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Department of Computer Science
Stanford University

{ajratner, bradenjh, jdunnmon, fredsala, shreyash, chrismre}@stanford.edu

Abstract
As machine learning models continue to increase in complex-
ity, collecting large hand-labeled training sets has become
one of the biggest roadblocks in practice. Instead, weaker
forms of supervision that provide noisier but cheaper labels
are often used. However, these weak supervision sources have
diverse and unknown accuracies, may output correlated la-
bels, and may label different tasks or apply at different levels
of granularity. We propose a framework for integrating and
modeling such weak supervision sources by viewing them as
labeling different related sub-tasks of a problem, which we
refer to as the multi-task weak supervision setting. We show
that by solving a matrix completion-style problem, we can
recover the accuracies of these multi-task sources given their
dependency structure, but without any labeled data, leading
to higher-quality supervision for training an end model. The-
oretically, we show that the generalization error of models
trained with this approach improves with the number of un-
labeled data points, and characterize the scaling with respect
to the task and dependency structures. On three fine-grained
classification problems, we show that our approach leads to
average gains of 20.2 points in accuracy over a traditional su-
pervised approach, 6.8 points over a majority vote baseline,
and 4.1 points over a previously proposed weak supervision
method that models tasks separately.

1 Introduction
One of the greatest roadblocks to using modern machine
learning models is collecting hand-labeled training data at
the massive scale they require. In real-world settings where
domain expertise is needed and modeling goals change fre-
quently, hand-labeling training sets is prohibitively slow, ex-
pensive, and static. For these reasons, practitioners are in-
creasingly turning to weak supervision techniques wherein
noisier, often programmatically-generated labels are used
instead. Common weak supervision sources include exter-
nal knowledge bases (Mintz et al. 2009; Zhang et al. 2017a;
Craven and Kumlien 1999; Takamatsu, Sato, and Nakagawa
2012), heuristic patterns (Gupta and Manning 2014; Ratner
et al. 2018), feature annotations (Mann and McCallum 2010;
Zaidan and Eisner 2008), and noisy crowd labels (Karger,
Oh, and Shah 2011; Dawid and Skene 1979). The use of
these sources has led to state-of-the-art results in a range of
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domains (Zhang et al. 2017a; Xiao et al. 2015). A theme of
weak supervision is that using the full diversity of available
sources is critical to training high-quality models (Ratner et
al. 2018; Zhang et al. 2017a).

The key technical difficulty of weak supervision is deter-
mining how to combine the labels of multiple sources that
have different, unknown accuracies, may be correlated, and
may label at different levels of granularity. In our experi-
ence with users in academia and industry, the complexity of
real world weak supervision sources makes this integration
phase the key time sink and stumbling block. For example,
if we are training a model to classify entities in text, we may
have one available source of high-quality but coarse-grained
labels (e.g. “Person” vs. “Organization”) and one source that
provides lower-quality but finer-grained labels (e.g. “Doc-
tor” vs. “Lawyer”); moreover, these sources might be corre-
lated due to some shared component or data source (Bach
et al. 2017; Varma et al. 2017). Handling such diversity re-
quires addressing a core technical challenge: estimating the
unknown accuracies of multi-granular and potentially corre-
lated supervision sources without any labeled data.

To overcome this challenge, we propose MeTaL, a frame-
work for modeling and integrating weak supervision sources
with different unknown accuracies, correlations, and gran-
ularities. In MeTaL, we view each source as labeling one
of several related sub-tasks of a problem—we refer to this
as the multi-task weak supervision setting. We then show
that given the dependency structure of the sources, we can
use their observed agreement and disagreement rates to re-
cover their unknown accuracies. Moreover, we exploit the
relationship structure between tasks to observe additional
cross-task agreements and disagreements, effectively pro-
viding extra signal from which to learn. In contrast to pre-
vious approaches based on sampling from the posterior of
a graphical model directly (Ratner et al. 2016; Bach et al.
2017), we develop a simple and scalable matrix completion-
style algorithm, which we are able to analyze by applying
strong matrix concentration bounds (Tropp 2015). We use
this algorithm to learn and model the accuracies of diverse
weak supervision sources, and then combine their labels to
produce training data that can be used to supervise arbitrary
models, including increasingly popular multi-task learning
models (Caruana 1993; Ruder 2017).

Compared to previous methods which only handled the
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single-task setting (Ratner et al. 2016; 2018), and gener-
ally considered conditionally-independent sources (Anand-
kumar et al. 2014; Dawid and Skene 1979), we demonstrate
that our multi-task aware approach leads to average gains
of 4.1 points in accuracy in our experiments, and has at
least three additional benefits. First, many dependency struc-
tures between weak supervision sources may lead to non-
identifiable models of their accuracies, where a unique solu-
tion cannot be recovered. We provide a compiler-like check
to establish identifiability—i.e. the existence of a unique
set of source accuracies—for arbitrary dependency struc-
tures, without resorting to the standard assumption of non-
adversarial sources (Dawid and Skene 1979), alerting users
to this potential stumbling block that we have observed in
practice. Next, we provide sample complexity bounds that
characterize the benefit of adding additional unlabeled data
and the scaling with respect to the user-specified task and
dependency structure. While previous approaches required
thousands of sources to give non-vacuous bounds, we cap-
ture regimes with small numbers of sources, better reflecting
the real-world uses of weak supervision we have observed.
Finally, we are able to solve our proposed problem directly
with SGD, leading to over 100× faster runtimes compared to
prior Gibbs-sampling based approaches (Ratner et al. 2016;
Platanios et al. 2017), and enabling simple implementation
using libraries like PyTorch.

We validate our framework on three fine-grained classi-
fication tasks in named entity recognition, relation extrac-
tion, and medical document classification, for which we
have diverse weak supervision sources at multiple levels
of granularity. We show that by modeling them as label-
ing hierarchically-related sub-tasks and utilizing unlabeled
data, we can get an average improvement of 20.2 points in
accuracy over a traditional supervised approach, 6.8 points
over a basic majority voting weak supervision baseline, and
4.1 points over data programming (Ratner et al. 2016), an
existing weak supervision approach in the literature that is
not multi-task-aware. We also extend our framework to han-
dle unipolar sources that only label one class, a critical as-
pect of weak supervision in practice that leads to an average
2.8 point contribution to our gains over majority vote. From
a practical standpoint, we argue that our framework repre-
sents an efficient way for practitioners to supervise mod-
ern machine learning models, including new multi-task vari-
ants, for complex tasks by opportunistically using the di-
verse weak supervision sources available to them. To further
validate this, we have released an open-source implementa-
tion of our framework.1

2 Related Work
Our work builds on and extends various settings studied in
machine learning.

Weak Supervision: We draw motivation from recent work
which models and integrates weak supervision using gen-
erative models (Ratner et al. 2016; 2018; Bach et al. 2017)
and other methods (Guan et al. 2017; Khetan, Lipton, and

1github.com/HazyResearch/metal

Anandkumar 2017). These approaches, however, do not han-
dle multi-granularity or multi-task weak supervision, require
expensive sampling-based techniques that may lead to non-
identifiable solutions, and leave room for sharper theoreti-
cal characterization of weak supervision scaling properties.
More generally, our work is motivated by a wide range of
specific weak supervision techniques, which include tradi-
tional distant supervision approaches (Mintz et al. 2009;
Craven and Kumlien 1999; Zhang et al. 2017a; Hoffmann et
al. 2011; Takamatsu, Sato, and Nakagawa 2012), co-training
methods (Blum and Mitchell 1998), pattern-based supervi-
sion (Gupta and Manning 2014; Zhang et al. 2017a), and
feature-annotation techniques (Mann and McCallum 2010;
Zaidan and Eisner 2008; Liang, Jordan, and Klein 2009).

Crowdsourcing: Our approach also has connections to
the crowdsourcing literature (Karger, Oh, and Shah 2011;
Dawid and Skene 1979), and in particular to spectral and
method of moments-based approaches (Zhang et al. 2014;
Dalvi et al. 2013a; Ghosh, Kale, and McAfee 2011; Anand-
kumar et al. 2014). In contrast, the goal of our work is to
support and explore settings not covered by crowdsourcing
work, such as sources with correlated outputs, the proposed
multi-task supervision setting, and regimes wherein a small
number of labelers (weak supervision sources) each label a
large number of items (data points). Moreover, we theoreti-
cally characterize the generalization performance of an end
model trained with the weakly labeled data.

Multi-Task Learning: Our proposed approach is mo-
tivated by recent progress on multi-task learning mod-
els (Caruana 1993; Ruder 2017; Søgaard and Goldberg
2016), in particular their need for multiple large hand-
labeled training datasets. We note that the focus of our pa-
per is on generating supervision for these models, not on the
particular multi-task learning model being trained, which we
seek to control for by fixing a simple architecture in our ex-
periments.

Our work is also related to recent techniques for estimat-
ing classifier accuracies without labeled data in the pres-
ence of structural constraints (Platanios et al. 2017). We use
matrix structure estimation (Loh and Wainwright 2012) and
concentration bounds (Tropp 2015) for our core results.

3 Programming Machine Learning with
Weak Supervision

As modern machine learning models become both more
complex and more performant on a range of tasks, devel-
opers increasingly interact with them by programmatically
generating noisier or weak supervision. These approaches
of effectively programming machine learning models have
recently been formalized by the following pipeline (Ratner
et al. 2016; 2018): First, users provide one or more weak
supervision sources, which are applied to unlabeled data to
generate a set of noisy labels. These labels may overlap and
conflict; we model and combine them via a label model in
order to produce a final set of training labels. These labels
are then used to train some discriminative model, which we
refer to as the end model. This programmatic weak super-
vision approach can utilize sources ranging from heuristic
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Figure 1: A schematic of the MeTaL pipeline. To generate training data for an end model, such as a multi-task model as in
our experiments, the user inputs a task graph Gtask defining the relationships between task labels Y1, ..., Yt; a set of unlabeled
data points X; a set of multi-task weak supervision sources si which each output a vector λi of task labels for X; and the
dependency structure between these sources, Gsource. We train a label model to learn the accuracies of the sources, outputting a
vector of probabilistic training labels Ỹ for training the end model.

Figure 2: An example fine-grained entity classification prob-
lem, where weak supervision sources label three sub-tasks
of different granularities: (i) Person vs. Organization,
(ii) Doctor vs. Lawyer (or N/A), (iii) Hospital vs.
Office (or N/A). The example weak supervision sources
use a pattern heuristic and dictionary lookup respectively.

rules to other models, and in this way can also be viewed as
a pragmatic and flexible form of multi-source transfer learn-
ing.

In our experiences with users from science and industry,
we have found it critical to utilize all available sources of
weak supervision for complex modeling problems, includ-
ing ones which label at multiple levels of granularity. How-
ever, this diverse, multi-granular weak supervision does not
easily fit into existing paradigms. We propose a formulation
where each weak supervision source labels some sub-task of
a problem, which we refer to as the multi-task weak super-
vision setting. We consider an example:

Example 1 A developer wants to train a fine-grained
Named Entity Recognition (NER) model to classify men-
tions of entities in the news (Figure 2). She has a multi-
tude of available weak supervision sources which she be-
lieves have relevant signal for her problem—for example,
pattern matchers, dictionaries, and pre-trained generic NER
taggers. However, it is unclear how to properly use and com-

bine them: some of them label phrases coarsely as PERSON
versus ORGANIZATION, while others classify specific fine-
grained types of people or organizations, with a range
of unknown accuracies. In our framework, she can repre-
sent them as labeling tasks of different granularities—e.g.
Y1 = {Person,Org}, Y2 = {Doctor,Lawyer, N/A},
Y3 = {Hospital,Office, N/A}, where the label N/A
applies, for example, when the type-of-person task is applied
to an organization.

In our proposed multi-task supervision setting, the user
specifies a set of structurally-related tasks, and then provides
a set of weak supervision sources which are user-defined
functions that either label each data point or abstain for each
task, and may have some user-specified dependency struc-
ture. These sources can be arbitrary black-box functions, and
can thus subsume a range of weak supervision approaches
relevant to both text and other data modalities, including use
of pattern-based heuristics, distant supervision (Mintz et al.
2009), crowd labels, other weak or biased classifiers, declar-
ative rules over unsupervised feature extractors (Varma et al.
2017), and more. Our goal is to estimate the unknown accu-
racies of these sources, combine their outputs, and use the
resulting labels to train an end model.

4 Modeling Multi-Task Weak Supervision
The core technical challenge of the multi-task weak supervi-
sion setting is recovering the unknown accuracies of weak
supervision sources given their dependency structure and a
schema of the tasks they label, but without any ground-truth
labeled data. We define a new algorithm for recovering the
accuracies in this setting using a matrix completion-style op-
timization objective. We establish conditions under which
the resulting estimator returns a unique solution. We then
analyze the sample complexity of our estimator, character-
izing its scaling with respect to the amount of unlabeled
data, as well as the task schema and dependency structure,
and show how the estimation error affects the generalization
performance of the end model we aim to train. Finally, we
highlight how our approach handles abstentions and unipo-
lar sources, two critical scenarios in the weak supervision
setting.
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A Multi-Task Weak Supervision Estimator
Problem Setup Let X ∈ X be a data point and Y =
[Y1, Y2, . . . , Yt]

T be a vector of categorical task labels, Yi ∈
{1, . . . , ki}, corresponding to t tasks, where (X,Y) is drawn
i.i.d. from a distribution D.2

The user provides a specification of how these tasks re-
late to each other; we denote this schema as the task struc-
ture Gtask. The task structure expresses logical relation-
ships between tasks, defining a feasible set of label vec-
tors Y , such that Y ∈ Y . For example, Figure 2 illus-
trates a hierarchical task structure over three tasks of dif-
ferent granularities pertaining to a fine-grained entity clas-
sification problem. Here, the tasks are related by logical
subsumption relationships: for example, if Y2 = DOCTOR,
this implies that Y1 = PERSON, and that Y3 = N/A,
since the task label Y3 concerns types of organizations,
which is inapplicable to persons. Thus, in this task struc-
ture, Y = [PERSON,DOCTOR,N/A]T is in Y while Y =
[PERSON,N/A,HOSPITAL]T is not. While task structures
are often simple to define, as in the previous example, or are
explicitly defined by existing resources—such as ontologies
or graphs—we note that if no task structure is provided, our
approach becomes equivalent to modeling the t tasks sepa-
rately, a baseline we consider in the experiments.

In our setting, rather than observing the true label Y,
we have access to m multi-task weak supervision sources
si ∈ S which emit label vectors λi that contain labels for
some subset of the t tasks. Let 0 denote a null or abstaining
label, and let the coverage set τi ⊆ {1, . . . , t} be the fixed
set of tasks for which the ith source emits non-zero labels,
such that λi ∈ Yτi . For convenience, we let τ0 = {1, . . . , t}
so that Yτ0 = Y . For example, a source from our previous
example might have a coverage set τi = {1, 3}, emitting
coarse-grained labels such as λi = [PERSON, 0,N/A]T .
Note that sources often label multiple tasks implicitly due
to the constraints of the task structure; for example, a source
that labels types of people (Y2) also implicitly labels people
vs. organizations (Y1 = PERSON), and types of organiza-
tions (as Y3 = N/A). Thus sources tailored to different tasks
still have agreements and disagreements; we use this addi-
tional cross-task signal in our approach.

The user also provides the conditional dependency struc-
ture of the sources as a graph Gsource = (V,E), where V =
{Y,λ1,λ2, . . . ,λm} (Figure 3). Specifically, if (λi,λj) is
not an edge in Gsource, this means that λi is independent of
λj conditioned on Y and the other source labels. Note that
if Gsource is unknown, it can be estimated using statistical
techniques such as (Bach et al. 2017). Importantly, we do
not know anything about the strengths of the correlations in
Gsource, or the sources’ accuracies.

Our overall goal is to apply the set of weak supervi-
sion sources S = {s1, . . . , sm} to an unlabeled dataset XU
consisting of n data points, then use the resulting weakly-
labeled training set to supervise an end model fw : X 7→ Y
(Figure 1). This weakly-labeled training set will contain

2The variables we introduce throughout this section are sum-
marized in a glossary in the Appendix, which can be accessed at
https://arxiv.org/abs/1810.02840.

Y

λ1 λ2 λ3 λ4

Y,λ1,λ2

Y,λ3 Y,λ4

YY

Figure 3: An example of a weak supervision source de-
pendency graph Gsource (left) and its junction tree repre-
sentation (right), where Y is a vector-valued random vari-
able with a feasible set of values, Y ∈ Y . Here, the out-
put of sources 1 and 2 are modeled as dependent condi-
tioned on Y. This results in a junction tree with singleton
separator sets, Y. Here, the observable cliques are O =
{λ1,λ2,λ3,λ4, {λ1,λ2}} ⊂ C.

overlapping and conflicting labels, from sources with un-
known accuracies and correlations. To handle this, we will
learn a label model Pµ(Y|λ), parameterized by a vector of
source correlations and accuracies µ, which for each data
point X takes as input the noisy labels λ = {λ1, . . . ,λm}
and outputs a single probabilistic label vector Ỹ. Succinctly,
given a user-provided tuple (XU , S,Gsource, Gtask), our key
technical challenge is recovering the parameters µ without
access to ground truth labels Y.

Modeling Multi-Task Sources To learn a label model
over multi-task sources, we introduce sufficient statistics
over the random variables in Gsource. Let C be the set of
cliques in Gsource, and define an indicator random variable
for the event of a clique C ∈ C taking on a set of values yC :

ψ(C, yC) = 1 {∩i∈CVi = (yC)i} ,

where (yC)i ∈ Yτi . We define ψ(C) ∈ {0, 1}
∏
i∈C(|Yτi |−1)

as the vector of indicator random variables for all combina-
tions of all but one of the labels emitted by each variable in
clique C—thereby defining a minimal set of statistics—and
define ψ(C) accordingly for any set of cliques C ⊆ C. Then
µ = E [ψ(C)] is the vector of sufficient statistics for the label
model we want to learn.

We work with two simplifying conditions in this section.
First, we consider the setting where Gsource is triangulated
and has a junction tree representation with singleton separa-
tor sets. If this is not the case, edges can always be added
to Gsource to make this setting hold; otherwise, we describe
how our approach can directly handle non-singleton separa-
tor sets in the Appendix.

Second, we use a simplified class-conditional model of
the noisy labeling process, where we learn one accuracy pa-
rameter for each label value λi that each source si emits.
This is equivalent to assuming that a source may have a dif-
ferent accuracy on each different class, but that if it emits a
certain label incorrectly, it does so uniformly over the differ-
ent true labels Y. This is a more expressive model than the
commonly considered one, where each source is modeled by
a single accuracy parameter, e.g. in (Dawid and Skene 1979;
Ratner et al. 2016), and in particular allows us to capture the
unipolar setting considered later on.
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Our Approach The chief technical difficulty in our prob-
lem is that we do not observe Y. We overcome this by ana-
lyzing the covariance matrix of an observable subset of the
cliques in Gsource, leading to a matrix completion-style ap-
proach for recovering µ. We leverage two pieces of infor-
mation: (i) the observability of part of Cov [ψ(C)], and (ii)
a result from (Loh and Wainwright 2012) which states that
the inverse covariance matrix Cov [ψ(C)]−1 is structured ac-
cording toGsource, i.e., if there is no edge between λi and λj
in Gsource, then the corresponding entries are 0.

We start by considering two disjoint subsets of C: the set
of observable cliques, O ⊆ C—i.e., those cliques not con-
taining Y—and the separator set cliques of the junction tree,
S ⊆ C. In the setting we consider here, S = {Y} (see Fig-
ure 3). We then write the covariance matrix of the indicator
variables for O ∪S , Cov [ψ(O ∪ S)], in block form, similar
to (Chandrasekaran, Parrilo, and Willsky 2010), as:

Cov [ψ(O ∪ S)] ≡ Σ =

[
ΣO ΣOS
ΣTOS ΣS

]
(1)

and similarly define its inverse:

K = Σ−1 =

[
KO KOS
KT
OS KS

]
(2)

Here, ΣO = Cov [ψ(O)] ∈ RdO×dO is the observable
block of Σ, where dO =

∑
C∈O

∏
i∈C(|Yτi | − 1). Next,

ΣOS = Cov [ψ(O), ψ(S)] is the unobserved block which
is a function of µ, the label model parameters that we wish
to recover. Finally, ΣS = Cov [ψ(S)] = Cov [ψ(Y)] is a
function of the class balance P (Y).

We make two observations about ΣS . First, while the full
form of ΣS is the covariance of the |Y| − 1 indicator vari-
ables for each individual value of Y but one, given our sim-
plified class-conditional label model, we in fact only need a
single indicator variable for Y (see Appendix); thus, ΣS is a
scalar. Second, ΣS is a function of the class balance P (Y),
which we assume is either known, or has been estimated ac-
cording to the unsupervised approach we detail in the Ap-
pendix. Thus, given ΣO and ΣS , our goal is to recover the
vector ΣOS from which we can recover µ.

Applying the block matrix inversion lemma, we have:

KO = Σ−1
O + cΣ−1

O ΣOSΣTOSΣ−1
O , (3)

where c =
(
ΣS − ΣTOSΣ−1

O ΣOS
)−1 ∈ R+. Let z =√

cΣ−1
O ΣOS ; we can then express (3) as:

KO = Σ−1
O + zzT (4)

The right hand side of (4) consists of an empirically ob-
servable term, Σ−1

O , and a rank-one term, zzT , which we
can solve for to directly recover µ. For the left hand side,
we apply an extension of Corollary 1 from (Loh and Wain-
wright 2012) (see Appendix) to conclude thatKO has graph-
structured sparsity, i.e., it has zeros determined by the struc-
ture of dependencies between the sources in Gsource. This
suggests an algorithmic approach of estimating z as a ma-
trix completion problem in order to recover an estimate of
µ (Algorithm 1). In more detail: let Ω be the set of indices

(i, j) where (KO)i,j = 0, determined by Gsource, yielding a
system of equations,

0 = (Σ−1
O )i,j +

(
zzT

)
i,j

for (i, j) ∈ Ω, (5)

which is now a matrix completion problem. Define ||A||Ω as
the Frobenius norm of A with entries not in Ω set to zero;
then we can rewrite (5) as

∣∣∣∣Σ−1
O + zzT

∣∣∣∣
Ω

= 0. We solve
this equation to estimate z, and thereby recover ΣOS , from
which we can directly recover the label model parameters µ
algebraically.

Checking for Identifiability A first question is: which
dependency structures Gsource lead to unique solutions for
µ? This question presents a stumbling block for users, who
might attempt to use non-identifiable sets of correlated weak
supervision sources.

We provide a simple, testable condition for identifiability.
Let Ginv be the inverse graph of Gsource; note that Ω is the
edge set of Ginv expanded to include all indicator random
variables ψ(C). Then, let MΩ be a matrix with dimensions
|Ω| × dO such that each row in MΩ corresponds to a pair
(i, j) ∈ Ω with 1’s in positions i and j and 0’s elsewhere.

Taking the log of the squared entries of (5), we get a sys-
tem of linear equations MΩl = qΩ, where li = log(z2

i ) and
q(i,j) = log(((Σ−1

O )i,j)
2). Assuming we can solve this sys-

tem (which we can always ensure by adding sources; see
Appendix), we can uniquely recover the z2

i , meaning our
model is identifiable up to sign.

Given estimates of the z2
i , we can see from (5) that the

sign of a single zi determines the sign of all other zj reach-
able from zi in Ginv. Thus to ensure a unique solution, we
only need to pick a sign for each connected component
in Ginv. In the case where the sources are assumed to be
independent, e.g., (Dalvi et al. 2013b; Zhang et al. 2014;
Dawid and Skene 1979), it suffices to make the assumption
that the sources are on average non-adversarial; i.e., select
the sign of the zi that leads to higher average accuracies of
the sources. Even a single source that is conditionally in-
dependent from all the other sources will cause Ginv to be
fully connected, meaning we can use this symmetry break-
ing assumption in the majority of cases even with corre-
lated sources. Otherwise, a sufficient condition is the stan-
dard one of assuming non-adversarial sources, i.e. that all
sources have greater than random accuracy.

Source Accuracy Estimation Algorithm Now that we
know when a set of sources with correlation structureGsource
is identifiable, yielding a unique z, we can estimate the
accuracies µ using Algorithm 1. We also use the func-
tion ExpandTied, which is a simple algebraic expansion of
tied parameters according to the simplified class-conditional
model used in this section; see Appendix for details. In Fig-
ure 4, we plot the performance of our algorithm on syn-
thetic data, showing its scaling with the number of unla-
beled data points n, the density of pairwise dependencies in
Gsource, and the runtime performance as compared to a prior
Gibbs sampling-based approach. Next, we theoretically an-
alyze the scaling of the error ||µ̂− µ∗||.
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Figure 4: (Left) Estimation error ||µ̂− µ∗|| decreases with increasing n. (Middle) GivenGsource, our model successfully recovers
the source accuracies even with many pairwise dependencies among sources, where a naive conditionally-independent model
fails. (Right) The runtime of MeTaL is independent of n after an initial matrix multiply, and can thus be multiple orders of
magnitude faster than Gibbs sampling-based approaches (Ratner et al. 2016).

Algorithm 1 Source Accuracy Estimation for Multi-Task
Weak Supervision

Input: Observed labeling rates Ê [ψ(O)] and covariance
Σ̂O; class balance Ê [ψ(Y)] and variance ΣS ; correlation
sparsity structure Ω

ẑ ← argminz
∣∣∣∣∣∣Σ̂−1

O + zzT
∣∣∣∣∣∣

Ω

ĉ← Σ−1
S (1 + ẑT Σ̂O ẑ), Σ̂OS ← Σ̂O ẑ/

√
ĉ

µ̂′ ← Σ̂OS + Ê [ψ(Y)] Ê [ψ(O)]
return ExpandTied(µ̂′)

Theoretical Analysis: Scaling with Diverse
Multi-Task Supervision
Our ultimate goal is to train an end model using the source
labels, denoised and combined by the label model µ̂ we
have estimated. We connect the generalization error of this
end model to the estimation error of Algorithm 1, ultimately
showing that the generalization error scales as n−

1
2 , where

n is the number of unlabeled data points. This key result es-
tablishes the same asymptotic scaling as traditionally super-
vised learning methods, but with respect to unlabeled data
points.

Let Pµ̂(Ỹ | λ) be the probabilistic label (i.e. distribu-
tion) predicted by our label model, given the source la-
bels λ as input, which we compute using the estimated
µ̂. We then train an end multi-task discriminative model
fw : X 7→ Y parameterized by w, by minimizing the ex-
pected loss with respect to the label model over n unlabeled
data points. Let l(w,X,Y) = 1

t

∑t
s=1 lt(w,X,Ys) be a

bounded multi-task loss function such that without loss of
generality l(w,X,Y) ≤ 1; then we minimize the empirical
noise aware loss:

ŵ = argminw
1

n

n∑
i=1

EỸ∼Pµ̂(·|λ)

[
l(w,Xi, Ỹ)

]
, (6)

and let w̃ be the w that minimizes the true noise-aware loss.
This minimization can be performed by standard methods
and is not the focus of our paper; let the solution ŵ satisfy
E
[
‖ŵ − w̃‖2

]
≤ γ. We make several assumptions, follow-

ing (Ratner et al. 2016): (1) that for some label model param-
eters µ∗, sampling (λ,Y) ∼ Pµ∗(·) is the same as sampling
from the true distribution, (λ,Y) ∼ D; and (2) that the task
labels Ys are independent of the features of the end model
given λ sampled from Pµ∗(·), that is, the output of the op-
timal label model provides sufficient information to discern
the true label. Then we have the following result:
Theorem 1 Let w̃ minimize the expected noise aware loss,
using weak supervision source parameters µ̂ estimated with
Algorithm 1. Let ŵ minimize the empirical noise aware loss
with E

[
‖ŵ − w̃‖2

]
≤ γ, w∗ = minw l(w,X,Y), and let

the assumptions above hold. Then the generalization error
is bounded by:

E [l(ŵ,X,Y)− l(w∗, X,Y)] ≤ γ + 4|Y| ||µ̂− µ∗|| .
Thus, to control the generalization error, we must control
||µ̂− µ∗||, which we do in Theorem 2:

Theorem 2 Let µ̂ be an estimate of µ∗ produced by Algo-
rithm 1 run over n unlabeled data points. Let a := ( dOΣS

+

( dOΣS
)2λmax(KO))

1
2 and b :=

‖Σ−1
O ‖

2

(Σ−1
O )min

. Then, we have:

E [||µ̂− µ∗||] ≤ 16(|Y| − 1)d2
O

√
32π

n
abσmax(M+

Ω )

×
(

3
√
dOaλ

−1
min(ΣO) + 1

) (
κ(ΣO) + λ−1

min(ΣO)
)
.

Interpreting the Bound We briefly explain the key terms
controlling the bound in Theorem 2; more detail is found
in the Appendix. Our primary result is that the estimation
error scales as n−

1
2 . Next, σmax(M+

Ω ), the largest singular
value of the pseudoinverse M+

Ω , has a deep connection to
the density of the graph Ginv. The smaller this quantity, the
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more information we have about Ginv, and the easier it is to
estimate the accuracies. Next, λmin(ΣO), the smallest eigen-
value of the observed covariance matrix, reflects the condi-
tioning of ΣO; better conditioning yields easier estimation,
and is roughly determined by how far away from random
guessing the worst weak supervision source is, as well as
how conditionally independent the sources are. λmax(KO),
the largest eigenvalue of the upper-left block of the inverse
covariance matrix, similarly reflects the overall conditioning
of Σ. Finally, (Σ−1

O )min, the smallest entry of the inverse ob-
served matrix, reflects the smallest non-zero correlation be-
tween source accuracies; distinguishing between small cor-
relations and independent sources requires more samples.

Extensions: Abstentions & Unipolar Sources
We briefly highlight two extensions handled by our approach
which we have found empirically critical: handling absten-
tions, and modeling unipolar sources.

Handling Abstentions. One fundamental aspect of the
weak supervision setting is that sources may abstain from
labeling a data point entirely—that is, they may have incom-
plete and differing coverage (Ratner et al. 2018; Dalvi et al.
2013b). We can easily deal with this case by extending the
coverage ranges Yτi of the sources to include the vector of
all zeros, ~0, and we do so in the experiments.

Handling Unipolar Sources. Finally, we highlight the fact
that our approach models class conditional source accura-
cies, in particular motivated by the case we have frequently
observed in practice of unipolar weak supervision sources,
i.e., sources that each only label a single class or abstain. In
practice, we find that users most commonly use such unipo-
lar sources; for example, a common template for a heuristic-
based weak supervision source over text is one that looks for
a specific pattern, and if the pattern is present emits a spe-
cific label, else abstains. As compared to prior approaches
that did not model class-conditional accuracies, e.g. (Ratner
et al. 2016), we show in our experiments that we can use our
class-conditional modeling approach to yield an improve-
ment of 2.8 points in accuracy.

5 Experiments
We validate our approach on three fine-grained classification
problems—entity classification, relation classification, and
document classification—where weak supervision sources
are available at both coarser and finer-grained levels (e.g.
as in Figure 2). We evaluate the predictive accuracy of end
models supervised with training data produced by several
approaches, finding that our approach outperforms tradi-
tional hand-labeled supervision by 20.2 points, a baseline
majority vote weak supervision approach by 6.8 points, and
a prior weak supervision denoising approach (Ratner et al.
2016) that is not multi-task-aware by 4.1 points.

Datasets Each dataset consists of a large (3k-63k) amount
of unlabeled training data and a small (200-350) amount of
labeled data which we refer to as the development set, which
we use for (a) a traditional supervision baseline, and (b) for
hyperparameter tuning of the end model (see Appendix).

The average number of weak supervision sources per task
was 13, with sources expressed as Python functions, averag-
ing 4 lines of code and comprising a mix of pattern matching
heuristics, external knowledge base or dictionary lookups,
and pre-trained models. In all three cases, we choose the de-
composition into sub-tasks so as to align with weak supervi-
sion sources that are either available or natural to express.

Named Entity Recognition (NER): We represent
a fine-grained named entity recognition problem—
tagging entity mentions in text documents—as a hi-
erarchy of three sub-tasks over the OntoNotes dataset
(Weischedel et al. 2011): Y1 ∈ {Person,Organization},
Y2 ∈ {Businessperson,Other Person,N/A}, Y3 ∈
{Company,Other Org,N/A}, where again we use N/A
to represent “not applicable”.

Relation Extraction (RE): We represent a relation extrac-
tion problem—classifying entity-entity relation mentions in
text documents—as a hierarchy of six sub-tasks which ei-
ther concern labeling the subject, object, or subject-object
pair of a possible or candidate relation in the TACRED
dataset (Zhang et al. 2017b). For example, we might label
a relation as having a Person subject, Location object, and
Place-of-Residence relation type.

Medical Document Classification (Doc): We represent
a radiology report triaging (i.e. document classification)
problem from the OpenI dataset (National Institutes of
Health 2017) as a hierarchy of three sub-tasks: Y1 ∈
{Acute,Non-Acute}, Y2 ∈ {Urgent,Emergent,N/A}, Y3 ∈
{Normal,Non-Urgent,N/A}.

End Model Protocol Our goal was to test the performance
of a basic multi-task end model using training labels pro-
duced by various different approaches. We use an architec-
ture consisting of a shared bidirectional LSTM input layer
with pre-trained embeddings, shared linear intermediate lay-
ers, and a separate final linear layer (“task head”) for each
task. Hyperparameters were selected with an initial search
for each application (see Appendix), then fixed.

Core Validation We compare the accuracy of the end
multi-task model trained with labels from our approach ver-
sus those from three baseline approaches (Table 1):

• Traditional Supervision [Gold (Dev)]: We train the end
model using the small hand-labeled development set.

• Hierarchical Majority Vote [MV]: We use a hierarchical
majority vote of the weak supervision source labels: i.e.
for each data point, for each task we take the majority vote
and proceed down the task tree accordingly. This proce-
dure can be thought of as a hard decision tree, or a cascade
of if-then statements as in a rule-based approach.

• Data Programming [DP]: We model each task separately
using the data programming approach for denoising weak
supervision (Ratner et al. 2018).

In all settings, we used the same end model architecture
as described above. Note that while we choose to model
these problems as consisting of multiple sub-tasks, we eval-
uate with respect to the broad primary task of fine-grained
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NER RE Doc Average

Gold (Dev) 63.7 ± 2.1 28.4 ± 2.3 62.7 ± 4.5 51.6
MV 76.9 ± 2.6 43.9 ± 2.6 74.2 ± 1.2 65.0
DP (Ratner et al. 2016) 78.4 ± 1.2 49.0 ± 2.7 75.8 ± 0.9 67.7

MeTaL 82.2 ± 0.8 56.7 ± 2.1 76.6 ± 0.4 71.8

Table 1: Performance Comparison of Different Supervision Approaches. We compare the micro accuracy (avg. over 10
trials) with 95% confidence intervals of an end multi-task model trained using the training labels from the hand-labeled devel-
opment set (Gold Dev), hierarchical majority vote (MV), data programming (DP), and our approach (MeTaL).
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Figure 5: In the OntoNotes dataset, end model accuracy
scales with the amount of available unlabeled data.

classification (for subtask-specific scores, see Appendix).
We observe in Table 1 that our approach of leveraging
multi-granularity weak supervision leads to large gains—
20.2 points over traditional supervision with the develop-
ment set, 6.8 points over hierarchical majority vote, and 4.1
points over data programming.

Ablations We examine individual factors:
Unipolar Correction: Modeling unipolar sources (Sec 4),

which we find to be especially common when fine-grained
tasks are involved, leads to an average gain of 2.8 points of
accuracy in MeTaL performance.

Joint Task Modeling: Next, we use our algorithm to es-
timate the accuracies of sources for each task separately, to
observe the empirical impact of modeling the multi-task set-
ting jointly as proposed. We see average gains of 1.3 points
in accuracy (see Appendix).

End Model Generalization: Though not possible in many
settings, in our experiments we can directly apply the label
model to make predictions. In Table 6, we show that the end
model improves performance by an average 3.4 points in
accuracy, validating that the models trained do indeed learn
to generalize beyond the provided weak supervision. More-
over, the largest generalization gain of 7 points in accuracy
came from the dataset with the most available unlabeled data
(n=63k), demonstrating scaling consistent with the predic-
tions of our theory (Fig. 5). This ability to leverage addi-
tional unlabeled data and more sophisticated end models are
key advantages of the weak supervision approach in prac-
tice.

# Train LM EM Gain

NER 62,547 75.2 82.2 7.0
RE 9,090 55.3 57.4 2.1
Doc 2,630 75.6 76.6 1.0

Figure 6: Using the label model (LM) predictions directly
versus using an end model trained on them (EM).

6 Conclusion
We presented MeTaL, a framework for training models
with weak supervision from diverse, multi-task sources hav-
ing different granularities, accuracies, and correlations. We
tackle the core challenge of recovering the unknown source
accuracies via a scalable matrix completion-style algorithm,
introduce theoretical bounds characterizing the key scaling
with respect to unlabeled data, and demonstrate empirical
gains on real-world datasets. In future work, we hope to
learn the task relationship structure and cover a broader
range of settings where labeled training data is a bottleneck.
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