modern ap-
proach to optimal transport relaxes the Monge’s problem by
optimizing over plans, i.e., a distribution over the product
space of the source distribution space and the target distri-
bution space. (Cuturi 2013) proposes to introduce entropic
regularization term into OT problem which turns it into an
easier optimization problem and can be solved efficiently by
Sinkhorn-Knopp algorithm. (Seguy et al. 2017) proposed a
stochastic approach for solving large-scale regularized OT
and estimating a Monge mapping as a deep neural network
approximating the barycentric mapping of the OT plan.

Method
Given two sets of unpaired images that respectively from
domain U and domain V , the primal task of unsupervised
image-to-image translation is to learn a generator Guv :
U → V that maps an image u ∈ U to an image v ∈ V .
The modern techniques (Zhu et al. 2017; Yi et al. 2017;
Kim et al. 2017) of unsupervised image-to-image transla-
tion introduce an extra generator Gvu : V → U that maps
an image v ∈ V to an image u ∈ U and cycle consistency
loss, i.e., Gvu(Guv(u)) ≈ u and Guv(Gvu(v)) ≈ v, is in-
troduced to regularize the mapping between U and V . As
the result, the learned mapping would be a bijection, i.e., a
one-to-one mapping. However, as we will discuss in the lat-
ter of this section, cycle consistency loss, though helps build
a one-to-one mapping, has no control on the properties of
the learned one-to-one mapping. In this section, we will also
discuss how to add extra constraints on the learning of the
one-to-one mapping to chase desired properties.

Preliminary: CycleGAN
In CycleGAN, besides the above-mentioned two coupled
generatorsGuv andGvu that translate images across domain
U and V and the cycle consistency losses that regularize the
learned mapping to be a bijection, it also introduces an ad-
versarial loss to each generator to ensure translated images
are valid samples. More strictly, by playing a minimax game
with the discriminator, the adversarial loss forces the gener-
ator to match the distribution of generated images with the
distribution of real images in the target domain.

Adversarial Loss In the original GAN (Goodfellow et al.
2014), the discriminator was formulated as a binary classi-
fier outputting a probability. Given a real image distribution
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Figure 1: The framework of the proposed method. We use the barycentric mapping of optimal transport, which minimizes the
cost of mismatching of a task-specific property, to guide the CycleGAN on learning a one-to-one mapping with the desired
properties.

ν and the fake image distribution formed by generated sam-
ples Guv(u) with u ∼ µ, the loss function of original GAN
is defined as:

Lgan(Guv, Dv) = Eu∼µ[log(1−Dv(Guv(u)))]

+ Ev∼ν [logDv(v)],
(1)

The discriminator Dv learns to maximize Lgan(Guv, Dv),
that is to distinguish the real samples and the fake samples,
while the generator learns to minimize Lgan(Guv, Dv) such
as to make the generated samples have a low probability of
being classified as fake by the discriminator. When Dv is
assumed to be optimal, the objective of generator is to min-
imize the Jensen-Shannon divergence between Guv(µ) and
ν, and the minimum is achieved if and only if Guv(µ) = ν.

Although GANs have achieved great success in the real-
istic image generation, training of the original GANs turns
out to be very difficult and one has to carefully balance
the ability of generator and discriminator. It was showed in
(Arjovsky and Bottou 2017; Arjovsky, Chintala, and Bottou
2017) that Jensen-Shannon divergence is ill-defined when
the supports of the two distributions are not overlapped.
Wasserstein distance is thus introduced (Arjovsky, Chintala,
and Bottou 2017) as an alternative metric for evaluating the
distance between the real and fake distributions. Wasserstein
distanceW (µ, ν) is defined as the minimal cost of transport-
ing distribution µ into ν. In its primal form, it is formally
defined as:

W (µ, ν) = inf
π∈Π(µ,ν)

E(u,v)∼π [d(u, v)], (2)

where Π(µ, ν) denotes the collection of all probability mea-
sures on U × V with marginals µ on U and ν on V.

Since the infimum in Eq. (2) is highly intractable, in
WGAN (Arjovsky, Chintala, and Bottou 2017), the discrimi-
nator (critic) is designed to estimate the Wasserstein distance
by solving its dual form, with the corresponding objective
defined as:
Lwgan(Guv, Dv) = Ev∼ν [Dv(v)]− Eu∼µ[Dv(Guv(u))],

(3)

where the discriminator is constrained as a 1-Lipschitz func-
tion. The problem of how to properly enforce 1-Lipschitz
has evolved a set of investigations (Gulrajani et al. 2017;
Miyato et al. 2018; Petzka, Fischer, and Lukovnicov 2017).
In our experiments, these solutions show very similar results
and we choose the Gradient-Penalty (Gulrajani et al. 2017)
loss for on-the-fly example through the paper, i.e.,

Lgp(Dv) = Ex̂∼Px̂
[(‖∇Dv(x)‖2 − 1)2], (4)

where Px̂ is the distribution of uniformly distributed linear
interpolations of v ∼ ν and x ∼ Guv(µ).

Cycle Consistency Loss Training Guv with respect to the
adversarial loss forces the distribution of Guv(u) to match
with the distribution ν. However, this actually does not build
any relationship between the source domain and the target
domain. Without paired data, traditional approaches build
the relationship between the domain data via predefined sim-
ilarity function (Bousmalis et al. ; Shrivastava et al. 2017;
Taigman, Polyak, and Wolf 2016) or assuming shared low-
dimensional embedding space (Liu, Breuel, and Kautz 2017;
Aytar et al. 2017). In CycleGAN series (Zhu et al. 2017;
Kim et al. 2017; Yi et al. 2017), a dual task of translating
data from domain V to domain U is introduced and cycle
consistency is encouraged as a regularization.

Specifically, cycle consistency requires any image u in
domain U can be reconstructed after applying Guv and Gvu
on u in turn and any image v in domain V can be recon-
structed after applying Gvu and Guv on v reversely. That is,
Gvu(Guv(u)) ≈ u, Guv(Gvu(v)) ≈ v. The cycle consis-
tency loss can be formulated as follow:

Lrec(Guv) = Eu∼µ [‖Gvu(Guv(u))− u‖] ,
Lrec(Gvu) = Ev∼ν [‖Guv(Gvu(v))− v‖] , (5)

in which we adopt L2 distance to measure the distance be-
tween the original image and the reconstructed image.
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The One-to-one Mapping in CycleGAN
In CycleGAN, the adversarial losses applied on two gen-
erators help to establish the mappings between domain U
and domain V in both directions, as it forces the generated
images to be within the target domain. Meanwhile, the cy-
cle consistency losses help to relate these two mappings and
force them to be two one-to-one mappings, as it forces dif-
ferent samples in the source domain to be mapped to dif-
ferent samples in the target domain (otherwise, the consis-
tency loss would be large). Therefore, CycleGAN would es-
tablish a bijective mapping between domain U and domain
V , which is also mentioned in DiscoGAN (Kim et al. 2017)
and CycleGAN (Zhu et al. 2017).

It is promising that CycleGAN can find a one-to-one map-
ping between two data distributions unsupervisedly. But the-
oretically, there exists a large number of one-to-one map-
pings between two data distributions. For example, the num-
ber of possible one-to-one mapping between two discrete
data distributions with each containing n discrete data points
is the factorial of n, i.e. n!. And all these one-to-one map-
pings are perfect in terms of CycleGAN’s objective.

Since there is no extra control on the properties of the
mapping, as long as it is one-to-one, the learned one-to-one
mapping with CycleGAN would theoretically be a random
one in this large feasible solution space.

For verification, we conducted experiment across two
synthetic datasets A and B, each consists of 32 images in
the resolution of 64x64, with each image contains one ver-
tical line at a different position as showed in Figure (2a).
The resulting mapping learned with CycleGAN is showed
in Figure (2b). As we can see, images with the vertical line
in different positions in A is mapped to images in B without
any order. Furthermore, this one-to-one mapping changes,
given different initializations and hyper-parameters.

Guiding CycleGAN with Optimal Transport
As discussed above, the one-to-one mapping learned by Cy-
cleGAN can be random in the large feasible solution space.
However, in many practical applications, we would expect
certain feature getting matched in the learned mapping. For
example, when the two domains are different languages, one
may expect the semantic information of characters keeps un-
changed after translation. Without any additional control, the
one-to-one mapping function learned by CycleGAN, in the-
ory, will fail to achieve this with a very high probability (ap-
proaching one as the number of term increasing).

Here we propose to make use of the controllability in opti-
mal transport to endow CycleGAN with the ability of learn-
ing one-to-one mapping with desired properties.

Optimal Transport (OT) According to Kantorovich for-
mulation (Kantorovitch 1958), the typical optimal transport
problem can be defined as finding a mapping function π be-
tween two distribution µ and ν, which is optimal with re-
spect to cost function c(x, y), and it can be formulated as
follows:

π∗ = argmin
π∈Π(µ,ν)

∫
µ×ν

c(u, v)π(u, v)dudv, (6)

where Π(µ, ν) denotes the collection of all probability mea-
sures on U × V with marginals µ on U and ν on V, as in
the primal form of Wasserstein distance. In fact, Wasser-
stein distance is a special form of optimal transport with the
cost function c(u, v) required to be a distance (a proper met-
ric), while in optimal transport, c(u, v) can be any cost func-
tion. Another difference is that, as an adversarial objective,
Wasserstein distance is conducted between the distribution
formed by Guv(u) and the target distribution ν, while the
optimal transport is conducted between the source distribu-
tion µ and the target distribution ν. And here we will focus
more on the optimal transport plan, instead of the optimal
cost.

Reflecting the Desired Properties with OT Given two
distribution µ and ν, CycleGAN builds a one-to-one map-
ping π(u, v) between µ and ν. As we discussed previously,
the one-to-one mapping might be a random one in the fea-
sible solution space. However, in the specific tasks, people
actually have an expectation on the outcome of the learned
one-to-one mapping, e.g. pixel-level distance or average hue
difference was expected to be low, the outline or semantic
meaning was expected to be unchanged and so on.

One way to model the expectation is to define a task-
specific cost function c(x, y) and then the satisfaction degree
of the expectation, if it is defined to be the averaged satisfac-
tion degree of all pairing, can be modeled as the transport
cost

∫
µ×ν c(u, v)π(u, v)dudv, Eq. (6). It follows that, given

a task-specific cost function c(x, y), in terms of the optimal
transport, the best mapping is the π∗.

We thus propose to solve the optimal transport problem
under the task-specific cost function and use the optimal
transport plan π∗ as a reference to build the one-to-one map-
ping in CycleGAN.

Optimal Transport Plan as Reference Given an arbitrary
cost function, the optimal transport plan is usually a many-
to-many mapping, i.e. π(u|v) and π(v|u) is usually not a
Dirac delta distribution. Therefore, it is not feasible in cross-
domain translation tasks, and some previous work (Perrot et
al. 2016; Seguy et al. 2017) attempt to use the Barycenter
instead. The Barycenter of u in the source distribution µ is
defined to be a sample v∗b (u) in target domain V that has the
minimal transport cost to its transport targets π(v|u):

v∗b (u) = argmin
vb

∫
v∼π(v|u)

c(vb, v)dv, (7)

However, the Barycenter is not guaranteed to lie in the dis-
tribution ν, which in practice behaves as blurring images.

We thus proposed that, instead of directly using the opti-
mal transport plan or the Barycenter, we train a CycleGAN
and use the Barycenter of the optimal transport plan as a
reference to guide the establishment of its one-to-one map-
ping. Given a proper weight on this regularization, Cycle-
GAN will be able to learn a one-to-one mapping that ba-
sically follows the optimal transport plan, while at the same
time, makes each translated sample lies in the target distribu-
tion under the supervision of adversarial loss. Our algorithm
can then be separated into two steps:
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Figure 2: Synthetic experiments: CycleGAN learns a one-to-one mapping between datasets A and B, however, the learned
mapping is out-of-order. Defining the cost function to be the squared Euclidean distance of the locations of their vertical lines,
the optimal transport is capable of mapping the images in dataset A to B in sequence. This illustrates the randomness of the
one-to-one mapping established via CycleGAN and at the same time show the ability of optimal transport to build a desired
mapping, given task-specific cost function. The x- and y-axis ticks in sub-figure (b) and (c) indicate the images with the specified
locations of the vertical line in domain A and B respectively.

CycleGAN Optimal Nearest
Transport Neighbor

Controlling N Y Y
Mapping One-to-One Many-to-Many N/A

Generalization Y N N

Table 1: Comparison among CycleGAN, optimal transport,
and nearest neighbor. The nearest neighbor and optimal
transport are capable of controlling the mapping with respect
to a given metric between two samples. However, the map-
ping build via nearest neighbor does not form a joint distri-
bution, i.e. may collapse to a subset, and optimal transport
usually builds a many-to-many mapping, which is not ade-
quate in cross-domain translate. And also, the optimal trans-
port plan does not generalize to out-of-distribution samples.

• Firstly, given two distributions and a task-specific cost
function, we learn an optimal transport plan between the
two distributions, and we evaluate the Barycenter v∗b (u)
and u∗b(v) for each sample in the two distributions.

• Secondly, we train a CycleGAN model using these Bary-
centers as references to the two cross-domain generators.
The corresponding reference loss is defined as follows:

Lref (Guv) = Eu∼µ[‖Guv(u)− v∗b (u)‖],
Lref (Gvu) = Ev∼ν [‖Gvu(v)− u∗b(v)‖]. (8)

The full objective of our algorithms can be formulated as:

L(Guv, Gvu, Du, Dv) = Lwgan(Guv, Dv) + Lwgan(Gvu, Du)

− λgp · (Lgp(Du) + Lgp(Dv))

+ λrec · (Lrec(Guv) + Lrec(Gvu))

+ λref · (Lref (Guv) + Lref (Gvu)),
(9)

where Guv and Gvu are optimized to minimize the objec-
tive, whileDv andDu are optimized to maximize the objec-
tive. We will later refer to this model as OT-CycleGAN.

Discussions
As discussed in the previous sections, in the sense of es-
tablishing a mapping between two data distributions, Cycle-

GAN and optimal transport both have strengths and weak-
nesses. This motivates us to use the barycenters of optimal
transport mapping to serve as the references of CycleGAN,
so as to combine the strengths of the two models to establish
a one-to-one mapping with (mostly) minimized mismatch-
ing cost over task-specific properties between two data dis-
tributions.

Another difference between CycleGAN and optimal
transport is that optimal transport establishes a mapping be-
tween samples in both datasets mathematically. Under the
circumstance of two discrete datasets, it cannot generalize
to out-of-distribution samples. In contrast, CycleGAN learns
the mapping function between two distributions via two neu-
ral networks and thus has the ability to generalize to out-of-
distribution samples. When the two discrete datasets hold
the same number of unduplicated samples, a perfect one-to-
one mapping actually may also exist in optimal transport.
Under such conditions, CycleGAN helps optimal transport
generalized to out-of-distribution samples.

Besides optimal transport, nearest neighbor might also
come to mind for controlling the mapping to have matched
properties. With the nearest neighbor algorithm, every sam-
ple in the source distribution will be mapped to the nearest
one in the target distribution. However, nearest neighbor is
a local algorithm, and without considering the global sta-
tus, the mapping established via nearest neighbor might col-
lapse to a subset in the target domain or even a single point.
For example, source domain is a set of real numbers whose
range is [0, 31] while the range of target domain is [32, 63]
and the cost function is specified as the squared difference.
In this case, the nearest neighbor would map all samples in
the source domain to the ‘leftmost’ one in the target domain
i.e. 32. In comparison, optimal transport will map the whole
source domain to the whole target domain in sequence.

We summarize the discussion among CycleGAN, optimal
transport and nearest neighbor in Table (1).

Experiments
In order to demonstrate the effectiveness of our proposed
algorithm for learning a one-to-one mapping between two
data distributions with desired properties, we conduct sev-
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eral image-to-image translation experiments between differ-
ent datasets, and we compare the translation results of our
algorithm with CycleGAN. Details of our experimental set-
ting are as follows.

Network Architecture
In our experiments, we adopted the architecture of auto-
encoder (Hinton and Salakhutdinov 2006) in both of our
generators. The encoder is composed of a set of stride-2 con-
volution layers with a 4x4 filter, while the decoder is com-
posed of several stride-2 deconvolution layers with 4x4 fil-
ter. Each convolution layer in the encoder or deconvolution
layer in the decoder is followed by a normalization layer
except the first and the last one. We use WGAN-GP loss
instead of the original GAN loss in our experiments. The ar-
chitecture of discriminator (critic) is designed to be the simi-
lar as the decoder, except that we eliminate all normalization
layers.

Optimization Details
We use network simplex algorithm (Damian, Comm, and
Garret 1991) for solving the optimal transport problem be-
tween two data distributions as linear programming. Due to
the lack of computation power, we use L2 barycenter instead
of accurate barycenter to obtain the barycentric mapping out
of the previously-obtained optimal transport plan, which can
be simplified as the weighted sum of mapped samples. We
use Adam (Kingma and Ba 2014) optimizer with β1 = 0.5,
β2 = 0.999. We train our model for 3000 epochs with an ini-
tial learning rate of 0.0002 and linearly decayed it to zero.
λgp is set as 10, λrec is set in the range of [100, 800] and
λref is set in the range of [50, 300]. We train critic for 5
steps and generator for 1 step in turn.

Experiment: Car-to-Chair
We conduct our first experiment between a car dataset (Fi-
dler, Dickinson, and Urtasun 2012) and a chair dataset
(Aubry et al. 2014). Both datasets consist of images of 3D
rendered objects with varying azimuth angles and the value
of azimuth angle of each image is provided by the dataset.
Figure (3b) shows the translation results of CycleGAN be-
tween these two datasets. As we can see, as the images of
car vary in azimuth angle in order, the translation results are
random samples in the target domain.

OT Barycenter By using the azimuth angle of each image
provided by each dataset and specifying the cost function
between each image to be the squared difference of azimuth
angle, we are able to find an optimal transport plan that can
transport the car distribution to the chair distribution with
the least overall azimuth angle difference. Additionally, as
there is more than one image at each azimuth angle, we fur-
ther use the Euclidean distance between the average RGB
color of each image (exclude the white background) to as
subsidiary cost function, such to find an optimal transport
plan that can further minimize the overall color difference.
In summary, the task-specific cost function in this experi-
ments is formulated to be:

c(x, y) = dangle(x, y) + λcolor · dcolor(x, y). (10)

The samples of resulting barycentric mapping are illustrated
in Figure (3a).

Barycenters

Inputs

(a) Barycentric Mapping

Inputs

CycleGAN

Our Method

(S=10260.2)

(S=2788.170)(S=2788.170)

(S=2788.2)

(b) Result Comparison

Figure 3: Car-to-Chair Experiments.

OT-CycleGAN Result Figure (3b) shows translation re-
sults of our algorithm. The resulting mapping of OT-
CycleGAN successfully matches the azimuth angles and
colors of the generator’s input and output. We also evaluate
the mismatching degree S =

∫
µ×ν c(u, v)π(u, v)dudv for

each method. As listed in Table (2), OT-CycleGAN achieves
a much lower mismatching degree.

Azimuth-Angle Mapping Analysis We plot the over-
all azimuth-angle mapping to provide a global compari-
son between CycleGAN and OT-CycleGAN. As we can
see in Figure (4), the resulting azimuth-angle mapping
with CycleGAN is fairly random, while the OT-CycleGAN
mostly matches the azimuth-angle of input and output. The
azimuth-angle of translated image is obtained via finding its
nearest neighbor in the training set. It worth mentioning that
here we ignored the color attribute, therefore, the result is a
superposition over images of different colors.
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(d) Chair-to-Car: OT-CycleGAN

Figure 4: Azimuth angle mapping of Car-to-Chair.

Experiment: Shoes-to-Handbags
In this experiment, we performed image-to-image transla-
tion between a shoes dataset (Yu and Grauman 2014) and
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CycleGAN OT-CycleGAN
λref = 50 λref = 100 λref = 200 λref = 300 λref = 500

Mismatching Degree (×104) 1.026 0.5634 0.3393 0.2788 0.2865 0.3023

Table 2: Comparison between CycleGAN and OT-CycleGAN in terms of mismatching degree.

Inputs

Barycenters

(a) Barycentric Mapping

Inputs

CycleGAN

Our Method

(S=26.72)

(S=14.64)

(b) Result Comparison

Figure 5: Shoes-to-Handbags experiments.

a handbags dataset (Zhu et al. 2016). Figure (5b) shows the
translation results of CycleGAN between these two datasets.
As we can see, the translation results are of an obvious color
difference from the source samples.

OT Barycenter In this experiment, we would like to es-
tablish a one-to-one mapping that matches the color of the
handbags with the color of shoes. As the color in each image
of these two datasets is much more complex than the previ-
ously used car and chair datasets, it would be inaccurate to
use the average color to represent the color information of
each image, we thus adopted a color histogram to represent
color information of each image. We use the Wasserstein
distance W (µ, ν) between two histograms µ and ν as the
cost function, with d(u, v) being the Euclidean distance of
two color bins u and v in Lab color space. Samples of the
resulting barycentric mapping are showed in Figure (5a).

OT-CycleGAN Result Figure (5b) illustrates the mapping
function learned by our method (OT-CycleGAN). Compared
with the original CycleGAN, the mapping established by
our algorithm is significantly better, in terms of whether
the color distributions match each other, in both visual and
quantitative metric S.

Reference Weight

One important parameter in OT-CycleGAN is λref , i.e. the
weight of OT reference loss to CycleGAN. Ideally, if λref
is extremely large, the resulting mapping will be identical
to the barycentric mapping of OT, while if the λref is ex-
tremely small, the reference loss will not take effect and the
result will be similar to CycleGAN, which is evidenced in
Figure 6. More results are summarized in Table (2), and we
can see there exists a pretty large range of λref where OT-
CycleGAN is able to learn a satisfactory mapping.

Inputs

Barycenters

CycleGAN

=50ref

=200

=500

(S=10260.277)

(S=5634.198)

(S=2788.170)

(S=3023.816)

ref

ref

Figure 6: Tuning the parameter λref .

Discussion
U-Net architecture is mostly used in image-to-image trans-
lation tasks, though it tends to connect the pixel informa-
tion between the input and output and achieved many satis-
factory results, it, however, does not theoretically guarantee
the relationship between source and target and thus may re-
quire extensive tuning if a special property is wanted. Our
method, in contrast, can directly specify which properties to
be matched.

Conclusion and Future Work
We have presented OT-CycleGAN where an optimal trans-
port mapping is used to guide the one-to-one mapping es-
tablished by CycleGAN. With the proposed algorithm, one
can control the learned one-to-one mapping in CycleGAN
via defining a task-specific cost function that reflecting the
desired mapping properties.

Specifically, we demonstrate that there is no controllabil-
ity on the properties of the learned one-to-one mapping in
CycleGAN, and optimal transport can provide a mapping
that minimizing the overall cost of mismatching of expected
properties, given a task-specific cost function. Since the opti-
mal transport mapping is usually not one-to-one, we propose
to use the Barycenters of learned mapping as references to
guide the training of CycleGAN to form a one-to-one map-
ping with desired mapping properties.

Experiments conducted on several benchmark datasets
have shown that the mapping function learned by vanilla
CycleGAN can be quite messy and the guiding of optimal
transport can significantly improve the mapping in terms of
the task-specific properties.

In the main-body and experiments, we mainly focused on
image-to-image translation, as it is the most successful ap-
plication of CycleGAN. We hope the detailed analysis of
the properties of CycleGAN and optimal transport would
also benefit further investigation on cycle consistency loss
and unsupervised cross-domain translation. OT-CycleGAN
is a general framework for establishing one-to-one mapping
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with desired properties and we plan to investigate more re-
lated tasks in the further.
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lege Gublin, Irlande.
Fidler, S.; Dickinson, S.; and Urtasun, R. 2012. 3d ob-
ject detection and viewpoint estimation with a deformable
3d cuboid model. In NIPS.
Goferman, S.; Zelnik-Manor, L.; and Tal, A. 2012. Context-
aware saliency detection. PAMI 34(10):1915–1926.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In NIPS.
Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; and
Courville, A. 2017. Improved training of wasserstein gans.
arXiv preprint arXiv:1704.00028.
He, D.; Xia, Y.; Qin, T.; Wang, L.; Yu, N.; Liu, T.; and Ma,
W.-Y. 2016. Dual learning for machine translation. In NIPS,
820–828.
Hinton, G. E., and Salakhutdinov, R. R. 2006. Reducing
the dimensionality of data with neural networks. science
313(5786):504–507.
Isola, P.; Zhu, J.; Zhou, T.; and Efros, A. A. 2016. Image-
to-image translation with conditional adversarial networks.
CoRR abs/1611.07004.
Kantorovich, L. V. 1942. On the translocation of masses. In
Dokl. Akad. Nauk. USSR (NS), volume 37, 199–201.
Kantorovitch, L. 1958. On the translocation of masses.
Management Science 5(1):1–4.
Kim, T.; Cha, M.; Kim, H.; Lee, J. K.; and Kim, J. 2017.
Learning to discover cross-domain relations with generative
adversarial networks. arXiv preprint arXiv:1703.05192.

Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Liu, M.-Y.; Breuel, T.; and Kautz, J. 2017. Unsupervised
image-to-image translation networks. In NIPS, 700–708.
Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully con-
volutional networks for semantic segmentation. In CVPR,
3431–3440.
Mirza, M., and Osindero, S. 2014. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784.
Miyato, T.; Kataoka, T.; Koyama, M.; and Yoshida, Y. 2018.
Spectral normalization for generative adversarial networks.
arXiv preprint arXiv:1802.05957.
Odena, A.; Olah, C.; and Shlens, J. 2016. Conditional im-
age synthesis with auxiliary classifier gans. arXiv preprint
arXiv:1610.09585.
Perrot, M.; Courty, N.; Flamary, R.; and Habrard, A. 2016.
Mapping estimation for discrete optimal transport. In NIPS,
4197–4205.
Petzka, H.; Fischer, A.; and Lukovnicov, D. 2017. On
the regularization of wasserstein gans. arXiv preprint
arXiv:1709.08894.
Radford, A.; Metz, L.; and Chintala, S. 2015. Unsupervised
representation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434.
Reed, S.; Akata, Z.; Yan, X.; Logeswaran, L.; Schiele, B.;
and Lee, H. 2016. Generative adversarial to image synthesis.
In ICML, volume 3.
Seguy, V.; Damodaran, B. B.; Flamary, R.; Courty, N.; Rolet,
A.; and Blondel, M. 2017. Large-scale optimal transport and
mapping estimation. arXiv preprint arXiv:1711.02283.
Shrivastava, A.; Pfister, T.; Tuzel, O.; Susskind, J.; Wang,
W.; and Webb, R. 2017. Learning from simulated and un-
supervised images through adversarial training. In CVPR,
volume 2, 5.
Taigman, Y.; Polyak, A.; and Wolf, L. 2016. Unsu-
pervised cross-domain image generation. arXiv preprint
arXiv:1611.02200.
Villani, C. 2008. Optimal transport: old and new, volume
338. Springer Science & Business Media.
Yi, Z.; Zhang, H. R.; Tan, P.; and Gong, M. 2017. Dualgan:
Unsupervised dual learning for image-to-image translation.
In ICCV, 2868–2876.
Yu, A., and Grauman, K. 2014. Fine-grained visual compar-
isons with local learning. In CVPR, 192–199.
Zhou, Z.; Rong, S.; Cai, H.; Zhang, W.; Yu, Y.; and Wang, J.
2017. Activation maximization generative adversarial nets.
arXiv preprint arXiv:1703.02000.
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