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Abstract

A vine copula model is a flexible high-dimensional depen-
dence model which uses only bivariate building blocks. How-
ever, the number of possible configurations of a vine cop-
ula grows exponentially as the number of variables increases,
making model selection a major challenge in development.
In this work, we formulate a vine structure learning problem
with both vector and reinforcement learning representation.
We use neural network to find the embeddings for the best
possible vine model and generate a structure. Throughout ex-
periments on synthetic and real-world datasets, we show that
our proposed approach fits the data better in terms of log-
likelihood. Moreover, we demonstrate that the model is able
to generate high-quality samples in a variety of applications,
making it a good candidate for synthetic data generation.

1 Introduction
The machine learning (ML) community is increasingly in-
terested generative modeling. Broadly, generative modeling
consists of modeling either both the joint distribution of
data and classes for supervised learning or of modeling only
the joint distribution of data for unsupervised learning. In
tasks involving classification, a generative model is useful
to augment smaller, labeled datasets, which are especially
problematic when developing deep learning applications for
novel fields (Wang and Perez 2017).

In unsupervised learning (clustering), a generative model
supports development of model-driven algorithms (where
each cluster is represented by a model). These algorithms
scale better than data-driven algorithms, and are typically
faster and more reliable. Additionally, these algorithms are
crucial tools in tasks that don’t easily fit in the super-
vised/unsupervised paradigm, including, for example, sur-
vival analysis - e.g. predicting when a chronically ill person
will return to the hospital, or how long will a project last in
a Kickstarter (Vinzamuri, Li, and Reddy 2014).

Synthetic data generation - i.e. sampling new instances
from joint distribution - can also be carried out by a gener-
ative model. Synthetic data has found multiple uses within
machine learning. On one hand, it is useful for testing the
scalability and the robustness of new algorithms; on the
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other, it is safe to be shared openly, preserving the privacy
and confidentiality of the actual data (Li et al. 2014).

The central underlying problem for generative modeling
is to construct a joint probability distribution function, usu-
ally high-dimensional and comprising both continuous and
discrete random variables. This is often accomplished by us-
ing probabilistic graphical models (PGM) such as Bayesian
networks (BN) and conditional random fields (CRF), to
mention only two of many possible approaches (Jordan
1999; Koller and Friedman 2009). In PGM, the joint proba-
bility distribution obtained is simplified due to assumptions
on the dependence between variables, which is represented
in form of a graph. Thus the major task for PGM is the pro-
cess of learning such a graph; this problem is often under-
stood as a structure learning task that can be solved in a con-
structive way, adding one node at a time while attempting
to maximize the likelihood or some information criterion. In
PGM, continuous variables are quantized before a structure
is learned or parameters identified, and, due to this quantiza-
tion, this solution looses information and scales poorly.

Copula functions are joint probability distributions in
which any univariate continuous probability distribution can
be plugged in as a marginal. Thus, the copula captures the
joint behaviour of the variables and models the dependence
structure, whereas each marginal models the individual be-
haviour of its corresponding variable. In other words, the
choice of the copula and the marginals results in the con-
struction of the joint probability distribution directly (Nelsen
2006). However, in practice, there are many bivariate copula
families but only a few multivariate ones, with the Gaus-
sian copula and the T-copula being the most prominent. For
this reason, these two families have been used extensively,
leading to models that most of the time outperform the mul-
tivariate normal (MVN). However, these models still assume
a dependence structure that may only loosely capture the in-
teraction between a subset of variables. The strongest and
most well-known case against the abuse of Gaussian cop-
ula can be observed in (MacKenzie and Spears 2014). The
key problem pinpointed in that work is that financial quan-
tities are seldom jointly linear, and even if so, the measure
of such association, i.e. the correlation, is not stable across
time. Therefore, the Gaussian bivariate copula, whose pa-
rameter is the correlation between its covariates, is a bad
choice. Other copula families depend on non-linear degrees
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of association such as Kendall’s τ , but it is equally unwise
to model the joint behavior of more than two covariates with
any of them on the hope that a single scalar will be able to
capture all the pairwise dependencies.

Vine copulas provide a powerful alternative in modeling
dependence of high-dimensional distributions (Kurowicka
and Joe 2011). To explicate, consider the same case pre-
sented in (MacKenzie and Spears 2014) under three dis-
tinct generative models. Let the multivariate normal distri-
bution (MVN) be the first one, the Gaussian copula next,
and finally a vine model. For the sake of simplicity, let
us also assume that there are three covariates involved, xi,
for i = {1, 2, 3} with probability density functions (PDF)
fi(xi). Hence, the MVN correlation matrix R ∈ [−1, 1]3×3.
Since the marginals of MVN are also normal whereas the ac-
tual marginals fi might be very different, samples from the
MVN are very likely to represent the actual data poorly. In
this case, one would then proceed by finding f̂i(xi), the best
match with the actual marginals fi(xi). Together with the
Gaussian copula, a more accurate model is thus constructed
and sampled. If covariates are not jointly linear, samples will
differ from actual data; for example, when x1 and x2 occur
jointly in similar rank positions, but not necessarily in linear
correlation, Kendall’s τ rank correlation is a much better pa-
rameter, and this pair of covariates would be better modeled
by a copula parameterized by τ , such as the Clayton, the
Frank or the Gumbel family, to mention only the most pop-
ular ones. This copula would be the first block of the vine
model. Following with the example, next we have to plug
the third covariate to either the left end or the right end of
the tree, the decision is due to some metric such as likeli-
hood, information criteria, goodness-of-fit, etc, with another
copula following the same procedure. Thus, the first tree for
three covariate would be ended. For the second tree, the cop-
ulas (edges) in the previous trees are now nodes that are to
be linked. Since we only have two, they can only form one
possible bond, and the construction ends for we cannot iter-
ate once more.

The dependence structure in Vine Copula is constructed
using bivariate copulas as building blocks; thus, two or more
variables can have a completely different behavior than the
rest. A vine is represented as a sequence of trees, organized
in levels, so they can be considered as a PGM. Another dis-
tinctive feature of vine copulas is that the joint probability
density factorization resulting from the entire graph can be
derived by the chain rule. In other words, theoretically, there
are no assumptions about the independence between pairs
of variables, and in fact the building block in such a case is
the independence copula. However, in practice usually only
the top levels of a vine are constructed. Therefore, learning a
vine has the cost of learning the graph, tree-by-tree, plus the
cost of selecting the function that bonds each pair of nodes.
The problem is more challenging when the vine is pruned
from one level downwards to the last. Yet this effort is re-
warded by a superior and more realistic model.

This paper presents the following contributions. Firstly,
we formulate the model selection problem for regular vine
as a reinforcement learning (RL) problem and relax the tree-
by-tree modeling assumption, where each level of tree is se-

lected sequentially. Moreover, we use long-short term mem-
ory (LSTM) networks in order to learn from vine config-
urations tested long and short ago. Second, as far as we are
aware, this work is the first to use regular vine copula models
for generative modeling and synthetic data generation. Fi-
nally, a novel and functional technique for evaluating model
accuracy is a side result of synthetic data generation. We
propose that a model can be admitted if it generates data
that produces a performance similar to the actual data on a
number of ML techniques; e.g. decision trees, SVM, Neural
Networks, etc.

The rest of the paper is organized as follows. In section 2,
we present the literature related to the topics of this paper. In
section 3, we introduce the definition and construction of a
regular vine copula model. Section 4 describes our proposed
learning approach for constructing regular vine model. In
section 5, we apply the algorithm to several synthetic and
real datasets and evaluate the model in terms of fitness and
the quality of the samples generated.

2 Motivation and Related work
The rise of deep learning (DL) in the current decade has
brought forth new machine learning techniques such as con-
volutional neural networks (CNN), long-short term mem-
ory networks (LSTM) or generative adversarial networks
(GAN) (Goodfellow, Bengio, and Courville 2016). These
techniques outrank the state-of-the-art in problems from
many fields, but require large datasets for training, which
can be a significant problem given that often collecting data
is expensive or time consuming. Even when data is already
collected, often it cannot be released due to privacy or confi-
dentiality issues. Synthetic data generation, currently a well
researched topic in machine learning, provides a promis-
ing solutions for these problems (Alzantot, Chakraborty,
and Srivastava 2017; Libes, Lechevalier, and Jain 2017;
Soltana, Sabetzadeh, and Briand 2017; Sagduyu, Grushin,
and Shi 2018). Generative models - that is, high-dimensional
multivariate probability distribution functions - are a natu-
ral way to generate data. More recently, the rise of GAN
and its variations provides a way of generating realistic
synthetic images (Goodfellow, Bengio, and Courville 2016;
Ratner et al. 2017).

Copula functions, and PGM involving copulas and vines,
have gained momentum in ML since the early proposal
of the copula based regression models (Kolev and Paiva
2009) and copula Bayesian networks (Elidan 2010). Gaus-
sian process vine copulas were introduced in (Lopez-Paz,
Hernandez-Lobato, and Ghahramani 2013). The Copula
Discriminant Analysis (CODA) is a high-dimensional clas-
sification method based on the Gaussian Copula proposed
in (Han, Zhao, and Liu 2013). The multi-task copula was
introduced in (Zhou and Tao 2014) for multi-task learning.
A copula approach has been applied to jointly modeling of
longitudinal measurements and survival times in AIDS stud-
ies (Ganjali and Baghfalaki 2015). A vine copula classifier
has performed competitively compared to the four best clas-
sification methods presented at the Mind Reading Challenge
Competition 2011 (Carrera, Santana, and Lozano 2016).
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In this paper we obtain them by means of a copula func-
tion based PGM known as Vine. Vines were first introduced
in (Bedford and Cooke 2001) as a probabilistic construction
of multivariate distributions based on the simple building
blocks of bi-variate copulas. These constructions are orga-
nized graphically as a sequence of nested undirected trees.
Compared to black-box deep learning models, vine copula
has better interpretability since it uses a graph like structure
to represent correlations between variables. However, learn-
ing a vine model is generally a hard problem. In general,
there exists d!

2 2(d−2
2 ) different d-dimensional regular vines

with d variables, and |B|(
d
2) different combinations of bi-

variate copula families where |B| is the size of the candidate
bivariate families (Morales-Napoles 2010).

To reduce the complexity of model selection, (Dissmann
et al. 2013) proposed a tree-by-tree approach that selects
each tree T1, ..., Td−1 sequentially, with a greedy maximum-
spanning tree algorithm where edge weights are chosen to
reflect large dependencies. Although this method works well
in lower-dimensional problems, the greedy approach does
not ensure optimal solutions for high-dimensional data. Gru-
ber and Czado (2015, 2018) proposed a Bayesian approach
to estimate regular vine structure along with the pair copula
families from an arbitrary set of candidate families. How-
ever, the sequential, tree-by-tree, Bayesian approach is com-
putationally intensive and cannot be used for more than 20
dimensions. A novel approach to high-dimensional copulas
has been recently proposed by Müller and Czado (2018).

In this paper, we reformulate the model selection as a se-
quential decision-making process, and cast it as an RL prob-
lem, which we solve with policy learning (Sutton and Barto
1998). Additionaly, when constructing the Vine, a decision
made in the first tree can limit the choices in construction
of subsequent trees. Therefore, we cannot assure the marko-
vian property, i.e. that the next state depends only of the cur-
rent state and current decisions. Such a non-markovian prop-
erty suggests the use of Long Short Term Memory (LSTM)
(Hochreiter and Schmidhuber 1997). LSTM in conjunction
with model-free RL was presented in (Bakker 2001) as a
solution to non-Markovian RL tasks with long-term depen-
dencies.

3 Regular Vine Copula
In this section we summarize the essential facts about the
meaning of the vine graphical model and how it is trans-
formed into a factorization of the copula density function
that models the dependence structure. A deeper explanation
about vines can be found in (Aas et al. 2009).

According to Sklar’s theorem, the copula density function
is what it needs to complete the joint probability density of
d continuous covariates in case they are not independent.
In other words, if the individual behaviour of covariate xi
is given by the marginal probability density function fi(xi)
for i = 1, . . . , d, then the copula c brings the dependence
structure into the joint probability distribution. Such a struc-
ture is also independent of every covariate distribution, so it
is usually represented as a function of a different set of vari-
ables {ui}, that are referred to as transformed covariates.

Figure 1: (a-h) All the different layouts of every possible
tree in a 5-dim vine. (a-c) correspond to the 1st level, (d-e)
correspond to the 2nd level, (f,g,h) are the unique possible
layouts for trees in 3rd, 4th and 5th level respectively.

Figure 2: An example of 5-dim vine constructed with layouts
{b,e,f,g,h} in Figure 2, and a valid choice of edges in it. For
the sake of clarity, there is only one edge with the detail of
its copula family and parameter.

Formally expressed, we have:

f(x1, x2, . . . , xd) = c(u1, u2, . . . , ud)

d∏
i=1

fi(xi),

where ui = Fi(xi).
There are many families of parametric bivariate copula

functions but only a few parametric d-variate ones. Among
the latter, Gaussian and T copulas are quite flexible because
depend on the correlation matrix of the transformed covari-
ates. A better approach is to use bivariate copulas as building
blocks for multivariate copulas. This solution was first pre-
sented in (Joe 1996). Bedford and Cooke (2001) later devel-
oped a more general factorization of multivariate densities
and introduced regular vines.

Definition 3.1 (R-Vine on d variables) A regular vine on d
variables consists of d−1 connected trees T1, ..., Td−1, that
satisfy the following:
1. T1 consists of the node set N1 = {1, ..., d}, where each

variable is represented by only one of the nodes; and the
edge set E1, with each edge representing a copula that
links two variables.

2. For i = 2, . . . , d − 1, the tree Ti consists of the node set
Ni = Ei−1 and the edge set Ei

3. Each Tree Tk has exactly d−k edges, for k = 1, . . . , d−
1. Two nodes in Tree T1 can always form an edge in T1.
Two nodes in Tree Ti, with i ≥ 2, can form an edge in
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Ti only if their corresponding edges in Tree Ti−1 share a
common node.

The regular vine copula (V,BV , θV) has density function
defined as:

c(u;V,BV , θV) =
∏
Tk∈V

∏
e∈Ek

cBe
(ui(e)|D(e), uj(e)|D(e); θe)

where BV is the set of bivariate copula families selected for
the Vine V and θV the corresponding parameters.

For the sake of clarity, let us consider 5 variables
x1, . . . , x5, and that they have been already transformed
via their corresponding marginals into u1, . . . , u5, so uk =
fk(xk). According to definition 3.1, a Tree T1 will have
5 nodes and 4 edges. Therefore, its layout will necessarily
be one out of those displayed in Figure 1(a–c). Each one
of these layouts leads to many possible and different trees
T1, depending on how variables are arranged in the layout.
For this example, let us assume that such an arrangement
happens to be the one shown in the tree T1 of Figure 2,
in which it has been explicitly shown that the dependence
(edge) between u3 and u5 is modeled with a Clayton cop-
ula, with parameter θ = 1.7. The layout of the next tree, T2
may, or may not be one out of Figure 1(d–e). It depends on
whether it satisfies the third requirement. In this example,
the T1 layout in Figure 1(a) imposes the layout in T2 to be
exclusively the one in Figure 1(d), resulting in the so called
D-Vine. On the other hand, the T1 layout in Figure 1(b) al-
lows both Figures 1(d) and 1(e) to be layouts for T2. When
arranging the variables in the layout, it is a good practice
to write the actual variables, and not the edges of the prece-
dent tree. Then, all variables shared in both nodes of an edge
are turned into conditioning variables, and the remaining are
conditioned. Eventually, the factorization of the copula den-
sity is the product of all the nodes from T2 on. Thus, copula
density of the vine shown in Figure 2 is

c(u1, . . . , u5) =
c14c24c34c35c13|4c45|3c23|4c15|34c25|34c12|345

where the cij|k.. denotes the bi-variate copula density
c
(
Fi(xi|xk, ..), (Fj(xj |xk, ..)

)
.

4 Methodology
Model selection for vine is essentially a combinatorial prob-
lem over a huge search space, which is hard to solve with
heuristic approaches. Dissmann proposed a tree-by-tree ap-
proach (Dissmann et al. 2013) , which selects maximum
spanning trees at each level according to pairwise depen-
dence. The problem with this locally greedy approach is that
there is no guarantee that it will select a structure that is close
to the optimal structure.

In this section, we describe in details our learning ap-
proach for regular vine copula construction. In order to feed
a vine configuration using a neural network based meta
learning approach, we need to represent it in a compact way.
Complexity arises since the construction of each level of tree
depends on previous level’s tree. The generated vine also
needs to satisfy the following desirable properties:

• Tree Property Each level in the vine should be a tree with
no cycles.

• Dependence Structure The layout of each level tree de-
pends on its previous level’s tree.

• Sparsity In general, a sparse model where most of edges
are independent copulas are preferred.

Next we compare two different representations for a regular
vine model: Vector representation and RL representation.

Vector Representation
An intuitive way to embed a vine is to flatten all edges in the
vine into a vector. Since the number of edges in the vine is
fixed, the network can output a vector of edge indices. The
representation proposed is depicted in Figure 3.

Let the set of edges in each tree be Tk, the likelihood of
the generated configuration can be computed as:

L =
∑
Tk∈V

∑
e∈Ek

log cBe
(ui(e)|D(e), uj(e)|D(e); θe))

If the generated configuration contains a cycle at level k, a
penalty will be subtracted from the objective function. The
penalty will decrease with the level, indicating that since
later trees depend on early trees, violation in tree property
in early levels will incur a larger penalty. Let the number of
cycles at level k ∈ {1 . . .K} be Ck, thus the penalty due to
violation of tree property can be computed as:

J1 =
1

k

K∑
k=1

Ck

In practice, most variables are not correlated and the vines
tend to be sparse. To avoid over-fitting, we favor smaller
edges in the vine graph by adding a penalty term J2, defined
as:

J2 =
1∑K

k=1 |Ek|
At each training iteration, we are maximizing the following
objective function:

Jφ = L − λJ1 + µJ2

where λ and µ are hyper-parameters that can be tuned.

Reinforcement Learning Representation
One problem with the vector representation is that the vine
configuration generated are not guaranteed to satisfy the tree
property at each training step. On the other hand, the con-
struction of the vine model can also be seen as a sequential
decision making process: At each step, the set of nodes N
are partitioned into two sets, NL and NR, where NL de-
notes set of nodes that have been already added to the vine,
and NR denotes set of nodes that are not in the vine. When
building tree Tk, in each step a node in NR is selected and
linked to a node inNL, which is equivalent to adding a new
edge to the tree Tk. Since pair of nodes already in the vine
will never be selected at the same time, there won’t be cy-
cles forming, and therefore the tree property is maintained
throughout the construction.
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Figure 3: A example of the vector representation of vine.
The model takes in a random initial configuration vector and
search for the best vector that maximizes the objective func-
tion using a fully connected neural network (FCNN). The
first element in the output vector (“Φ”) means that first node
in T1 is not connected, the second element (“1”) means that
second node in T1 is connected to 1, etc. The layout on the
right shows how to take the output vector and assembles it
into a regular vine.

After we obtain the set of edges Ek for tree k, we re-
peat the process for the next level of tree. The decision pro-
cess can be defined as a fixed length sequence of actions of
choosing E1, E2, E3, ... where |Ek| = d−k. For an untrun-
cated vine with d variables, the total number of edges adds
up to d(d−1)

2 . Motivated by recent developments in RL, we
reformulate the problem in its syntax.

States Let et be the t-th edge added to the vine model,
which consists of a pair of indexes (lt, rt). At step t, the
states can be represented by the current set of edges in the
vine Et, and the partitioned vertices set NL

t and NR
t . For-

mally st = (Et,NL
t , NR

t ) is the state representation for the
current vine at step t.

Actions The set of possible actions consists of all pairs of
nodes that can be added to the current tree. Formally As =
{(lt, rt) : iL ∈ NL, iR ∈ NR}.
Rewards The log likelihood of fitting a data point x to the
vine st at step t can be decomposed into a set of trees and a
set of independent nodes inNR

t that have not been added to
the tree:

L(x, st) =
∑

e∈Et,e=(l,r)

log(cBe
(ul|D(e), ur|D(e); θe)

+
∑
i∈NR

t

log(ui)

where L(x, s0) =
∑
v∈N log(uv).

Then the incremental reward at state St can be defined as:

Rlikelihood(St) = L(x, st)− L(x, st−1)

= cBet
(ult|D(et), urt|D(et); θet)

− log(urt)

where et is the newly added edge to the vine.
As before, we add a penalty term to avoid over-fitting.

Hence, the total reward is defined as:

R = Rlikelihood + λRpenalty

Policy Network Let Pr be the true underlying distribution,
and Pc be the distribution of the network. Our goal is to learn
a sequence of edges (pair of indices) E of lengthN−1 such
that the following objective function is maximized:

Jφ = Eτ∼Pc
Ex∼Pr

[
L(x, s0) +

N−1∑
t=1

R(st)

]
Let πφ be the stochastic policy defined implicitly by network
Cφwith parameters φ. The policy gradient of the above ob-
jective function Jφ can be computed as:

∇φJ(φ) = Eτ∼PcEx∼Pr

[
N−1∑
t=1

R(st)∇φlogπφ(τt|ŝt−1)

]
At each step, the policy network outputs a distribution over
all possible actions, from which an action (edge) is sam-
pled. Following standard practice, the expectation is approx-
imated by sampling n data points and m action sequences
per data point. Additionally, we use discounted reward and
subtract a baseline term to reduce variance of gradients
(Greensmith, Bartlett, and Baxter 2001).

Figure 4: Algorithm for learning vine structure

When constructing the Vine, a decision made in the first
tree can affect to the nodes in deeper trees. Therefore, we
cannot assure the markovian property, i.e. that the next state
depends only of the current state and current decisions. A
natural choice will be to adopt LSTM as a solution to this
non-Markovian reinforcement learning tasks with long-term
dependencies. Once the configuration is determined, we can
find copula family and parameter for each edge following
the method described in the following section.

Pair Copula Selection
For each edge, we estimate the log-likelihood of the empiri-
cal density, and both the fit to the left tail and to the right tail.
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Figure 5: A example of a training step for a 4-dim vine with
RL formulation. The set of nodes is partitioned into VL =
{1, 3} and VR = {2, 4}. Node 1 in VL and node 2 in VR is
sampled by the policy network and edge {1, 2} is added to
the vine.

Then we combine these three measurements in a hard-voting
fashion to select a bivariate copula family according to the
three-way check methods (Veeramachaneni, Cuesta-Infante,
and O’Reilly 2015). The parameter is estimated according to
its max likelihood fit after fitting the bivariate copula family.
This provides us an approximated reward for adding an edge
that guides us through the search space.

Sampling From A Vine

Figure 6: D-Vine of 4 variables.

After learning a vine model from the data, we can sam-
ple synthetic data from it. Kurowicka and Cooke first pro-
posed an algorithm to sample an arbitrary element from
a regular vine, which they call the Edging Up Sampling
Algorithm (Kurowicka and Cooke 2007). The sampling
procedure requires a complete vine model of n nodes
X1, X2, ..., Xn, and their corresponding marginal distribu-
tions F1, F2, ..., Fn. Considering the case where we have a
D-Vine model with 4 nodes, shown in Figure 6. We start
by sampling univariate distributions u1, u2, u3, u4 from Uni-
form Distribution over [0,1]. We randomly pick a node to
start with, say X2.

Then the first variable x2 ∼ X2 can be sampled as:

x2 = F−12 (u2) (1)

After we have x2, we randomly pick a node connected to
X2. Suppose we pick X3, recall that the conditional density
f3|2 can be written as:

f3|2(x3|x2) = f3(x3)c2,3(F2(x2), F3(x3)) (2)

= f3(x3)c2,3(u2, u3) (3)
= f3(x3)c3|2(u3) (4)

Thus, x3 ∼ X3|X2 can be sampled by:

x3 = F−13 (C−13|2(u3)) (5)

where C3|2 can be obtained from C2,3 in T1 by plugging in
sampled values of u2.

Similarly, we pick a node that shares an edge withX3, say
X4. Then x4 ∼ X4|X2, X3 can be sampled as:

x4 = F−14 ◦ C−14|3 ◦ C
−1
4|23(u4) (6)

Finally x1 ∼ X1|X2, X3, X4 can be sampled as:

x1 = F−11 ◦ C−11|4 ◦ C
−1
1|34 ◦ C

−1
1|234(u1) (7)

For a more general vine graph, we can use a modified
Breadth First Search to traverse the tree and keep track of
nodes that have already been sampled. The general proce-
dure is described in Algorithm 4.

Figure 7: Algorithm for sampling from the learned vine

5 Experiments
Baselines and Experiment Setup
We compare our models with the tree-by-tree greedy ap-
proach (Dissmann et al. 2013), which selects maximum
spanning trees at each level according to pairwise depen-
dence, as well as the bayesian approach (Gruber and Czado
2015). To test our approach, we used constructed examples.
In this we construct vines manually, sample data from them
and then use our learning approach to recreate the vine. We
use two of the constructed examples defined in (Min and
Czado 2010) and compare the results with both the greedy
approach and the Bayesian approach. Second, we used three
real data sets and compared the two approaches. The neural
network used for creating vines for the vector representation
is set-up as fully connected feed forward neural networks
with two hidden layers. Each layer uses ReLU as activation
function and the output layer is normalized by a softmax
layer. The network for the reinforcement learning represen-
tation is set up as LSTM. The algorithm is trained over 50
epochs in the experiments.

Constructed Examples
To illustrate a scenario where the greedy approach might
fail, we independently generate data sets of size 500 from a
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pre-specified regular vine. The fitting abilities of each model
are measured by the ratio of log-likelihood of the estimated
model and log-likelihood of the true underlying model.
• Dense Vine Dense Vine is a 6-dim vine where all bivariate

copulas are non-independent. The bivariate families and
thetas are listed in Table 6.

• Sparse Vine A 6-dim vine where all trees consisted of
independent bivariate copulas except the first tree. In other
words, the vine is truncated after the first level.

Table 1: Comparison of relative log-likelihood on con-
structed examples. All results reported here are based on 100
independent trails.

Dense Sparse Dense
T1 correct

Dissmann relative loglik(%) 76.6 101.3 No
Gruber relative loglik(%) 81.0 100.6 No
Vector relative loglik(%) 80.3 99.8 No
RL relative loglik(%) 84.2 100.2 Yes

In the dense vine example, the RL vine is the only model
able to recover the correct first tree and also achieves the
highest relative log-likelihood. In the sparse vine example,
all four models achieve similar results, among which Diss-
mann obtains the highest likelihood. As argued in (Min and
Czado 2010), the higher likelihood in Dissmann is achieved
at the expense of over-fitting. The two examples demonstrate
the fitness of the model is improved by our model under dif-
ferent scenarios. Moreover, for a 6-dimensional data set of
size 500, the RL algorithm finishes in approximately 15 min-
utes with a single GPU.

Real Data
In this section, we apply vine model to real data sets for the
task of synthetic data generation. The three data sets that
are picked are a binary classification problem, a multi-class
classification problem and a regression problem. The batch
size used is 64 for breast cancer dataset and 128 for the other
two datasets. The three data sets used in experiments are:
• Wisconsin Breast Cancer Describes 30 variables com-

puted from a digitized image of a fine needle aspirate
(FNA) of a breast mass and a binary variable indicating
if the mass is benign or malignant. This dataset includes
569 instances.

• Wine Quality This dataset includes 11 physiochemical
variables and a quality score between 0 and 10 for red
(1599 instances) and white (4898 instances) variants of
the Portuguese ”Vinho Verde” wine.

• Crime The communities and crime dataset includes 100
variables related to crimes ranging from socio-economic
data to law enforcement data and an attribute to be pre-
dicted (Per Capita Violent Crime) . This dataset has 1994
instances.
To evaluate the quality of the synthetic data, we first eval-

uate its log likelihood. As shown in 2, synthetic data gener-
ated from RL Vine achieves the highest log likelihood per
instance in all three datasets.

Table 2: log-likelihood per instance truncated after third tree
Breast Cancer Wine Crime

Dissmann 0.79 0.033 0.26
Vector Rep 0.84 0.037 0.27
RL Vine 0.91 0.045 0.31

Besides log-likelihood, the quality of the generated syn-
thetic data is also evaluated from a more practical perspec-
tive. High quality synthetic datasets enable people to draw
conclusions and make inferences as if they are working with
a real data set. We first use both Dissmann’s algorithm and
our proposed algorithms to learn copula vine models from
a real data set. Later, we generate synthetic data from each
model and train models for target variables on the synthetic
training set as well as real training set, and use the real test-
ing set to compute the corresponding evaluation metric (F1
score for classification and MSE for regression). For ease of
computation, the learned vines are truncated after the third
level, which means all pair copulas are assumed to be inde-
pendent beyond the third level. All results reported are based
on 10-fold cross-validation over different splits of training
and testing set.

As shown in table 2 and table 3, synthetic data from RL
Vine achieves highest F1 score and the results are compara-
ble to real data. For regression data, table 4 demonstrates that
synthetic data obtains lowest Mean Squared Error (MSE)
among the models. The results shown demonstrate that our
proposed model improve the overall model selection and is
able to generate reliable synthetic data.

Table 3: F1 score of different end classifiers on breastcancer
dataset

Decision Tree SVM 5 layer MLP
Real Data 0.92± 0.01 0.90± 0.02 0.93± 0.02
Dissmann 0.77± 0.12 0.55± 0.05 0.76± 0.06
Vector Rep 0.76± 0.09 0.62± 0.07 0.71± 0.05
RL Vine 0.81± 0.06 0.72± 0.03 0.79± 0.03

Table 4: F1 score of different end classifiers on wine quality
datset (averaged over 11 classes)

Decision Tree SVM 5 layer MLP
Real Data 0.36± 0.016 0.11± 0.015 0.16± 0.016
Dissmann 0.13± 0.008 0.09± 0.006 0.09± 0.006
Vector Rep 0.15± 0.011 0.07± 0.004 0.08± 0.005
RL Vine 0.21± 0.006 0.09± 0.006 0.11± 0.008

Table 5: MSE error of different end classifiers on crime
dataset

Decision Tree SVM 5 layer MLP
Real Data 0.045± 0.004 0.021± 0.001 0.023± 0.001
Dissmann 0.137± 0.016 0.081± 0.009 0.124± 0.053
Vector Rep 0.112± 0.014 0.075± 0.006 0.116± 0.021
RL Vine 0.096± 0.011 0.072± 0.007 0.109± 0.032
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6 Conclusion
In this paper we presented a meta learning approach to cre-
ate vine models for modeling high-dimensional data. Vine
models allow for the creation of flexible structures using
bivariate building blocks. However, to learn the best pos-
sible model, one has to identify the best possible structure,
which necessitates identifying the connections between the
variables and selecting between the multiple bivariate cop-
ulas for each pair in the structure. We formulated the prob-
lem as a sequential decision making problem similar to rein-
forcement learning, used long-short-term memory networks
to simultaneously learn the structure and select the bivari-
ate building blocks. We compared our results to the state of
the art approaches and found that we achieve significantly
better performance across multiple data sets. We also show
that our approach can generate higher quality synthetic data
that could be directly used to learn a machine learning model
replacing the real data.
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7 Appendix
Experiment

Dense Copula Sparse Copula
C1,2 N(0.59) C1,2 N(0.41)
C2,3 C(0.71) C2,3 C(0.50)
C3,4 C180(0.80) C3,4 C180(0.50)
C3,5 N(-0.71) C3,5 N(-0.33)
C3,6 T(0.65,3) C3,6 T(0.49,5)
C1,3|2 G(0.75)
C2,4|3 N(0.41)
C2,5|3 C270(-0.60)
C2,6|3 N(-0.37)
C1,4|2,3 T(0.26,5)
C1,5|2,3 N(-0.26)
C1,6|2,3 C90(-0.56)
C4,6|1,2,3 N(0.13)
C5,6|1,2,3 C(0.20)
C5,6|1,2,3,4 G180(0.52)

Table 6: synthetic vine example. The pair copulas families
used are: Gaussian(N) Clayton(C), Gumbel(G), Student’s
T(T) and their corresponding rotations
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