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Abstract

Multi-Label Learning (MLL) aims to learn from the train-
ing data where each example is represented by a single in-
stance while associated with a set of candidate labels. Most
existing MLL methods are typically designed to handle the
problem of missing labels. However, in many real-world sce-
narios, the labeling information for multi-label data is always
redundant , which can not be solved by classical MLL meth-
ods, thus a novel Partial Multi-label Learning (PML) frame-
work is proposed to cope with such problem, i.e. removing
the the noisy labels from the multi-label sets. In this paper,
in order to further improve the denoising capability of PML
framework, we utilize the low-rank and sparse decomposi-
tion scheme and propose a novel Partial Multi-label Learn-
ing by Low-Rank and Sparse decomposition (PML-LRS) ap-
proach. Specifically, we first reformulate the observed label
set into a label matrix, and then decompose it into a ground-
truth label matrix and an irrelevant label matrix, where the
former is constrained to be low rank and the latter is assumed
to be sparse. Next, we utilize the feature mapping matrix to
explore the label correlations and meanwhile constrain the
feature mapping matrix to be low rank to prevent the pro-
posed method from being overfitting. Finally, we obtain the
ground-truth labels via minimizing the label loss, where the
Augmented Lagrange Multiplier (ALM) algorithm is incor-
porated to solve the optimization problem. Enormous experi-
mental results demonstrate that PML-LRS can achieve supe-
rior or competitive performance against other state-of-the-art
methods.

Introduction
As a popular machine learning framework, Multi-Label
Learning (MLL) aims to learn a robust classification model
from the training data, where each instance is associated
with a set of labels instead of a single label (Zhang and Zhou
2014). In recent years, such framework has been widely
used in many real-world scenarios, such as image anno-
tation (Sanden and Zhang 2011), web mining (Tang, Ra-
jan, and Narayanan 2009), information retrieval (Gopal and
Yang 2010), etc.

Typically multi-label learning methods usually require
complete labeling information for training examples (Zhang

∗corresponding author
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An example of partial multi-label learning.

and Zhou 2014), i.e., each training instance has been pre-
cisely annotated with all of its relevant labels. However, in
many real-world applications, precise labeling is too scarce
to obtain, which makes it infeasible to learn a robust multi-
label classifier. Thus, many state-of-the-art studies are de-
signed to handle the problem that the label matrix has miss-
ing entries, including treating missing labels as negative la-
bels directly (Wu et al. 2015) (Sun, Zhang, and Zhou 2010)
(Bucak, Jin, and Jain 2011), employing matrix completion
technique to fill in missing labels (Goldberg et al. 2010)
(Cabral et al. 2011), etc. Recently, as the annotation crowd-
sourcing increasingly becomes popular, redundant labeling
information gradually appears in these multi-label data, i.e.
annotators may roughly assign each instance with a set of
candidate labels, which include both related labels and un-
related labels. For example, as we observed in Figure 1, the
image is partially labeled by noisy annotators. Among the
candidate labels, mountain, lake, grass, sky, house, and tree
are ground-truth labels while clouds, boat, and people are
irrelevant labels.

To overcome the above problem, (Xie and Huang 2018)
proposes a novel framework called Partial Multi-Label
Learning (PML) to learn from the multi-label data with re-
dundant labeling information, where they utilize the label
confidence to measure the probability of being the ground-
truth label for each candidate label, and obtain the ground-
truth labels according to label ranking. However, this ap-
proach suffers from some shortcomings, i.e. it only sim-
ply utilizes the prior knowledge to obtain the label corre-
lation or directly uses redundant labeling information to ob-
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tain the feature prototype for acquiring the label confidence
values, which may reduce the effectiveness of the learning
model. Therefore, an intuitive strategy to cope with the PML
problem is disambiguation, i.e. how to identify the ground-
truth labels from the candidate labels. However, once the
irrelevant labels are excessively redundant, such identifica-
tion work is rather challenging or even impossible. Fortu-
nately, in real-word scenarios, the irrelevant labels are usu-
ally sparse among the observed labels, which makes the dis-
ambiguation work become possible and easy to implement.

Based on the above consideration, in this paper, we pro-
pose Partial Multi-label Learning by Low-Rank and
Sparse decomposition (PML-LRS) method, which enables
simultaneously capturing the ground-truth label matrix from
the observed label matrix and learning the prediction model
via low-rank and sparse decomposition scheme. Specifically,
we firstly introduce `1-norm regularization to constrain the
redundant label matrix by assuming that the irrelevant la-
bels are sparse. Secondly, a trace norm regularization is in-
troduced to capture the dependence among ground-truth la-
bels. Thirdly, by making full use of the label correlations, the
feature mapping matrix is constrained via trace norm regu-
larization. Finally, the desired partial multi-label prediction
model is learned by adopting Augmented Lagrange Multi-
plier (ALM) method. Compared with previous PML algo-
rithm, our method can remove the irrelevant labels and avoid
the negative effect of noisy labels, which makes our method
become more robust and applicable in real applications. Ex-
tensive experimental results on real-world data sets validate
the effectiveness of our model against other competitive al-
gorithms.

Related Work
Multi-Label Learning with Label Correlation
A significant amount of literatures on multi-label learning
has been proposed in recent years, which can be roughly
categorized into three groups based on the degree of la-
bel correlations (Zhang and Zhou 2014). For the first-order
strategy, many approaches tackle the multi-label learning
problem in a label-by-label style but they ignore the label
correlations (Zhang and Zhou 2007). For the second-order
strategy, most algorithms tackle multi-label learning prob-
lem by considering pairwise label correlations (Fürnkranz et
al. 2008). For the high-order strategy, some methods tackle
multi-label learning problem by considering high-order cor-
relations among label subsets or all the classes (Ji et al.
2010) (Tsoumakas, Katakis, and Vlahavas 2011).

Weakly Supervised Multi-label Learning
In the literature of multi-label learning, most state-of-the-
art methods are designed to handle missing labels, which
can be roughly divided into the following four categorizes:
(1) The first way is to treat the missing labels as negative
labels and bring the label bias into the objective function
(Chen et al. 2008). However, their performances will greatly
decrease when massive ground-truth positive labels are ini-
tialized as negative labels. (2) The second way is to trans-
form the missing labels filling as a Matrix Completion (MC)

problem (Goldberg et al. 2010) (Cabral et al. 2011), which
is often based on the low-rank assumption of the whole label
matrix. Recently, (Xu, Tao, and Xu 2016) simultaneously in-
corporates the sparse constraint and low-rank decomposition
into the same framework to solve the multi-label learning
problem. (3) The third way is to treat the missing labels as
latent variables and embed them into a probabilistic model,
such as Bayesian networks (Vasisht et al. 2014) and Con-
ditional Restricted Boltzmann Machines (CR-BM). (4) The
last way is to treat missing labels as the three states (Wu et al.
2014), i.e. positive labels +1, negative labels -1 and missing
labels 0, to avoid the label bias.

Partial Label Learning
Partial Label Learning (PLL) deals with the problem where
each training example is associated with a set of candidate
labels, among which only one is correct. (Cour, Sapp, and
Taskar 2011) (Zhang, Yu, and Tang 2017). An intuitive strat-
egy to deal with such problem is disambiguation, i.e., trying
to recover the ground-truth label from the candidate label
set. One way towards disambiguation is to assume certain
parametric model F(x, y; θ) where the ground-truth label is
first regarded as the latent variable and then refined in an
iteration manner (Liu and Dietterich 2012) (Zhang and Yu
2015). Another disambiguation strategy is to assume that
each candidate label has equal contribution to the learning
model and then it makes prediction for unseen examples by
averaging their modeling outputs (Cour, Sapp, and Taskar
2011). Compared to partial label learning, PML problem is
much more challenging because the number of correct labels
in the candidate set is unknown, which makes disambigua-
tion difficult and inapplicable.

Proposed Method
In this section, we will first introduce the notations of our
method, and then present the details of the proposed frame-
work which combines the low-rank and sparse decomposi-
tion scheme for partial multi-label learning. Furthermore, an
optimization algorithm will also be described in detail.

Notations
Our method takes two matrices as input : the instance matrix
X = [x1,x2, . . . ,xn] ∈ Rd×n, where d is the dimension of
the feature vector and n is the number of training instances.
And we define the Y = [y1,y2, . . . ,yk]

> ∈ {0, 1}k×n
to represent the label assignments for the corresponding la-
beled examples, where k is the number of labels. The values
in this matrix are within {0,1}, i.e., if instance j is annotated
with label yi, yij = 1; otherwise, yij = 0.

The Regularization Framework
Given the noise-corrupted label matrix, how to identify the
ground-truth labels of the instance from the candidate label
set and how to train an efficient and robust multi-label clas-
sifier for label prediction are two challenging problems in
PML. In this paper, we propose a PML-LRS method that
acquires the accurate label matrix using the concept of low-
rank and sparse decomposition, thereby predicting the labels
of unlabeled data more accurately.
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Our goal are to use the instance matrix X and the ob-
served label matrix Y for training a new PML model and to
predict the labels from these redundant labels. For the i-th
label, the goal is to learn a linear function fi where wi is the
model parameter. Here we restrict the prediction function fi
to linear functions for simplicity, i.e., fi(X) = w>i X. De-
fine W = [w1,w2, . . . ,wk]

> ∈ Rk×d to denote the model
parameters for all labels. Following the traditional machine
learning discipline, a general multi-label learning model can
be learned by solving the following problem:

min
W

η

2
‖Y −WX‖2F + Φ (W) (1)

where Φ (W) represents a regularization function of W
which is used to control the model complexity. Note that
there exists the well-known label correlations among differ-
ent labels in multi-label learning, so we assume that the fea-
ture mapping matrix W is linearly dependent to effectively
capture such label correlations, which leads W to be low-
rank and the optimization problem is defined as:

min
W

η

2
‖Y −WX‖2F + γrank(W) (2)

The above optimization problem (2) is difficult to solve
due to the discrete nature of the rank function. Following
recent advances on rank minimization, one popular approach
is to replace the rank function by the trace norm (or nuclear
norm). Using this relaxation, Eq. (2) is rewritten as follows:

min
W

η

2
‖Y −WX‖2F + γ‖W‖∗ (3)

where ‖ ‖∗ denotes the sum of the singular values of the
matrix.

However, there is a situation of labels redundancy in real
life, i.e., annotators may roughly assign each instance a set
of candidate labels, which includes both related labels and
some unrelated labels.

To deal with this problem, we assume that the irrelevant
labels are sparse among observed candidate labels. The ba-
sic idea of our method is to capture the accurate label matrix
and irrelevant label matrix from the observed candidate label
matrix by utilizing the idea of low-rank and sparse decom-
position. Specifically, we assume that the irrelevant labels
are sparse and introduce an `1-norm regularization to con-
strain the redundant label matrix. In order to make full use of
the ground-truth label information to compute the prediction
model, a trace norm regularization is introduced to capture
the dependence among ground-truth labels. So the observed
label matrix Y can be decomposed into a sparse matrix Q
and a low-rank matrix P, which can be represented as fol-
lows:

min
P,Q

rank(P) + β‖Q‖0, s.t.Y = P+Q (4)

As aforementioned, Eq. (4) is cumbersome to solve be-
cause the rank and cardinality operators are discontinuous
and non-convex. Therefore, these operators are respectively
relaxed to their convex surrogates: the nuclear norm and the
`1-norm. Using this relaxation, Eq. (4) is rewritten as fol-
lows:

min
P,Q
‖P‖∗ + β‖Q‖1, s.t.Y = P+Q (5)

By combining Eq. (5) and Eq. (3) together, the final ob-
jective function for the proposed partial multi-label learning
model can be formulated as follows:

min
P,Q,W

η

2
‖P−WX‖2F + ‖P‖∗ + β‖Q‖1 + γ‖W‖∗

s.t.Y = P+Q
(6)

where η, γ and β are trade-off parameters to keep the bal-
ance of the model. From the above objective function, we
can see that the predictive function is robust to inaccurately
labeled instances.

Optimization
The problem (6) is convex and can be optimized efficiently.
We first convert it into the following equivalent problem:

min
P,Q,W,J,T

η

2
‖T−WX‖2F + ‖P‖∗ + β‖Q‖1 + γ‖J‖∗

s.t.Y = P+Q, W = J, P = T
(7)

The optimization problem (7) can be solved with the
ALM (Zhang et al. 2017), which minimizes the following
augmented Lagrange function:

min
P,Q,W,J,T

η

2
‖T−WX‖2F + ‖P‖∗ + β‖Q‖1 + γ‖J‖∗

+ < Y1,Y −P−Q > +
µ1

2
‖Y −P−Q‖2F

+ < Y2,W − J > +
µ2

2
‖W − J‖2F

+ < Y3,P−T > +
µ3

2
‖P−T‖2F

(8)
where Y1 ∈ Rd×n, Y2 ∈ Rd×n and Y3 ∈ Rd×n are La-
grange multiplier matrices, and µ1, µ2 and µ3 are the penalty
parameters. According to the LADMAP method (Lin, Liu,
and Su 2011), Eq. (8) can be rewritten as:

min
P,Q,W,J,T

η

2
‖T−WX‖2F + ‖P‖∗ + β‖Q‖1

+ γ‖J‖∗ +
µ1

2
‖Y −P−Q+

Y1

µ1
‖2F

+
µ2

2
‖W − J+

Y2

µ2
‖2F +

µ3

2
‖P−T+

Y3

µ3
‖2F

(9)

For each of the five matrices P, Q, W, J, T to be solved
in particularly Eq. (9), the cost function is convex if the re-
maining four matrices are kept fixed. Eq. (9) can be solved
iteratively via the following subproblems:

1. When keeping P, Q, J, T fixed, we obtain the fol-
lowing equation for W by taking the derivative of Eq. (9),
denoted by LRS-1,

min
W

η

2
‖T−WX‖2F +

µ2

2
‖W − J+

Y2

µ2
‖2F (10)

which is an ordinary least squares regression problem,
whose solution is,

W = (µ2J+ ηTXT −Y2)(ηXXT + µ2Id)
−1 (11)
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2. When P, Q, W, T are fixed, optimizing Eq. (9) with
respect to J is equivalent to the following problem, denoted
by LRS-2,

min
J
γ‖J‖∗ +

µ2

2
‖W − J+

Y2

µ2
‖2F (12)

The objective in Eq. (12) can be expressed equivalently as
follows:

min
J

1

2
‖J− (W +

Y2

µ2
)‖2F +

γ

µ2
‖J‖∗ (13)

It turns out that the minimization of the objective in Eq. (13)
can be solved by first computing the singular value decom-
position (SVD) of W+Y2/µ2 and then applying some soft-
thresholding on the singular values.

3. Fixing W, J, T, solve (9) for P and Q by the following
problem, denoted by LRS-3,

min
P,Q
‖P‖∗ + β‖Q‖1

+
µ1

2
‖Y −P−Q+

Y1

µ1
‖2F

+
µ3

2
‖P−T+

Y3

µ3
‖2F

(14)

which is a slight variation of the low-rank representation
problem (Liu, Lin, and Yu 2010), and the linear ADM so-
lution is,

Pk+1 = D1/βp
(PK − FK

P/βp) (15)

Qk+1 = Sβ/µ1
(Y −P+Y1/µ1) (16)

where D is the singular value thresholding (Cai and Shen
2010), S is the shrinkage operator (Zhang et al. 2012), βP =
(µ1 + µ2)τP /2, τP > ρ(IT I) is the proximal parameter,
ρ(IT I) denotes the spectral radius of ρ(IT I), and Fk

P is the
derivative by Pk for the second and third terms in Eq. (14),

FK
P = µ1(P−Y +Q) + µ3(P−T) +Y3 −Y1 (17)

4. With P, Q, W, J fixed, the computation of T is inde-
pendent, we obtain the following optimization problem for
T by taking the derivative of Eq. (9), denoted by LRS-4,

min
T

η

2
‖T−WX‖2F +

µ3

2
‖P−T+

Y3

µ3
‖2F (18)

which is also an ordinary least squares problem, to which
the solution is,

T = (ηWX+ µ3P+Y3)(ηId + µ3Id)
−1 (19)

Finally, the Lagrange multiplier matrices Y1, Y2, Y3

and regularization terms µ1, µ2, µ3 are updated based on
LADM,

Yk+1
1 = Yk

1 + µk+1
1 (Y −P−Q)

Yk+1
2 = Yk

2 + µk+1
2 (W − J)

Yk+1
3 = Yk

3 + µk+1
3 (P−T)

µk+1
1 = min(µmax, ρµ

k
1)

µk+1
2 = min(µmax, ρµ

k
2)

µk+1
3 = min(µmax, ρµ

k
3)

(20)

where ρ is a positive scalar.
The entire optimization procedure will be terminated

when W, P and Q are all small. Despite the algorithm does
not guarantee a global optimum, we found that it performs
well in our experiments.

Computation Complexity Analysis
In the iterations of the proposed method, the computational
costs are mainly matrix inversion and SVD. For the sample
matrix X ∈ Rd×n and the label matrix Y ∈ {0, 1}k×n,
computation complexity of full SVD is O(dk2)(d > k).
Each iteration of LRS-3 mainly includes SVD. Then the
whole computational complexity for LRS-3 is O(t1 ∗ dk2)
and t1 is the iteration number of LRS-3. Similar to LRS-
3, the whole computation complexity for LRS-2 is O(t1 ∗
dk2). LRS-1 and LRS-4 contain iterations of matrix inverse,
whose complexity is same as O(t1 ∗ d3). Hence, the total
complexity for PML-LRS is O(T ∗ (t1 ∗ dk2 + t1 ∗ d3)).

Experiments
In this section, we first describe our experimental setup, in-
cluding the benchmark data sets, comparing algorithms, and
evaluation metrics. Then we present three sets of experi-
ments to verify the effectiveness of the proposed PML-LRS
approach, where the first experiment reports the detailed ex-
perimental results of six comparing algorithms on the data
sets respectively, the second experiment use Friedman test
(Demšar 2006) as the statistical test to analyze the relative
performance among the comparing algorithms, and the third
experiment evaluates the parameters sensitivity of the pro-
posed algorithm.

Data sets
We perform experiments on six data sets. These data sets
spanned a broad range of applications: corel5k for image
annotation, CAL500 and emotions for music classification,
genbase for protein classification, medical for text cate-
gorization and delicious for web categorization. Ten-fold
cross-validation is performed on the benchmark data sets,
where the mean metric value, as well as standard deviation,
are recorded for each comparing algorithm. Specifically, we
illustrate the number of instances, number of classes and do-
main for each data set in Table 1.

Experimental Setup
Evaluation Metrics: In this paper, five widely-used multi-
label metrics are employed for performance evaluation, in-
cluding ranking loss, hamming loss, one error, coverage,
and average precision. These evaluation metrics consider
the performance of multi-label predictor from various as-
pects, whose values all vary between [0,1]. Concrete metric
definitions can be found in (Zhang and Zhou 2014). For the
one error, coverage and ranking loss and hamming loss, the
smaller the values the better the performance. For the av-
erage precision metrics, the larger the values, the better the
performance.

Baselines: To show the advantages of the proposed PML-
LRS method, we implemented six state-of-the-art methods
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Table 1: Characteristics of the multi-label experimental data sets.

Data set Instance Dim Class Labels Domain
emotions (Trohidis et al.2008) 593 72 6 music
CAL500 (Turnbull et al.2008) 500 68 174 music
genbase (Diplaris et al.2005) 662 1186 27 biology
medical(Pestian et al.2007) 978 1449 45 text
corel5k(Duygulu et al.2002) 5000 499 374 images

delicious(Tsoumakas et al.2008) 14000 500 983 text

Table 2: Comparison of PML-LRS with state-of-the-art multi-label learning approaches on five evaluation criteria. The best
performance is bolded.

Data BR-R RankSVM Maxide ML-kNN LIFT PML-fp PML-LRS
Ranking Loss(the smaller, the better)
CAL500 .266± .0193 .241± .020 .188± .033 .183± .007 .186± .011 .209± .006 .110± .037
Emotions .176± .017 .138± .001 .375± .071 .157± .042 .262± .024 .170± .002 .115± .024
Medical .024± .008 .015± .001 .133± .037 .042± .011 .046± .008 .125± .008 .075± .004
Genbase .002± .002 .005± .021 .184± .044 .007± .005 .037± .004 .002± .000 .001± .001
Corel5k .233± .011 .130± .003 .098± .037 .134± .006 .125± .005 .065± .014 .049± .029

Delicious .269± .000 .148± .009 .248± .023 .151± .013 .143± .007 .221± .027 .088± .005
Hamming loss(the smaller, the better)
CAL500 .449± .007 .437± .020 .461± .003 .345± .001 .342± .004 .170± .026 .116± .009
Emotions .469± .016 .306± .031 .645± .013 .506± .025 .567± .023 .233± .017 .255± .013
Medical .659± .002 .591± .001 .699± .000 .584± .002 .531± .003 .523± .010 .506± .088
Genbase .347± .003 .341± .005 .499± .001 .258± .002 .235± .002 .034± .006 .035± .022
Corel5k .639± .021 .634± .046 .795± .022 .519± .000 .512± .001 .428± .003 .409± .004

Delicious .527± .000 .522± .012 .698± .035 .417± .022 .418± .009 .348± .018 .218± .007
One Error(the smaller, the better)
CAL500 .268± .042 .241± .001 .196± .085 .122± .025 .899± .046 .157± .022 .102± .078
Emotions .281± .051 .468± .036 .514± .065 .277± .079 .712± .067 .333± .016 .175± .038
Medical .258± .025 .163± .001 .722± .065 .245± .032 .895± .029 .471± .023 .420± .004
Genbase .022± .012 .019± .024 .727± .049 .018± .014 .881± .037 .006± .000 .016± .005
Corel5k .696± .031 .652± .000 .723± .024 .740± .023 .985± .007 .577± .013 .534± .049

Delicious .357± .019 .337± .057 .635± .034 .395± .001 .319± .003 .341± .000 .321± .007
Coverage(the smaller, the better)
CAL500 .610± .010 .541± .018 .815± .065 .754± .020 .769± .032 .641± .001 .574± .108
Emotions .483± .027 .447± .030 .644± .059 .459± .042 .520± .032 .458± .008 .416± .023
Medical .327± .011 .290± .034 .343± .083 .164± .023 .162± .002 .541± .018 .112± .004
Genbase .133± .005 .129± .018 .121± .025 .117± .032 .085± .007 .299± .017 .047± .003
Corel5k .487± .020 .451± .045 .475± .173 .308± .015 .295± .013 .431± .018 .404± .115

Delicious .752± .003 .739± .000 .808± .029 .597± .023 .774± .021 .521± .013 .428± .028
Average Precision(the greater, the better)
CAL500 .463± .015 .441± .037 .505± .046 .491± .015 .454± .015 .459± .000 .638± .061
Emotions .785± .023 .654± .001 .622± .056 .803± .044 .632± .030 .773± .063 .859± .026
Medical .830± .017 .889± .037 .425± .054 .811± .028 .518± .030 .636± .025 .663± .005
Genbase .996± .002 .958± .000 .448± .047 .973± .013 .573± .021 .998± .014 .995± .000
Corel5k .237± .014 .229± .003 .256± .022 .245± .010 .212± .005 .404± .029 .419± .038

Delicious .344± .027 .340± .041 .278± .051 .333± .008 .328± .000 .451± .000 .384± .007
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(a) Ranking Loss (b) Hamming loss (c) One Error

(d) Coverage (e) Average Precision

Figure 2: Comparison of PML-LRS (control algorithm) against six comparing algorithms with the Bonferroni-Dunn test. Al-
gorithms not connected with PML-LRS in the CD diagram are considered to have a significantly different performance from
the control algorithm (CD=3.2308 at 0.05 significance level).

for comparison. For the comparing algorithms, parameter
configurations are adopted by the suggestions in the respec-
tive literatures.
• Binary Reference Model based on RBF Kernel (BR-

R) (Boutell et al. 2004). This is a first-order base-
line approach which decomposes the multi-label learning
problem into independent binary classification problems,
whereas the label correlation is not taken into considera-
tion.

• Ranking Support Vector Machine (RankSVM) (Elisseeff
and Weston 2002). The basic idea of this algorithm is to
adapt maximum margin strategy to deal with multi-label
data, where a set of linear classifiers are optimized to min-
imize the empirical ranking loss and enabled to handle
nonlinear cases with kernel tricks.

• Matrix Completion using Side Information (Maxide) (Xu,
Jin, and Zhou 2013). It is a matrix completion based ap-
proach for transductive multi-label learning by exploiting
side information matrices.

• Multi-Label k-Nearest Neighbor (ML-kNN) (Zhang and
Zhou 2007). A nearest neighbor based multi-label classifi-
cation method. The number of nearest neighbors is chosen
by cross-validation. ML-kNN is a very popular baseline in
the multi-label learning literature due to its simplicity.

• Multi-Label Learning with Label Specific Features (LIFT)
(Zhang and Wu 2015). In contrast to existing multi-label
learning methods which focus on exploiting label corre-
lations, it tries to exploit label-specific features for multi-
label learning.

• Partial Multi-Label Learning (PML-fp) (Xie and Huang
2018). It is a recently proposed partial multi-label learn-
ing solution. It introduces confidence value to evaluate the
probability of being the ground-truth label for each can-
didate label, and alternatively optimize the classification
model and the confidence values to solve the PML prob-
lem. (Xie and Huang 2018) offers two options to further
exploit either the local structure of the feature space or the
label correlations. Here, we choose PML-fp as a compar-
ison algorithm.

Table 3: Friedman statistics FF in terms of each evaluation
metric and the critical value at 0.05 significance level ( #
comparing algorithms k = 7, # data sets N = 6).

Evaluation metric FF critical value
Ranking Loss 5.6779
Hamming Loss 2.5398
One Error 8.2020 2.4205
Coverage 4.7622
Average Precision 4.5459

To create partial multi-label assignments for the training
data, for each sample xi, we randomly add the irrelevant
noisy labels of xi with a% number of ground-truth labels,
and we vary the a% in the range {5%, 10%, 50%, 100%}.
To examine the performance of the proposed algorithm, we
performed experiments with all possible percentages of the
noisy labels. PML-LRS is compared with other methods on
each data set with respect to each criterion. Statistical sig-
nificance is examined with the Friedman test at 95% signifi-
cance level. But considering the page limit, we cannot report
all results with every possible percentage of the noisy labels.
Instead, we report the detailed results for a more robust noisy
label percentage, i.e., the number of irrelevant noisy labels
is identical to the number of labeled relevant labels.

Performance Comparison
Table 2 reports the detailed experimental results of six com-
paring algorithms, where the best performance among the
comparing algorithms is shown in boldface. When compared
with other methods, our algorithm shows significant supe-
riority. Among the six compared multi-label approaches,
PML-fp shows some superiority, and achieves the best per-
formance of 3 criteria on genbase . RankSVM shows the
best performance of 3 criteria on medical .

Meanwhile, Friedman test (Demšar 2006) is used as the
statistical test to analyze the relative performance among
the comparing methods in this paper. Table 3 summarizes
the Friedman statistics FF and the corresponding critical
value on each evaluation metric. For each evaluation metric,
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(a) performance curve with γ changes
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(b) performance curve with β changes
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(c) performance curve with η changes

Figure 3: Results of PML-LRS with varying value of trade-off parameters.

the null hypothesis of indistinguishable performance among
the comparing algorithms is rejected at the 0.05 significance
level.

Therefore, the post-hoc Bonferroni-Dunn test (Demšar
2006) (Zhang, Zhong, and Zhang 2018) is employed to show
the relative performance among the comparing algorithms.
Here, PML-LRS is treated as the control algorithm whose
average rank difference against the comparing algorithm is
calibrated with the critical difference (CD). Accordingly,
PML-LRS is deemed to have a significantly different per-
formance to one comparing algorithm if their average ranks
differ by at least one CD (CD=3.2308 in this paper: # com-
paring algorithms k = 7, # data sets N = 6). Figure 2 illus-
trates the CD diagrams (Demšar 2006) on each evaluation
metric, where the average rank of each comparing algorithm
is marked along the axis (lower ranks to the right). In each
subfigure, any comparing algorithms whose average rank is
within one CD to that of PML-LRS is interconnected to each
other with a thick line.

Overall, the following observations can be made based on
the above experimental results:

• On six data sets (Table 2) across all evaluation metrics,
PML-LRS ranks 1st in 66.7% cases and ranks 2nd in
16.7% cases.

• It is noteworthy that PML-LRS achieves optimal (lowest)
average rank in terms of all evaluation metrics except av-
erage precision. Furthermore, no algorithm significantly
outperforms PML-LRS across all evaluation metrics.

• PML-LRS significantly outperforms Maxide and BR-R in
terms of all evaluation metrics. PML-fp also significantly
outperforms other methods in the evaluation metrics of
hamming loss, one error, and average precision on gen-
base and delicious .

• One exception is on the data set medical , where
RankSVM outperforms our methods over 3 criteria. This
is probably because there are too few training examples
to acquire the structure information.

• PML-LRS is comparable to PML-fp in terms of hamming
loss, one error, average precision and significantly outper-
forms PML-fp on all the other cases.

Parameter Analysis
At last, we study the influences of the three parameters, γ,
β and η for the proposed method on the medical data set.
Our experiment is accomplished by using the grid search
method which conducts the parameter analysis by varying
three parameters simultaneously. The experimental results
are shown in Figure 3 which are measured by the five eval-
uation metrics. It can be seen that how the performance of
our algorithm varies as these parameters change. Therefore
we should safely set them in a wide range in practice. From
this figure, we can notice that better performances are gained
when γ = 0.01, β = 0.1, and η = 1.

Conclusion
In this paper, we presented a novel approach to address the
partial multi-label learning problem in a principled manner.
The key to solve the partial multi-label learning problem is
identifying the ground-truth labels from the redundant la-
bel matrix. The proposed algorithm attempted to utilize the
idea of low-rank and sparse decomposition to capture the
ground-truth label matrix and irrelevant label matrix from
the observed candidate label matrix while training the pre-
diction model simultaneously. Extensive experimental re-
sults demonstrated that our approach is effective and out-
performs other baseline methods on several data sets.
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