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Abstract
Quantification is an expanding research topic in Machine
Learning literature. While in classification we are interested
in obtaining the class of individual observations, in quantifi-
cation we want to estimate the total number of instances that
belong to each class. This subtle difference allows the de-
velopment of several algorithms that incur smaller and more
consistent errors than counting the classes issued by a classi-
fier. Among such new quantification methods, one particular
family stands out due to its accuracy, simplicity, and ability
to operate with imbalanced training samples: Mixture Mod-
els (MM). Despite these desirable traits, MM, as a class of
algorithms, lacks a more in-depth understanding concerning
the influence of internal parameters on its performance. In
this paper, we generalize MM with a base framework called
DyS: Distribution y-Similarity. With this framework, we per-
form a thorough evaluation of the most critical design deci-
sions of MM models. For instance, we assess 15 dissimilar-
ity functions to compare histograms with varying numbers
of bins from 2 to 110 and, for the first time, make a con-
nection between quantification accuracy and test sample size,
with experiments covering 24 public benchmark datasets. We
conclude that, when tuned, Topsøe is the histogram distance
function that consistently leads to smaller quantification er-
rors and, therefore, is recommended to general use, notwith-
standing Hellinger Distance’s popularity. To rid MM models
of the dependency on a choice for the number of histogram
bins, we introduce two dissimilarity functions that can oper-
ate directly on observations. We show that SORD, one of such
measures, presents performance that is slightly inferior to the
tuned Topsøe, while not requiring the sensible parameteriza-
tion of the number of bins.

Introduction
Quantification is a task that is similar to classification in the
sense that we are provided with a training set with labeled
observations, and a test sample with unlabeled examples.
However, in quantification, our objective is to predict the
proportion of instances that belong to each class, rather than
the label of each observation. The literature has proposed
several methods that yield smaller quantification errors than
simply classifying individual examples and counting the is-
sued classes. González et al. (2017a) present a comprehen-
sive survey of the area. A relevant finding is the fact that the
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errors committed by quantification methods are more consis-
tent than those obtained with classifying and counting, since
the absolute quantification error of the latter grows linearly
around a predicted proportion for which the quantification
error is zero (Forman 2008).

Better estimations for the proportion of the classes are
important for applications where the interest is in analyz-
ing tendencies and behaviors of groups of individuals rather
than specific classifications. Examples are quality control for
seminal material (González-Castro, Alaiz-Rodrı́guez, and
Alegre 2013), estimation of insect population in a region
(dos Reis et al. 2018a), and sentiment analysis in social me-
dia (Esuli, Sebastiani, and Abbasi 2010).

Among the quantification methods found in literature, a
family of algorithms stands out due to its quantification ac-
curacy, simplicity, and ability to work on imbalanced train-
ing samples: Mixture Models (MM) (Forman 2005).

MM methods constitute a family of quantification ap-
proaches where the probability distribution of each class is
modeled individually and learned from a training set. As a
test sample contains data from all classes at different propor-
tions, its distribution is a parametric mixture of the classes’
individual distributions, where the parameters are the pro-
portions of the classes. Hence, the MM methods search for
the parameters of such a mixture and, consequently, estimate
the proportions of the classes in the test sample.

MM methods commonly represent the distribution of
the classes using histograms as an approximation of the
discretized Probability Density Function (PDF) (González-
Castro, Alaiz-Rodrı́guez, and Alegre 2013). The values
stored in such histograms are scores provided by classifiers
and relate to the probability of each observation belonging
to the positive class. This approach has three main advan-
tages. First, memory compactness, since histograms sum-
marize the original data as multiple examples are aggregated
into a single histogram bin. Second, easiness and low com-
putational cost for mixing distributions, as we use vectors
to represent histograms and these vectors can be interpo-
lated inexpensively. Finally, simplicity and low computa-
tional cost for comparing distributions, since we can use any
dissimilarity function that operates on a vectorial space.

However, there are significant disadvantages that need to
be addressed. While histograms with a small number of bins
incur a more compact vision of the original data, they also
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incur in greater information loss. The lost information could
otherwise be required to differentiate similar distributions.
On the other hand, as MM methods typically resort to dis-
similarity functions that compare aligned bins in isolation, as
the Hellinger Distance (González-Castro, Alaiz-Rodrı́guez,
and Alegre 2013), histograms with many bins incur spatial
sparseness and demand more training and test observations
to reasonably estimate the distributions. Finally, several dis-
tinct dissimilarity functions can be employed, although there
is no consensus regarding which one is the most adequate.

In this paper, we formalize a framework that generalizes
the Mixture Model approach for quantification. We name
this framework DyS: Distribution y-Similarity. We make an
extensive evaluation to rank the most suitable dissimilarity
functions so that future work makes the best use of DyS.
We empirically analyze the influence of the number of bins
on quantification accuracy and provide recommendations for
this parameter.

Finally, we introduce two dissimilarity functions that are
compatible with the general framework proposed by DyS,
even though they operate directly over observations rather
than histograms. By using one of such distances, we are
not required to summarize the original data and therefore
lose information. Such distances can potentially better dif-
ferentiate similar distributions while being immune to the
curse of dimensionality. Our results show that Hellinger Dis-
tance used in HDy (González-Castro, Alaiz-Rodrı́guez, and
Alegre 2013), a state-of-the-art MM approach, is outper-
formed by other measures. This finding is even more ev-
ident when we tune the number of histogram bins. More-
over, we propose a parameter-free distance for quantification
that provides smaller quantification errors than all tested his-
togram distances when using the previous standard number
of bins, as suggested by (González-Castro, Alaiz-Rodrı́guez,
and Alegre 2013), and remains competitive even after this
parameter is tuned.

Related Work
Quantification is a supervised Data Mining task that shares
several similarities with classification. Both require the same
feature-based representation for observations and a nominal
output attribute describing the individual classes.

At first glance, classifying and counting seems to be a
practical solution for quantification. However, research pa-
pers have shown that such a method generally produces
poor quantification performance (Forman 2006; González-
Castro, Alaiz-Rodrı́guez, and Alegre 2013; Gao and Sebas-
tiani 2016; González et al. 2017b), and systematically under
or overestimates the classes proportion as the test set class
distribution changes (Forman 2008). These facts led the
community to the proposal of several quantification meth-
ods. Due to lack of space, we refer readers to (González et
al. 2017a) for a comprehensive survey on the subject and
(Bekker and Davis 2018) for newer approaches that rely only
on labeled positive observations.

Our purpose remains concentrated particularly in a class
of methods known as Mixture Models – MM. MM methods
represent the probability distribution of each class separately
and model the test set distribution as a mixture of the classes’

individual distributions, where the parameters are the pro-
portions of the classes. Hence, the MM methods search for
the parameters of such a mixture and, consequently, find the
proportions of the classes in the test sample.

However, datasets are generally multidimensional. Accu-
rately estimating a multidimensional probability distribution
requires an increasing number of observations as the num-
ber of dimensions goes up, since increasing the number of
dimensions also increases sparseness. Thus, using all origi-
nal dimensions from the dataset raises not only the cost of
data acquisition for training but also sets an elevated mini-
mum size for test samples. Literature provides a simple way
to avoid both undesirable characteristics: the indirect use of
a scorer that maps the observations from the feature-space
to R (González-Castro, Alaiz-Rodrı́guez, and Alegre 2013;
dos Reis et al. 2018b; 2018a).

Generally speaking, a scorer outputs a number that is pro-
portional to the probability of an observation belonging to
the positive class, and is often an integral part of several
classifiers, as Naı̈ve Bayes and Support Vector Machines.
Additionally, any classifier can be turned into a scorer when
they are part of an ensemble. For example, Random Forests
produces a score that is the proportion of the votes favor-
ing the positive class. Unbiased scores can be individually
obtained for the positive and negative class through k-fold
cross-validation within the training set: for each k valida-
tion portion of the data, a scorer is induced with all k − 1
other parts. Scores are obtained by applying such a scorer
on the validation portion, and the scores given to posi-
tive and negative observations are kept apart (Forman 2005;
González-Castro, Alaiz-Rodrı́guez, and Alegre 2013; Pérez-
Gállego et al. 2019).

Scores are individual observations from a data distribu-
tion, and we need to estimate and represent such a distribu-
tion. A simple way of expressing a distribution that is also
convenient for enabling a straightforward mixture of differ-
ent distributions is the discretized Probability Density Func-
tion (PDF) (González-Castro, Alaiz-Rodrı́guez, and Alegre
2013). It consists of the aggregation of scores into normal-
ized histograms with b bins, so that the sum of all bins equals
one. These histograms can then be treated as vectors in the
Rb, and pairs of histograms can be mixed at varying degrees
by performing a linear interpolation. This mixing approach
means that individual observations are weighted instead of
discarded, although they lose detail after being categorized
into bins. Finally, any dissimilarity function that operates on
a vector space can be applied to compare pairs of distribu-
tions. An equivalent approach for representing distributions
that is out of the scope of this paper is to use the Cumulative
Distribution Function (CDF) instead of PDF. Forman (2005)
used this representation to propose the earliest MM method
for quantification.

More recently, González-Castro, Alaiz-Rodrı́guez, and
Alegre (2013) proposed the HDy algorithm. The method
uses two normalized histograms (the normalization causes
the sum of the bins to be one), P+ and P− that summarize
the samples of scores S+ and S−. Such samples are obtained
from two (possibly cross-validated) validation sets with ex-
clusively positive and exclusively negative observations, re-
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spectively. When presented with an unlabeled test sample,
the algorithm builds a histogram Q with the set of scores Z
obtained by the same scorer on such a sample. These his-
tograms, P+, P−, and Q, represent the distributions of the
training set for each class and the distribution of the test sam-
ple, respectively. Finally, given the histograms P+, P−, and
Q the HDy(P+, P−, Q) estimates the positive proportion
rate as

HDy(P+, P−, Q) =

argmin
0≤α≤1

{
HD

(
αP+ + (1− α)P−, Q

)}
(1)

where HD is the Hellinger Distance (Pollard 2002), and each
histogram, with b bins, is represented as a vector in the Rb.
Hellinger Distance is a function that estimates the similarity
between two probability distributions P and Q, where P =
αP++(1−α)P−. The HDy authors use different numbers
of bins from 10 to 110, with increments of 10, and the final
proportion of positive labels in the test sample is the median
of these 11 estimates. To estimate the value of α inside the
algorithm, the authors of the original paper perform a linear
search within the range [0, 1].

Research papers have extended or adapted the HDy algo-
rithm for building, for example, ensembles models for quan-
tification (Pérez-Gállego et al. 2019), context identification
methods (dos Reis et al. 2018a), and concept drift detection
approaches (Maletzke et al. 2018). These achievements were
obtained by promoting slight changes to the HDy setup. Ad-
ditionally, dos Reis et al. (2018a) show that estimating α
through Ternary Search makes HDy more efficient and gen-
erally more precise than through linear search, since local
minima are very close to the global minimum. In this paper,
we argue that HDy consists of an instance of a more general
algorithm that remains informal with relevant parameters to
be evaluated.

DyS
We propose DyS, a generic framework for quantification
based on the similarity of score distributions. Equation 2 for-
malizes our proposal. We note that DyS is a generalization
of HDy.

DyS(S+, S−, Z) =

argmin
0≤α≤1

{
DS
(
αH(S+) + (1− α)H(S−), H(Z)

)}
(2)

where DS is a dissimilarity function, and S+, S−,Z are pos-
itive training sample, negative training sample, and test sam-
ple, respectively, and H is a function that converts a sample
of scores into a representation that is compatible with DS
and that supports mixing two distributions according to a
factor α. For all tested histogram distances, H produces a
histogram from the given sample, so that we obtain P+ from
S+, P− from S− and Q from Z. As we discuss later in this
paper, for the proposed dissimilarity functions SORD and
MKS, H(x) = x, since the proposed methods operate di-
rectly over samples of scores rather than binned histograms.

Moreover, while αS+ + (1− α)S− is a simplified notation
of the interpolation process that mixes two samples, it is ac-
curate only for histograms. How the mixture is performed in
SORD and KS is better described later.

Histogram Dissimilarity
We analyze the impact of switching the dissimilarity func-
tion across a plurality of measures from the literature that is
suitable for comparing histograms.

In this section, we list all compared functions, and point
the interested reader to (Cha 2008) for a thorough survey on
these measures. In our work, we have selected the following
dissimilarity functions: Squared Euclidean (SE), Manhattan
(MH), Probabilistic Symmetric (PS), Topsøe (TS), Jensen
Difference (JD), Taneja (TN), Hellinger (HD), Dice (DC),
Jaccard (JC), Chebyshev (CB), Inner Product (IP), Kumar-
Hassebrook (HB), Cosine (CS), and Harmonic Mean (HM).
All employed histogram distances, except for ORD, are de-
scribed in Table 1, where P and Q are two normalized his-
tograms of same length b.

Table 1: Dissimilarity Functions.
SE

∑b
i=1(Pi −Qi)2

MH
∑b
i=1 |Pi −Qi|

PS 2
∑b
i=1

(Pi−Qi)
2

Pi+Qi

TS
∑b
i=1

(
Piln

(
2Pi

Pi+Qi

)
+Qiln

(
2Qi

Pi+Qi

))
JD

∑b
i=1

[
PilnPi+QilnQi

2 −
(
Pi+Qi

2

)
ln
(
Pi+Qi

2

)]
TN

∑b
i=1

(
Pi+Qi

2

)
ln
(
Pi+Qi

2
√
PiQi

)
HD 2

√
1−

∑b
i=1

√
PiQi

DC
∑b

i=1(Pi−Qi)
2∑b

i=1 P
2
i +

∑b
i=1Q

2
i

JC
∑b

i=1(Pi−Qi)
2∑b

i=1 P
2
i +

∑b
i=1Q

2
i−

∑b
i=1 PiQi

CB maxi |Pi −Qi|
IP P •Q

∑b
i=1 PiQi

HB
∑b

i=1 PiQi∑b
i=1 P

2
i +

∑b
i=1Q

2
i−

∑b
i=1 PiQi

CS
∑b

i=1 PiQi√∑b
i=1 P

2
i

√∑b
i=1Q

2
i

HM 2
∑b
i=1

PiQi

Pi+Qi

Although Cha (2008) surveys a larger set of distances, we
decided to exclude from our analysis all monotonic trans-
formations of these distances since they are deemed to pro-
duce the same quantification estimates. This effect happens
as, in DyS, we only search for the mixing parameter that pro-
duces the lowest dissimilarity value and disregard the value
itself. Monotonic transformations do not change the order of
the values, and therefore we should find the same parame-
ters. We also eliminated common but asymmetric functions
so that we need not impose an arbitrary order between the
mixed training distribution and the test distribution.

Apart from the dissimilarity functions listed in Table 1,
we also tested the use of ORD (Cha and Srihari 2002). To
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better understand such a distance, we note that in its original
description, the histograms are normalized by multiplying
every bin in P by |Q| and every bin in Q by |P |. As such,
each histogram is the allocation of |P | × |Q| units into b
bins. The objective of ORD is to find the least number of
movements that need be done to transform Q into P , where
one movement is the transference of a unit from a bin to
a neighbor bin. There is always a possible transformation
since both normalized histograms have the same number of
units. This setting happens to be a univariate case of the min-
imum difference of pair assignment (MDPA) of two distribu-
tions, which is a special case of the Earth Mover’s Distance
(EMD) (Rubner, Tomasi, and Guibas 1998). For this particu-
lar case, the proposers of ORD introduce a greedy algorithm
that can compute the distance in O(b), whereas the algo-
rithms that are used to solve generic instances of EMD have
higher time complexity. We note that the proposed algorithm
also works when the histograms are normalized to have sum
one, instead of |P | × |Q|. The Algorithm 1 describes the
rationale of such distance.

Algorithm 1: Ordinal Distance
Data: Histograms to be compared P and Q
Result: Dissimilarity between P and Q

1 begin
2 diffsum←− 0 ;
3 total cost←− 0 ;
4 for i← 1 to length(P ) do
5 diffsum←− diffsum + (P [i]−Q[i]) ;
6 total cost←− total cost + |diffsum| ;
7 end
8 return total cost ;
9 end

All histogram distances tested in our experiments, except
for ORD, use each bin position in isolation. In other words,
for each bin in one histogram, only one bin in the other his-
togram can affect the distance. For this reason, we believe
that ORD is less susceptible to the curse of dimensionality
and bad parameterization of the number of bins, when it is
greater than the ideal. For all other distances, as we increase
the number of bins and consequently their granularity, non-
zeroed bins are more likely to contain fewer observations
and be countered by zeroed bins in the opposing histogram.
In fact, when the number of bins is infinity, only observa-
tions that are identical in both samples affect the distance
and help decrease it. The distance is always one (the maxi-
mum value) when there are no identical observations. ORD,
on the other hand, is less affected by an increasing number
of bins, since the difference between mismatching bins is
accounted for and any pair of bins (and non-identical obser-
vations) can affect the distance.

We introduce two dissimilarity functions that are suitable
for DyS and do not rely on histograms, as they are able to op-
erate directly on the observations from training and test sam-
ples. Such distances also carry the same benefits from the
histograms approach, allowing for mixing pairs of distribu-

tions to be compared with a third distribution. However, they
have the additional benefits of being immune to the curse of
dimensionality while not losing information since they do
not simplify the original data. We explain these distances in
the following sections.

Mixable Kolmogorov Smirnov
The first distance is the Mixable Kolmogorov Smirnov
(MKS) statistic. It is an adaptation of the Kolmogorov
Smirnov (KS) (Kolmogorov 1933) statistic to compare two
discrete empirical distributions and accounts for the first dis-
tribution being a weighted mixture of two distributions.

Equation 3 formalizes such a dissimilarity, where S+ and
S− are the two samples that will be mixed together, accord-
ing to the weights α and 1 − α, respectively, and Z is the
third sample that represents the distribution to be compared
with.

DMKS(S
+, S−, α, Z) =

sup
x
|αFS+(x) + (1− α)FS−(x)− FZ(x)| (3)

where FY (x) is the proportion of the observations in Y that
are lower or equal than x.

SORD
The second dissimilarity function is the Sample ORD
(SORD). SORD can be viewed as a special case of ORD
where the number of bins is infinity: while ORD is the min-
imum cost necessary to transform a histogram into another
one, SORD is the minimum cost to transform a sample into
another one.

If we are using SORD simply as a measurement of the
difference between two samples S and Z, every observation
x is weighted as w(x), defined as follows.

w(x) :=

{
|S|−1, x ∈ S
|Z|−1, x ∈ Z (4)

This way, both samples share the same total weight and
the transformation is feasible. The cost of transforming a
fraction fi,j , 0 ≤ fi,j ≤ 1, of the i-th observation in S
into the j-th observation in Z is c(i, j) = |fi,jw(Si)Si −
w(Zj)Zj |. The objective of SORD is therefore the follow-
ing optimization problem.

minimize
fi,j∀i,j

|S|∑
i

|Z|∑
j

c(i, j)

subject to
|Z|∑
j

fi,j = 1 ∀i

w(Zj)Zj = w(Si)Si

|S|∑
i

fi,j ∀j

(5)

For the purpose of quantification, one of the samples com-
pared by SORD is a mixture of two other samples: one that
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contains positive training observations and another with neg-
ative training observations. This mixed sample is compared
to a test sample. In this scenario, we have to adjust the
weights of the observations in the mixed sample: positive
observations share the same weight, proportional to α, and
the negative ones share the same weight, inversely propor-
tional to α.

SORD can be efficiently computed in O(|S ∪
Z| log |S ∪ Z|) with a greedy approach, where S and
Z are the two samples being compared. Algorithm 2 fully
describes the distance computation with the necessary
change to the weights when S is a mixture (with parameter
α) of two samples (S+ and S−).

Algorithm 2: SORD Dissimilarity Function
Data: Mixing samples S+, S−, mixing factor α,

comparing sample Z
Result: Dissimilarity between αS++(1−α)S− and Z

1 begin

2 w′(x) :=


α|S+|−1, x ∈ S+

(1− α)|S−|−1, x ∈ S−
−|Z|−1, x ∈ Z

;

3 v ←− sorted array with ∀x ∈ S+ ∪ S− ∪ Z;
4 acc←− w′(v[1]) ;
5 total cost←− 0 ;
6 for i← 2 to length(v) do
7 δ ←− v[i]− v[i− 1] ;
8 total cost←− total cost + |δ × acc| ;
9 acc←− acc + w′(v[i]) ;

10 end
11 return total cost ;
12 end

Experimental Setup
In this paper, we make a comprehensible experimental eval-
uation divided into two parts.

First, we hypothesize the existence of a relationship be-
tween the size of the test sample and the number of his-
togram bins that lead to the smallest error. The original HDy
paper reports the estimated distribution based on the median
across the use of varying number of bins from 10 to 110,
with increments of 10. While this particular range may pro-
vide good quantification errors when the test sample has a
large number of observations, we want to verify if the more
general DyS, which includes HDy, is significantly influ-
enced by the number of bins, and how.

We note that until now, although the ideal number of bins
has not been studied, a decision for this parameter may not
be completely uninformed and can be based on important
insights. Histograms with too many bins are negatively af-
fected by two aspects. The first aspect is that if the sam-
ple size is not large enough, large histograms can become
too sparse, each bin can have excessively low weight, and
ultimately, the dissimilarity function can face the curse of
dimensionality. Exception for this rule is the use of ORD.

Notably, we note that ORD avoids being affected by such
sparseness since the relation between neighbor dimensions
is considered, rather than each dimension contributing in
isolation to the magnitude of the distance. The second aspect
is that a large number of bins has the implicit assumption of
high precision for the scores. On the other hand, if there are
too few bins, we may be unable to differentiate distributions.

To verify the impact of the number of the bins, in all ex-
periments, we vary the number of bins from 2 to 20 with
increments of 2, and from 20 to 110 with increments of 10.
The test sample size, on the other hand, varies from 10 to
100 with increments of 10 examples, and from 100 to 500
with increments of 100 examples.

Once we figure a satisfactory range for the number of bins
for each dissimilarity function, we proceed to the second
part of our evaluation. We consider a satisfactory range to
be one that minimizes the largest number of bins necessary
to obtain the smallest quantification errors for at least 95%
of the cases. We analyze the impact of using different his-
togram distances in the DyS framework for binary quantifi-
cation. With a fixed range of bins for each distance, we rank
them according to the median quantification error produced
by their use so that the top-ranked distances are those which
lead to the smallest errors in each one of our experiments.
We vary the test sample size from 10 to 500 in the afore-
mentioned way. We analyze the behavior of the ranks for
each dissimilarity function with a box plot.

For all experiments, we vary the positive class proportion
from 0% to 100% with increments of 1%, and for each pro-
portion, we execute 10 runs with different test samples.

We performed preliminary experiments and concluded
that Ternary Search (TSearch) suits all tested dissimilarity
functions. For this reason, it is used for all of our experi-
ments. We note that the α that minimizes Squared Euclidean
distance can be algebraically deduced inO(1). However, we
also use TSearch for this distance to maintain experimental
consistency across distances.

In the next section, we enumerate and describe the
datasets used in our experiments.

Datasets
Each dataset was uniformly split into two halves: training
and test. With the training half, we performed 10-fold cross-
validation to obtain the training scores used by DyS. The full
training half was also used to train a single scorer that was
applied on the test half to get a test score set. Test samples
were sampled from the test score set according to the set-
tings described in the previous section regarding class pro-
portion and size. One observation does not appear more than
once in a single test sample, although it can appear in more
than one test sample. This procedure was used to make the
best use of our limited data.

As the time complexity of both SORD and MKS grows
linearithmic for the total number of observations involved
(including training and test), we undersampled training
scores to up to 1, 000 per class, when using these distances.
Despite such reduction, we believe this number of observa-
tion scores can still carry more information than a histogram.
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We produced all scores using Random Forests with 200
trees. Also, we assess the performance of the quantifiers in
our experiments using the Mean Absolute Error (MAE) (Se-
bastiani 2018). MAE is the average of absolute differences
between true (p) and predicted (p̂) quantifications for a set
of classes C, as shown in Equation 6.

MAE(p, p̂) =
1

|C|
∑
c∈C
|p̂(c)− p(c)| (6)

Table 2 presents a brief description of the datasets
used in our experiments obtained from UCI (Dheeru and
Karra Taniskidou 2017), OpenML (Vanschoren et al. 2013),
PROMISE (Sayyad Shirabad and Menzies 2005), and Reis
(dos Reis et al. 2018a) repositories. Specific citations are re-
quested for Bank Marketing (Moro, Cortez, and Rita 2014),
Credit Card (Yeh and Lien 2009), HTRU2 (Lyon et al.
2016), Mozilla4 (Koru, Zhang, and Liu 2007), Mushroom
(Lincoff 1989), Nomao (Candillier and Lemaire 2012), and
Occupancy Detection (Candanedo and Feldheim 2016). Ad-
ditionally, we note that Jock A. Blackard and Colorado State
University preserve copyright over Covertype.

Table 2: Datasets description.
Dataset Size Features Repository

Anuran Calls 6,585 22 UCI
Bank Marketing 45,211 16 UCI

BNG (vote) 39,366 9 OpenML
Click Prediction 39,948 11 OpenML

CMC 1,473 9 UCI
Covertype-reduced 8,715 54 UCI

Credit Card 30,000 23 UCI
EEG Eye State 14,980 14 OpenML

HTRU2 17,898 8 UCI
JM1 10,880 21 PROMISE

Letter Recognition 20,000 16 UCI
MAGIC Gamma 19,020 10 UCI

Mozilla4 15,545 5 OpenML
Mushroom 8,124 22 OpenML

Nomao 34,465 118 OpenML
Occupancy Detection 20,560 5 UCI

Phoneme 5,404 5 OpenML
Spambase 4,601 57 UCI

Wine Type 6,497 12 UCI
AedesSex 24,000 27 Reis

AedesQuinx 24,000 27 Reis
ArabicDigit 8,800 27 UCI

Handwritten-QG 4,014 63 Reis
Wine Quality 6,497 12 UCI

Three observations about the datasets are due. First, Wine
Type dataset is similar to Wine Quality. However, we want
to differentiate between white and red wines, rather than the
wine quality. Second, Covertype-reduced is a stratified sam-
ple from Covertype due to its considerable size. The abbre-
viated version is still large enough for our purposes. Ara-
bicDigit is a preprocessed version of the original so that all
examples have the same number of features (dos Reis et al.

2018a), and the objective is to predict the sex of the speaker
rather than which digit is spoken. Finally, all the described
datasets represent binary classification problems.

Experimental Evaluation
In this section, we present and discuss our experimental re-
sults. One of our main questions regards a possible relation-
ship between the number of bins and test sample size, to
achieve the smallest quantification error. We are interested
in knowing whether there is a test sample size for which it
is better to use more or fewer bins than for another sam-
ple size, for the same distance. In Figure 1, we illustrate the
Mean Absolute Error (MAE) across datasets while varying
the sample size, using the distance function Topsøe, as it
represents the general behavior of other distances.
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Figure 1: Mean absolute quantification error averaged for
all datasets, obtained with DyS with Topsøe and varying test
sample size and number of histogram bins.

We can form three observations. First, the error is lower
for more significant test samples, which is expected, since
we are provided with more information about the test distri-
bution. Second, for the Topsøe distance function, a smaller
number of bins generally leads to smaller errors across all
assessed test sample sizes. Third, greater sample sizes are
less negatively impacted by a higher number of bins. This
is explained by the lower sparseness of the bins with more
observations in a higher dimensionality.

Both observations hold for all tested distances, except Co-
sine, Harmonic Mean, Kumar-Hassebrook, Inner Product,
and ORD. For the first four distances, errors are smaller for
datasets with fewer observations, and a lower number of bins
led to more significant errors. However, such distances per-
formed very poorly: all of them led to errors greater than
70% on average, which is worse than a baseline that always
predicts a positive class ratio of 50% and, consequently, ob-
tains a maximum error of 50%. For this reason, Cosine, Har-
monic Mean, Kumar-Hassebrook, and Inner Product will not
be considered from now on.

On the other hand, ORD performed as well as the other
distances while being almost invariant to the number of bins.
This can be explained because each dimension is not used in
isolation, which makes it less affected by sparseness. How-
ever, similarly to other distances, error decayed as test sam-
ple size increased. Figure 2 illustrates this finding. Our sup-
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plemental material website1 contains figures for all other
distances, which were omitted in this paper due to space
constraints.

0.025

0.050

0.075

0.100

10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

Test Sample Size

M
A

E

25

50

75

100

Bins

ORD

Figure 2: Mean absolute quantification error averaged for
all datasets, obtained with DyS with ORD and varying test
sample size and number of histogram bins.

In Figure 3, we observe that most of the best quantifica-
tion results were obtained within up to 20 bins for all con-
sidered distances, except for ORD. In Table 3, we detail this
finding: we present the smallest upper limit for the number
of bins that was necessary to constrain 90%, 95% and 100%
of the smallest quantification errors obtained for each dis-
tance. Hellinger Distance produced 95% of its best quantifi-
cation results within the range from 2 to 14 bins. This find-
ing contradicts the arbitrary range of 10 to 110 bins used by
HDy’s original authors to calculate the median positive class
ratio.
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Figure 3: Frequencies of the number of bins that produced
the smallest quantification error for each distance function,
in DyS.

To rank the distances by quantification error, for each set-
ting, we considered the median of the positive class ratio
obtained with DyS while varying the number of bins. The
number of bins ranges from 2 to the number of bins that are
necessary to constrain 95% of the best results produced by
the distance that was used, according to Table 3. The rank-
ings are presented in Figure 4.

1https://sites.google.com/site/andregustavom/research/dys

Table 3: Smallest upper bound for the number of histogram
bins that encloses 90%, 95% and 100% of the smallest quan-
tification errors produced by each distance function, in DyS.

Distance 90% 95% 100%
CB 4 4 10
DC 10 14 60
HD 12 14 30
JC 10 12 60
JD 16 20 50

MH 8 10 50
ORD 90 100 110

PS 18 30 70
SE 16 40 110
TN 14 18 100
TS 16 18 50
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Figure 4: Aggregation of several rank positions for differ-
ent distances in DyS. Each quantification was predicted as a
median of estimates obtained for different numbers of his-
togram bins. The range of bins was individually tuned for
each distance. Test sample size varied from 10 to 500.

We note that each distance had its range of bins tuned
individually with the same datasets that were used for this
comparison. Exceptions are SORD and MKS, which do not
make use of this optimized parameter. This inserts bias into
the comparison. On the other hand, if we had used the range
from 10 to 110 bins, with increments of 10, as suggested
by HDy’s authors, we would obtain the ranking presented
in Figure 5. In this scenario, the top five best distances are
the same. We note that ORD jumps to first place as it is less
affected by large histograms, and Topsøe’s error increases.

For the remaining of our analysis, we consider the tuned
range of bins again. We varied the test sample size from 10
to 100 with increments of 10 and from 100 to 500 with incre-
ments of 100. This difference of granularity provides small
sample sizes (less than 100 observations) more weight than
all bigger sizes combined since there are more test cases for
the former case. We can see in Figure 6 that SORD performs
only slightly worse than Topsøe for all sample sizes with a
similar variance. However, we must keep in mind that SORD
is a parameter-free algorithm, i.e., its results were obtained
without previous tuning. On the other hand, the Topsøe re-
sults are a consequence of a time-consuming process aimed
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Figure 5: Aggregation of several rank positions for differ-
ent distances in DyS. Each quantification was predicted as a
median of estimates obtained for different numbers of his-
togram bins. The range of bins was [10,110] for all dis-
tances. Test sample size varied from 10 to 500.

at tuning the number of bins to be used on the same datasets.
Finally, we also potentially limited the best performance that
SORD could achieve since we limited the size of the sam-
ples, due to the algorithm’s higher computational cost in
comparison with the histogram distances.
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Figure 6: Comparison between SORD and Topsøe for vary-
ing test sample size. The shaded area corresponds to the
standard deviations from the measured points, and thinner
curves set the limit of the shaded areas.

Additionally, ORD also performs closely to Topsøe, af-
ter tuning, although not as close as SORD. This is true even
though ORD fell from the second to the seventh rank posi-
tion after the tuning process. However, this change of rank
is due to an increase in the absolute performance of Topsøe,
rather than a change in the performance of ORD. The latter
is mostly unaffected by the rise in the number of bins (af-
ter a minimum at which the different distributions become
discernible).

Conclusions and Future Work
In this paper, we introduced DyS, a framework of Mixture
Models for quantification. We analyzed the use of several
histogram distances and concluded that Topsøe offers the
smallest quantification errors across several datasets and test
sample sizes when we tune the number of histogram bins.
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Figure 7: Comparison between ORD and Topsøe for vary-
ing test sample size. The shaded area corresponds to the
standard deviations from the measured points, and thinner
curves set the limit of the shaded areas.

We experimentally found that the best range for the number
of bins in DyS varies for each distance function. While ORD
is mostly unimpaired by an incorrect setting this parameter,
for the majority of the distance functions, a suitable supe-
rior limit was below 20. Particularly, histograms with 14 or
fewer bins provide at least 95% of the best quantification re-
sults when using Hellinger Distance. This finding opposes
the arbitrary range from 10 to 110 bins used by HDy’s orig-
inal paper. Finally, we introduced a new dissimilarity func-
tion, SORD, that operates over observations rather than his-
tograms, while still being compatible with the framework
provided by DyS.

SORD outperforms all distances when they do not have
their parameters tuned. On the other hand, when we tune the
parameters, our parameter-free algorithm is outperformed
by the Topsøe, Probabilistic Symmetric, and Jensen Dif-
ference dissimilarity functions, respectively. However, even
then, SORD presents better results than the HDy, the func-
tion currently used by the state-of-art MMs, and is only
slightly outperformed by Topsøe. ORD falls a little be-
hind SORD, and even behind HDy. However, we argue that
its performance is still competitive to Topsøe’s in practical
terms and, as it is mostly unaffected by a wrong parame-
terization of the number of bins. ORD is a viable and more
time-efficient alternative to SORD when the tuning process
cannot be done or is unreliable.

In future work, we plan on evaluating the impact of vary-
ing quality of scores on mixture models for quantification.
The score quality is related to the difficulty of a dataset for
classification. We plan on evaluating whether the ideal num-
ber of bins for histogram distances vary according to the
quality of the scores. Additionally, we intend on assessing
situations where there is a mismatch between the quality of
scores produced for the training and the test. This situation
can happen as a result of concept drift and incur circum-
stances where test samples are easier or harder to classify
than the training set. Finally, we plan on extending all com-
parisons to other families of learning algorithms, to provide
better positioning for Mixture Models inside Quantification
literature as a whole.
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González-Castro, V.; Alaiz-Rodrı́guez, R.; and Alegre, E.
2013. Class distribution estimation based on the hellinger
distance. Information Sciences 218:146 – 164.
Kolmogorov, A. 1933. Sulla determinazione empirica di una
lgge di distribuzione. Inst. Ital. Attuari, Giorn. 4:83–91.
Koru, A. G.; Zhang, D.; and Liu, H. 2007. Modeling
the effect of size on defect proneness for open-source soft-
ware. In Predictor Models in Software Engineering, 2007.
PROMISE’07: ICSE Workshops 2007. International Work-
shop on, 10–10. IEEE.
Lincoff, G. H. 1989. The audubon society field guide to
North American mushrooms. Technical Report No. 635.8
L5.
Lyon, R. J.; Stappers, B.; Cooper, S.; Brooke, J.; and
Knowles, J. 2016. Fifty years of pulsar candidate selection:
from simple filters to a new principled real-time classifica-
tion approach. Monthly Notices of the Royal Astronomical
Society 459(1):1104–1123.
Maletzke, A.; dos Reis, D.; Cherman, E.; and Batista, G.
2018. On the need of class ratio insensitive drift tests for
data streams. In Proceedings of the Second International
Workshop on Learning with Imbalanced Domains: Theory
and Applications, volume 94 of Proceedings of Machine
Learning Research, 110–124. ECML-PKDD, Dublin, Ire-
land: PMLR.
Moro, S.; Cortez, P.; and Rita, P. 2014. A data-driven ap-
proach to predict the success of bank telemarketing. Deci-
sion Support Systems 62:22–31.
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