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Abstract

We propose a probabilistic model for refining coarse-grained
spatial data by utilizing auxiliary spatial data sets. Existing
methods require that the spatial granularities of the auxiliary
data sets are the same as the desired granularity of target data.
The proposed model can effectively make use of auxiliary
data sets with various granularities by hierarchically incorpo-
rating Gaussian processes. With the proposed model, a distri-
bution for each auxiliary data set on the continuous space is
modeled using a Gaussian process, where the representation
of uncertainty considers the levels of granularity. The fine-
grained target data are modeled by another Gaussian process
that considers both the spatial correlation and the auxiliary
data sets with their uncertainty. We integrate the Gaussian
process with a spatial aggregation process that transforms the
fine-grained target data into the coarse-grained target data, by
which we can infer the fine-grained target Gaussian process
from the coarse-grained data. Our model is designed such
that the inference of model parameters based on the exact
marginal likelihood is possible, in which the variables of fine-
grained target and auxiliary data are analytically integrated
out. Our experiments on real-world spatial data sets demon-
strate the effectiveness of the proposed model.

1 Introduction
Many cities around the world are now collecting large
amounts of spatial data from a wide range of sources. Gov-
ernments and other organizations are releasing data on items
such as poverty rate, air pollution, traffic flow, energy con-
sumption and crime (Shadbolt et al. 2012; Goldstein and
Dyson 2013; Barlacchi et al. 2015). Analyzing such spa-
tial data is of critical importance in improving the life qual-
ity of citizens in many fields such as socio-economics (Ru-
pasinghaa and Goetz 2007; Smith, Mashhadi, and Capra
2014), public health (Jerrett et al. 2013), public security (Bo-
gomolov et al. 2014; Wang et al. 2016) and urban plan-
ning (Yuan, Zheng, and Xie 2012). For example, knowing
the spatial distribution of poverty enables us to optimize al-
location of resources for remedial action. Likewise, the spa-
tial distribution of air pollution is useful in creating policies
that can control air quality and thus protect human health.
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(a) Community (b) Borough

Figure 1: The distribution of poverty rates at different spatial
granularities.

Naturally, information at fine spatial granularity is pre-
ferred because it allows us to identify key regions that re-
quire intervention to improve city environments efficiently.
As an example, Figures 1(a) and 1(b) visualize the distri-
butions of poverty rates in New York City by community
district and by borough, respectively; darker hues represent
poorer regions. Clearly, to better understand socio-economic
problems, Figure 1(a) is better than Figure 1(b). In practice,
however, such information is often aggregated into coarse
granularities as in Figure 1(b). It is usually thought to be
too time-consuming and costly to conduct a census over the
whole population of a city, and a sample survey is conducted
instead. Accordingly, the number of samples associated with
each fine-grained region may not be large enough to provide
a statistically significant estimate of the value associated to
this region; the typical response is to aggregate samples over
larger regions (Smith, Mashhadi, and Capra 2014).

With the recent increase in data availability, utilizing aux-
iliary spatial data sets on the same region is an effective
way of refining coarse-grained target data (Bogomolov et
al. 2014; Park 2013; Smith and Capra 2016; Smith, Mash-
hadi, and Capra 2014; Wotling et al. 2000). In these works,
the regression models are used for estimating the relation-
ships between target data (e.g., poverty rate) and auxiliary
data sets (e.g., unemployment rate). These existing methods,
however, require that the spatial granularities of all the auxil-
iary data sets are the same as the desired granularity of target
data. This requirement prevents us from making full use of
the auxiliary data sets with various granularities. The auxil-
iary data sets are actually associated with various geographi-
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cal partitions. For example, New York City has released var-
ious spatial data sets portioned into boroughs, community
districts, zip code, police precincts and so on.

We propose a probabilistic model for refining coarse-
grained target data via the effective use of auxiliary data
sets with various granularities. An important characteristic
is discerning the usefulness of each auxiliary data set which
depends on not only the strength of relationship with the tar-
get data but also the level of spatial granularity. For exam-
ple, consider the case of two auxiliary data sets that have the
same strength of relationship with the target data, but differ-
ent granularities. In that case, the finer-grained one is seen
as more helpful for refining the coarse-grained target data.

With the proposed model, the fine-grained target data are
assumed to follow a Gaussian process (GP) (Rasmussen and
Williams 2006) whose mean function is modeled by a linear
regression of the auxiliary data sets. This GP-based model-
ing allows us to consider the spatial correlation in the tar-
get data and the auxiliary data sets simultaneously. Since the
target data are observed not at fine granularity but at coarse
granularity, we model a spatial aggregation process to trans-
form the fine-grained target data into the coarse-grained tar-
get data. Furthermore, to handle auxiliary data sets with var-
ious granularities, we apply GP regression to each auxiliary
data set to derive a predictive distribution defined on the con-
tinuous space; this conceptually corresponds to spatial inter-
polation. A key idea is that it hierarchically incorporates the
predictive distributions into the model; that is, it does not
use point estimates. This enables us to consider uncertainty
in the prediction of auxiliary data sets. The uncertainty is
governed by several factors, one of which is sample den-
sity, i.e., spatial granularity of the auxiliary data; the finer
the granularity is, the lower the uncertainty is. Incorporating
the uncertainty leads to effectively learning the usefulness of
the auxiliary data with consideration of the levels of spatial
granularity; this allows our model to accurately refine the
coarse-grained target data. We predict the fine-grained tar-
get data via a Bayesian inference procedure. The proposed
model is designed such that the estimation of model param-
eters based on the exact marginal likelihood is possible: By
analytically integrating out the variables of fine-grained tar-
get and auxiliary data, we can estimate the parameters with-
out explicitly obtaining these variables. We construct the
predictive distribution of the fine-grained target data by us-
ing the estimated parameters.

2 Related Work
The problem of refining coarse-grained spatial data has been
studied in various fields such as socio-economics (Smith and
Capra 2016; Smith, Mashhadi, and Capra 2014), agricultural
economics (Howitt and Reynaud 2003; Xavier et al. 2016),
epidemiology (Sturrock et al. 2014) , meteorology (Wilby
et al. 2004; Zorita and von Storch 1999) and geographical
information system (GIS) (Boucher and Kyriakidis 2006;
Goovaerts 2010). This problem is also called statistical
downscaling, spatial disaggregation, and areal interpola-
tion. The previous works can be categorized into two cases
in terms of target data availability.

In the first case, in which a large amount of coarse- and
fine-grained target data are available, we can predict the
fine-grained target data by using a mapping function from
coarse- to fine-grained data. The mapping function can be
learnt by using various machine learning methods includ-
ing linear regression models (Hessami et al. 2008), neural
networks (Cannon 2011; Misra, Sarkar, and Mitra 2017)
and support vector machines (Ghosh 2010). Recently, super-
resolution techniques based on deep neural networks have
been applied for refining coarse-grained spatial data (Vandal
et al. 2017; 2018). The super-resolution techniques aim to
learn a mapping function from low- to high-resolution im-
ages (Dong et al. 2014). The method by (Vandal et al. 2017)
is based on the analogy between gridded spatial data and
images; values at grid cells are regarded as values at pixels.
The large amount of fine-grained data needed for training
are, however, not available in many cases (e.g., poverty sur-
vey), and often only coarse-grained data are available. These
methods are not applicable in such situations.

In the second case, in which only coarse-grained tar-
get data are available, many regression-based methods have
been proposed that use auxiliary spatial data sets to re-
fine coarse-grained target data (Flaxman, Wang, and Smola
2015; Smith, Mashhadi, and Capra 2014; Wang et al. 2016;
Zheng, Liu, and Hsieh 2013; Zheng et al. 2015). Regression
models (linear and non-linear) are used for estimating the re-
lationships between target data and auxiliary data sets. A few
methods can construct the regression models under the spa-
tial aggregation constraints (Murakami and Tsutsumi 2011;
Park 2013). The constraints state that a value associated
with a coarse-grained region is a linear average of their con-
stituent values in a fine-grained partition. In order to sat-
isfy the spatial aggregation constraints, the regression resid-
uals at the coarse-grained regions are allocated to the fine-
grained regions by using the spatial interpolation method,
i.e., kriging (Stein 1999). These methods, however, assume
that the auxiliary data sets have spatial granularities equiva-
lent to that of fine-grained target data to be estimated. This
assumption makes it difficult to utilize multiple auxiliary
data sets with various granularities.

Several regression methods have been developed for
estimating relationships between multi-scale spatial data
sets (Miller et al. 2015; Diodato et al. 2010; Xu 2017;
Xu et al. 2018). These methods predict the target data with
the same granularity as that of the training data by utilizing
multi-scale auxiliary data sets. They do not, however, con-
sider the spatial aggregation constraint, which is a critical
factor in refining the coarse-scale target data.

There have been several hierarchical Bayesian models
to predict fine-grained target data using fine-grained aux-
iliary data sets. Although they introduce a fully Bayesian
inference (Taylor, Andrade-Pacheco, and Sturrock 2018;
Wilson and Wakefield 2018; Keil et al. 2013) or a variational
inference (Law et al. 2018) for model parameters, the uncer-
tainty in the prediction of auxiliary data sets is ignored: They
cannot discern the usefulness of each auxiliary data set con-
sidering their levels of spatial granularity.

Different from prior works, the proposed model can ef-
fectively make use of auxiliary data sets with various granu-
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Table 1: Notation.

Symbol Description
S set of indices of auxiliary spatial data sets
s index of auxiliary spatial data set, s ∈ S
X total region of a city
x location point represented by

latitude and longitude coordinates, x ∈ X
Pcoar coarse-grained partition of X of target data
i region in the coarse-grained partition

of target data, i ∈ Pcoar

Pfine fine-grained partition of X of target data
j region in the fine-grained partition

of target data, j ∈ Pfine

Ps partition of X of sth auxiliary data set
p region in the partition of sth auxiliary data set, p ∈ Ps

ai value associated with region i in coarse-grained
target data, ai ∈ R

zj value associated with region j in fine-grained
target data, zj ∈ R

ys,p value associated with region p in sth auxiliary
data set, ys,p ∈ R

larities by hierarchically incorporating Gaussian processes.
This hierarchical modeling allows us to effectively learn the
usefulness of each auxiliary data set considering the lev-
els of spatial granularity. Our model also considers the spa-
tial aggregation constraints by integrating the Gaussian pro-
cesses with a spatial aggregation process to transform the
fine-grained target data into the coarse-grained target data.

3 Problem Formulation
In this section, we describe the spatial data this study fo-
cuses on, and define our problem of refining coarse-grained
spatial data by using, for the same region, auxiliary spatial
data sets with various granularities. Assume that we have a
target spatial data set with coarse granularity, and we would
like to obtain a fine-grained version. Let S be the collection
of indices of auxiliary data sets. The notations used in this
paper are listed in Table 1.

Partition: Let X be a total region of a city, and x ∈ X be
a location point represented by its coordinates (e.g., latitude
and longitude). Partition P of X is a collection of disjoint
subsets, called regions, of X , whose union is equal to X .
Let |P| denote the number of regions in P . We can consider
several partitions of X as follows. Let Pcoar be the coarse-
grained partition, i.e., that of the coarse-grained target data.
Let Pfine be the fine-grained partition, of the desired fine-
grained target data. For s ∈ S, let Ps be the partition of the
sth auxiliary data set.

Spatial data: Let a = (a1, . . . , a|Pcoar|)
> be a |Pcoar|-

dimensional vector consisting of the coarse-grained target
values, where ai ∈ R is the value associated with region
i ∈ Pcoar. For s ∈ S, let ys = (ys,1, . . . , ys,|Ps|)

> be a
|Ps|-dimensional vector consisting of the sth auxiliary data
values, where ys,p ∈ R is the value associated with region
p ∈ Ps of the sth auxiliary data set.

Problem: Suppose that we have coarse-grained target
data a whose partition is Pcoar, auxiliary data sets with the
respective partitions {(Ps,ys) | s ∈ S}, and the desired

Figure 2: Generative process of coarse-grained target data
given three auxiliary data sets.

fine-grained partition Pfine, we wish to estimate a |Pfine|-
dimensional vector z = (z1, . . . , z|Pfine|)

> consisting of the
fine-grained target values, where zj ∈ R is the value associ-
ated with region j ∈ Pfine. Here, the values ai, ys,p and zj
are assumed to be intensive quantities such as ratios; that is,
they are independent of the area scale of the respective re-
gions. When the values are extensive quantities such as pop-
ulation, they can be transformed into intensive quantities by
dividing them with the areas of regions.

4 Proposed Model
We propose a probabilistic model that allows auxiliary spa-
tial data sets with various granularities to be used in refining
coarse-grained spatial data. Our model is based on Gaus-
sian process (GP) (Rasmussen and Williams 2006), which is
a flexible non-parametric model for non-linear functions in
a continuous domain. We model the generative process for
coarse-grained target data a, given the auxiliary data sets
with known partitions {(Ps,ys) | s ∈ S}, coarse-grained
partition Pcoar, and fine-grained partition Pfine. In other
words, we model the conditional probability p(a | {ys}s∈S)
instead of the joint probability of a and {ys}s∈S . It enables
us to adopt two-step inference approach described in Sec-
tion 5, which is advantageous in the computational cost for
learning model parameters.

The generative process (given three auxiliary data sets) is
illustrated schematically in Figure 2, where darker hues rep-
resent regions with higher values. This process contains the
following three steps: (a) Deriving the predictive distribu-
tion over continuous space for each auxiliary data set ys via
GP regression, which corresponds to spatial interpolation;
(b) generating the fine-grained target data z via a GP whose
mean function is modeled as the linear regression of the con-
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tinuous predictive distributions of the auxiliary data sets; (c)
generating the coarse-grained target data a by spatially ag-
gregating the constituent values in a fine-grained partition.

In our problem, each value is associated with a region in
a partition rather than a single location point in X ; this pre-
vents us from directly applying GP. We thus associate each
region in a partition with its centroid, and regard each value
as being associated with the centroid of that region. This as-
sumption, while significantly simplifying computations in-
volved, might worsen the fit of the GP to the data set, which
however is appropriately taken into account in the following
steps as increased uncertainty of the GPs for both the respec-
tive auxiliary data sets (described in (5)) and the target data
(described in (6)). For s ∈ S , let Xs = (xs,1, . . . ,xs,|Ps|)
be the set of the centroids in partition Ps, where xs,p is the
centroid of region p ∈ Ps. Similarly, for fine-grained parti-
tion Pfine, let Xfine = (x1, . . . ,x|Pfine|) be the set of cen-
troids in Pfine. Thus, our problem is now reformulated as
estimating z = (z1, . . . , z|Pfine|)

>, where zj ∈ R is a target
value at the centroid of region j ∈ Pfine, as indicated by the
auxiliary spatial data sets {(Xs,ys) | s ∈ S}.

(a) Deriving predictive distributions of auxiliary spa-
tial data sets: In order to handle auxiliary spatial data sets
with various granularities, we use GP regression to derive
a posterior Gaussian process for a latent continuous random
function onX ; this conceptually corresponds to spatial inter-
polation of each auxiliary spatial data set. We then evaluate
the predictive distribution on the basis of the posterior Gaus-
sian process. Let fs(x) be a noise-free latent function for the
sth auxiliary data set at location x. We assume that fs(x)
follows a Gaussian process, fs(x) ∼ GP(0, ks(x,x

′)),
with mean zero and a covariance function ks(x,x′). Though
our model does not depend on any particular choice of the
covariance function, for simplicity we consider the well-
known covariance function, i.e., squared-exponential ker-
nel, which is widely used for measuring the similarity be-
tween function values in spatial coordinates (Rasmussen and
Williams 2006). The squared-exponential kernel is defined
as

ks(x,x
′) = α2

s exp

(
− 1

2γ2
s

‖x− x′‖2
)
, (1)

where γs is the scale parameter, α2
s is a signal variance

that controls the magnitude of the covariance, and ‖ · ‖
is the Euclidean norm. We assume that the sth auxil-
iary data ys is generated with an additive Gaussian noise
with noise variance σ2

s . Defining f∗s (xp) as the prediction
of the sth auxiliary data set for the centroid xp of the
fine-grained partition, the predictive distribution of f∗s =
(f∗s (x1), . . . , f∗s (x|Pfine|))

> is as follows:

p(f∗s) = N (f∗s | f̄
∗
s,Σ

∗
s), (2)

where f̄∗s = K>s∗(Ks + σ2
sI)−1ys is the predictive means,

and Σ∗s = Ks∗∗ −K>s∗(Ks + σ2
sI)−1Ks∗ is the covariance

matrix, whose diagonal elements represent the uncertainties
in the prediction at the test points Xfine. Incorporation of
the predictive distributions (2) is expected to allow the use-
fulness of auxiliary data to be effectively learnt as it allows
consideration of the uncertainty in the prediction. Details are

given in (7) in Section 5. Here, Ks is a |Ps| × |Ps| covari-
ance matrix whose entries are covariances between training
points Xs. Ks∗ is a |Ps| × |Pfine| covariance matrix whose
entries are covariances between training points Xs and test
points Xfine. Ks∗∗ is a |Pfine| × |Pfine| covariance matrix
whose entries are covariances between test points Xfine.

(b) Generative process of fine-grained target data: We
model a generative process for the fine-grained target data z.
Let z(x) be a noise-free latent function for the fine-grained
target data at location x. We assume that z(x) follows a
Gaussian process, z(x) ∼ GP(m(x), k(x,x′)), with mean
function m(x) =

∑
s∈S wsfs(x) + w0, where ws ∈ R and

w0 ∈ R are the regression coefficient of the sth auxiliary
data set and the bias parameter, respectively. The covariance
function k(x,x′) is a squared-exponential kernel with the
scale parameter γ and signal variance α2. Given the predic-
tive values for the auxiliary data sets from (2), the condi-
tional distribution of z at the centroids Xfine is given by

p(z | F∗) = N (z | F∗w,K), (3)

where w = (w0, . . . , w|S|)
> and K is a |Pfine|× |Pfine| co-

variance matrix defined by k(x,x′). Here, we let |S| be the
number of auxiliary data sets. We define the augmented ma-
trix as the |Pfine|×(|S|+1) matrix F∗ = (f∗1, . . . ,f

∗
|S|,1),

in which 1 is a column vector of 1’s. This GP-based model-
ing enables us to consider the spatial correlation in the target
data and the auxiliary data sets simultaneously.

(c) Generative process of coarse-grained target data:
We design a spatial aggregation process to transform the
fine-grained target data z into the coarse-grained target data
a, in order to encourage consistency between z , which is
to be estimated, and the available coarse-grained target data
a. In the spatial aggregation process, a value associated with
one region in the coarse-grained partition is obtained by ag-
gregating the values in the fine-grained regions contained in
the coarse-grained region (see the upper part of Figure 2).
Then, a is generated from the following conditional distri-
bution given z,

p(a | z) = N (a | Hz, σ2I), (4)

where σ2 is the noise variance for the coarse-grained target
data, and H is a |Pcoar| × |Pfine| aggregation matrix, whose
entries are nonnegative weighting coefficients; the row sum
of H should equal 1. We set the coefficients in accordance
with the property of the target data. For example, in cases
where target data are incidences of disease, then the (i, j)-
entry H(i, j) of H would be proportional to the population
in the intersection of the coarse-grained region i and the fine-
grained region j. In the following, for simplicity, we con-
sider a simple aggregation matrix, in which entry H(i, j)
is 1/|Pfine

i | if the fine-grained region j is contained in the
coarse-grained region i, and zero otherwise. Here, Pfine

i is a
subset of Pfine, all the elements of which are contained in
the coarse-grained region i ∈ Pcoar.

5 Inference
Given the coarse-grained target data a, the auxiliary spatial
data sets with centroids {(Xs,ys) | s ∈ S}, the centroids
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Algorithm 1: Bayesian inference procedure of the
fine-grained target data z

Input : a, {(Xs,ys) | s ∈ S}, Xfine, H
Output: Predictive distribution of z
1: Initialize model parameters, {αs | s ∈ S}, {γs | s ∈ S},
{σs | s ∈ S}, w, α, γ, σ

2: /* first inference step */
3: for s ∈ S do
4: Estimate αs, γs, σs by maximizing the logarithm of (5)
5: end for
6: /* second inference step */
7: Estimate w, α, γ, σ by maximizing the logarithm of (6)
8: Construct predictive distribution of z by (8) using the

estimated model parameters

of fine-grained partition Xfine and the aggregation matrix
H, we aim to predict the fine-grained target data z via a
Bayesian inference procedure. In order to calculate the pre-
dictive distribution of z, we need to estimate the model pa-
rameters. The problem of estimating the model parameters
can be divided into two steps: 1) Estimate hyperparameters
αs, γs, σs for each auxiliary data set and 2) estimate regres-
sion coefficient w and hyperparameters α, γ, σ for the tar-
get data. Although one could also opt for estimating all the
model parameters simultaneously (i.e., one-step inference),
it will increase the computational cost of inference drasti-
cally; we adopt the efficient two-step inference as described
in the following paragraphs. We finally construct the pre-
dictive distribution of z by using the estimated parameters.
Details of the inference procedure are shown in Algorithm 1.

The first inference step: Given the sth auxiliary spatial
data set with centroids (Xs,ys), the marginal likelihood of
ys is given by

p(ys|αs, γs, σs) = N (ys|0,Ks + σ2
sI). (5)

The hyperparameters αs, γs, σs are estimated by maximiz-
ing the logarithm of (5). We solve the optimization prob-
lem through the use of the BFGS method (Liu and Nocedal
1989). By solving the optimization problem for each aux-
iliary data set independently, we obtain the set of the esti-
mated hyperparameters for all auxiliary data sets. The pre-
dictive distribution of f∗s corresponding to (2) is obtained
using the estimated hyperparameters.

The second inference step: Given the coarse-grained tar-
get data a and the centroids of fine-grained partition Xfine,
the marginal likelihood of a is given by

p(a | w, α, γ, σ) =

∫ ∫
p(a | z)p(z | F∗)

∏
s∈S

p(f∗s)dF∗dz

=

∫ ∫
N
(
a | Hz, σ2I

)
N (z | F∗w,K)

×
∏
s∈S

N
(
f∗s | f̄∗s ,Σ

∗
s

)
dF∗dz

= N
(
a | HF̄∗w,Λ

)
, (6)

where F̄∗ = (f̄∗1, . . . , f̄
∗
|S|,1) is a |Pfine| × (|S| + 1) ma-

trix, and we analytically integrate out the latent variables
F∗ and z with the help of the conjugacy of the distribu-
tions (2), (3), and (4). Λ is a |Pcoar| × |Pcoar| covariance
matrix represented by Λ = σ2I + HΩH>, where Ω =
K +

∑
s∈S w

2
sΣ
∗
s . The (i, i′)-entry Λ(i, i′) of Λ is shown

in (7). Here, δ•,• in (7) represents Kronecker delta; δA,B = 1
if A = B, and δA,B = 0 otherwise. The residual variance
term in (7) represents the residual variance in the regression
of z(xj). This term contains the uncertainty in the prediction
of fs(xj), i.e., Σ∗s(j, j), which is weighted by w2

s . The spa-
tial correlation term in (7) represents the strength of spatial
correlation between z(xj) and z(xj′). This term contains
the covariance between fs(xj) and fs(xj′), i.e., Σ∗s(j, j′),
which is weighted by w2

s . On the basis of the marginal like-
lihood (6) with this covariance matrix Λ, our model can
effectively learn the regression coefficient w while taking
into consideration the prediction uncertainties and the spatial
correlations from the auxiliary data sets with various gran-
ularities, simultaneously. The parameter w and the hyper-
parameters α, γ, σ are estimated by maximizing the loga-
rithm of (6). We solve the optimization problem by using
the BFGS method (Liu and Nocedal 1989). The derivatives
of the logarithm of (6) with respect to ws, α, γ, σ are de-
scribed in Appendix A.

Predictive distribution of fine-grained target data: Us-
ing the estimated model parameters, the predictive distribu-
tion of the fine-grained target data z is given by

p(z∗) = N (z∗ | z̄∗, cov(z∗)) , (8)

where z̄∗ = F̄∗w + ΩH>Λ−1(a− F̄∗w) is the predictive
means, and where cov(z∗) = Ω − ΩH>Λ−1HΩ is the
covariance matrix. We can obtain the refinement results, i.e.,
the estimated fine-grained target data, by using the predictive
means z̄∗. By analyzing the covariance matrix cov(z∗), we
can also evaluate the confidence of the refinement results.

Λ(i, i′) =σ2δi,i′ +
1

|Pfine
i ||Pfine

i′ |

×
∑

j∈Pfine
i

∑
j′∈Pfine

i′

[
δj,j′

(
α2 +

∑
s∈S

w2
sΣ∗s(j, j′)

)
︸ ︷︷ ︸

residual variance term

+(1− δj,j′)

(
α2 exp

(
− 1

2γ2
‖xj − xj′‖2

)
+
∑
s∈S

w2
sΣ∗s(j, j′)

)
︸ ︷︷ ︸

spatial correlation term

]
(7)
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Table 2: MAPE L and standard errors for the predictions of the fine-grained target data.

PM2.5 Ozone Formaldehyde Benzene Elemental carbon Poverty rate
Proposed model 0.038± 0.005?? 0.030± 0.005? 0.078± 0.010?? 0.138± 0.021? 0.100± 0.012? 0.202± 0.024??

2-stage SD 0.052± 0.007 0.035± 0.007 0.101± 0.013 0.181± 0.032 0.123± 0.016 0.228± 0.028
LR-based method 0.056± 0.007 0.040± 0.007 0.108± 0.013 0.185± 0.031 0.123± 0.016 0.234± 0.028
GPR 0.072± 0.010 0.062± 0.011 0.191± 0.020 0.267± 0.029 0.195± 0.019 0.344± 0.046

(a) True (b) Proposed model (c) 2-stage SD (d) LR-based method

Figure 3: Comparison of the predicted fine-grained target data for PM2.5 data set.

6 Experiments
Data description: We evaluated the proposed model using
real-world spatial data sets from NYC Open Data 1. There
are 44 data sets that contain a variety of categories such as
social indicators, land use, air quality and taxi traffic. Each
data set is associated with one of six geographical parti-
tions, i.e., school district (32), UHF42 (42), community dis-
trict (59), police precinct (77), zip code (186) and taxi zone
(249), where each number in parenthesis denotes the num-
ber of regions in the corresponding partition. In our exper-
iments, we try to refine the poverty rate data set and the
five air pollution data sets (i.e., PM2.5, ozone, formalde-
hyde, benzene, elemental carbon). The experimental setting
is as follows: 1) Given the poverty rate data set with the bor-
ough partition (|Pcoar| = 5), we would like to refine the data
into the community district partition (|Pfine| = 59), and 2)
given each air pollution data set with the borough partition
(|Pcoar| = 5), we aim to refine the data into the UHF42 par-
tition (|Pfine| = 42). Appendix B details the data sets and
the experimental settings.

Baselines: The existing methods can be applied to aux-
iliary data sets with various granularities if pre-processing
is applied, i.e., spatial interpolation, so that the granularities
of the auxiliary data sets match with that of the fine-grained
target data. Accordingly, we first performed spatial interpo-
lation of each auxiliary data set ys by using GP regression;
we then obtained the predictive values f̄∗s at the centroids
Xfine of the target fine-grained partition so that the spatial
granularities of all auxiliary data sets equaled that of the
fine-grained target data. We compared the proposed model
with three baselines: GP regression (GPR) (Rasmussen and
Williams 2006), Linear regression-based method (LR-based
method) (Smith, Mashhadi, and Capra 2014) and Two-stage
statistical downscaling method (2-stage SD) (Park 2013).
Here, GPR is a simple spatial interpolation, namely, it pre-

1https://opendata.cityofnewyork.us

Table 3: Top-10 relevant auxiliary data as estimated by our
model and 2-stage SD for PM2.5 data set.

Proposed model 2-stage SD
Auxiliary data ws Auxiliary data ws

1. Fire incident (Zip code) 0.173 1-2 fam. bldg (Comm.) -0.088
2. Taxi dropoff (Taxi zone) 0.139 Hospital (Comm.) 0.069
3. 311 call (Zip code) 0.135 Public school (Comm.) 0.069
4. Public telephone (Zip code) 0.114 Lots of vacant (Comm.) -0.067
5. Natural gas (Zip code) 0.109 Crime (Police precinct) 0.064
6. Mean commute (Comm.) -0.109 Unemployment (Comm.) 0.063
7. 1-2 fam. bldg (Comm.) -0.089 Pct. served parks (Comm.) 0.062
8. Pct. served park (Comm.) 0.075 Library (Comm.) 0.061
9. GHG emission (Zip code) 0.068 Fire incident (Zip code) 0.059

10. Population (Comm.) 0.062 Park (Comm.) 0.058

dicts the fine-grained target data z by using only the coarse-
grained target data a. Details of these baselines are given in
Appendix C.

Fine-grained target data prediction: We evaluated our
model in terms of its performance in predicting fine-grained
target data z. The evaluation metric is the mean absolute
percentage error (MAPE) in fine-grained target values: L =

1
|Pfine|

∑
j∈Pfine

∣∣∣ ztrue
j −z∗j
ztrue
j

∣∣∣, where ztrue
j is the true value as-

sociated with region j in the target fine-grained partition;
z∗j is its predicted value. Table 2 shows the MAPE and the
standard error of absolute percentage error for the proposed
model, 2-stage SD, LR-based method and GPR. For all data
sets, our model performed better than the baselines, and the
differences between our model and the baselines are statis-
tically significant (Student’s t-test). In Table 2, the single
star (?) and the double star (??) indicate significant differ-
ence at the levels of P < 0.05 and P < 0.01, respectively.
We found similar results using other evaluation metrics (e.g.,
MAE, RMSE, RMSPE). These results show that our model
well utilized the auxiliary data sets with various granularities
to accurately predict the fine-grained target data.

5096



(a) True (b) Proposed model (c) 2-stage SD (d) LR-based method

Figure 4: Comparison of the predicted fine-grained target data for poverty rate data set.

(a) Fire incidents (b) Taxi dropoff

Figure 5: Top-2 auxiliary data sets ranked by the proposed
model for PM2.5 data set.

(a) 1-2 fam. bldg (b) Hospital

Figure 6: Top-2 auxiliary data sets ranked by the 2-stage SD
for PM2.5 data set.

Figures 3 and 4 visualize the predicted fine-grained target
data z for the PM2.5 data set and for the poverty rate data
set, respectively. We illustrate the true fine-grained data on
the left in Figures 3 and 4, and the predictions made by the
proposed model, 2-stage SD and LR-based method on the
right. Here, the predictive values of each method were nor-
malized to the range [0, 1], and darker hues represent regions
with higher values. As shown in these figures, our model re-
fined the coarse-grained data more precisely than the other
methods. In particular, in both data sets, our model achieved
significant improvement in the north part of the map (i.e.,
Manhattan). Such visualization results are useful for finding
key regions, e.g., the poorest regions of a city.

Evaluation of auxiliary spatial data sets: Table 3 shows
the top ten relevant auxiliary data sets as determined by our
model and 2-stage SD for the PM2.5 data set. These auxil-
iary data sets are arranged in descending order of the abso-
lute values of the estimated regression coefficient w, each
of which is listed in the “ws” columns of Table 3. By com-

paring the sorted list of the auxiliary data sets created by
the proposed model with that yielded by 2-stage SD, we can
confirm that the proposed model assigned relatively large
regression coefficients to the auxiliary data sets with finer-
grained partitions (i.e., Zip code and Taxi zone).

Figures 5 and 6 visualize the top two relevant auxiliary
data sets as estimated by our model and 2-stage SD for the
PM2.5 data set, respectively. Comparing these visualizations
with that of the true target data in Figure 3(a) shows that our
model emphasized the most useful auxiliary data sets, i.e.,
those that are both strongly related with the target data and
have fine granularities; 2-stage SD evaluated the usefulness
of auxiliary data sets only in terms of the strength of rela-
tionships between the target data and the auxiliary data sets
in the coarse-grained partition.

Figure 7 shows the relation between the regression co-
efficient and the uncertainty in the prediction of auxiliary
data sets estimated by the proposed model for the PM2.5
data set. In this figure, each auxiliary data set is depicted
by a dot whose color indicates its partition. The horizon-
tal axis shows the averages of the variances in the pre-
dicted values of each auxiliary data set; for the sth aux-
iliary data set, the average of variances was calculated by
(1/|Pfine|)

∑
j∈Pfine Σ∗s(j, j), which is the degree of uncer-

tainty in predicting the sth auxiliary data set; the vertical
axis shows the absolute values of the estimated coefficients.
As shown, the absolute coefficient values estimated by our
model were likely to be higher for the auxiliary data sets that
had lower degrees of uncertainty. These results indicate that
our model can effectively learn the usefulness of each auxil-
iary data set by considering the uncertainty in the prediction
of auxiliary data sets. Consequently, the proposed model can
precisely refine the coarse-grained target data by effectively
utilizing auxiliary data sets with various granularities.

7 Conclusion
This paper has proposed a probabilistic model for refin-
ing coarse-grained spatial data by utilizing auxiliary spatial
data sets with various granularities on the same region. Our
model can effectively make use of auxiliary data sets with
various granularities by hierarchically incorporating Gaus-
sian processes. Our model also has the advantage of allow-
ing the inference of model parameters based on the exact
marginal likelihood, in which the variables of fine-grained
target and auxiliary data are analytically integrated out. Us-
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Figure 7: Relation between the coefficients and the uncer-
tainties for PM2.5 data set.

ing multiple real-world spatial data sets in New York City,
we confirmed that our model can predict the fine-grained
target data more precisely compared with the baselines.

Our future work is to consider shapes of regions as in the
previous study (Rathbun 1998): The assumption of using the
centroid of each region allows for GP-based formulations
and significantly simplifying computations involved; mean-
while, it might worsen the fit of the GP to the exotic shaped
regions (e.g., extremely elongated). Another future work is
to incorporate fully Bayesian treatment for model parame-
ters. It can be expected to provide the better results.

A Derivatives of model parameters
The log-marginal likelihood of a is given by

log p(a | w, α, γ, σ) = −
1

2
(a−HF̄∗w)>Λ−1(a−HF̄∗w)

−
1

2
log (det(Λ))−

|Pcoar|
2

log 2π. (9)

We describe the first derivatives of (9) with respect to ws, α,
γ, σ, which is required for estimating the parameter based
on the BFGS method. The derivative of (9) with respect to
ws is given by

∂

∂ws
log p(a | w, α, γ, σ)

=
∂(a−HF̄∗w)

∂ws
p +

1

2
tr

(
(pp> −Λ−1)

∂Λ

∂ws

)
, (10)

where p = Λ−1(a − HF̄∗w) and ∂Λ/∂ws is a matrix
of elementwise derivatives. The derivative of the element
Λ(i, i′) (7) is obtained by

∂Λ(i, i′)

∂ws
=

1

|Pfine
i ||Pfine

i′ |
∑

j∈Pfine
i

∑
j′∈Pfine

i′

2wsΣ
∗
s(j, j′).

(11)
Denoting θ ∈ {α, γ, σ}, the derivative of (9) with respect to
θ is given by

∂

∂θ
log p(a | w, α, γ, σ) =

1

2
tr

(
(pp> −Λ−1)

∂Λ

∂θ

)
.

(12)

The matrix of elementwise derivatives ∂Λ/∂θ is trivial. The
derivative of the element Λ(i, i′) (7) with respect to each
hyperparameter is as follows:

∂Λ(i, i′)

∂α

=
1

|Pfine
i ||Pfine

i′ |

∑
j∈Pfine

i

∑
j′∈Pfine

i′

2α exp

(
−

1

2γ2
‖xj − xj′‖2

)
,

(13)

∂Λ(i, i′)

∂γ
=

1

|Pfine
i ||Pfine

i′ |

∑
j∈Pfine

i

∑
j′∈Pfine

i′

α2

(
1

γ3
‖xj − xj′‖2

)

× exp

(
−

1

2γ2
‖xj − xj′‖2

)
, (14)

∂Λ(i, i′)

∂σ
= 2σδi,i′ . (15)

B Description of real-world spatial data sets
We used the real-world spatial data sets from NYC Open
Data 2. for evaluating the proposed model. The data sets
were collected and released for improving the urban envi-
ronment in New York City, and contain a variety of cate-
gories such as social indicators, land use, air quality and taxi
traffic. Details of the data sets are listed in Table 4. There are
multiple data sets in each category, with the total number
of data sets being 44. Each data set is associated with one
of six geographical partitions, i.e., school district, UHF42,
community district, police precinct, zip code and taxi zone.
These partitions have various spatial granularities; the num-
ber of regions in each partition is shown in Table 4. These
data sets are gathered once a year using the time ranges
shown in Table 4; the values of data are divided by the num-
ber of observation times. When the values of data are exten-
sive quantities (i.e., proportional to the scale of areas, e.g.,
population), the values are divided by the areas of respective
regions; the resulting values are intensive quantities (i.e., in-
dependent of area scale, e.g., population density).

In our experiments, we try to refine the poverty rate data
set in the social indicator category and the five air pollution
data sets in the air quality category. The poverty rate data set
contains the values of poverty rates associated with each re-
gion in the community district partition as visualized in Fig-
ure 1(a). The air pollution data sets contain the average con-
centrations of pollutants (i.e., PM2.5, ozone, formaldehyde,
benzene, elemental carbon) associated with each region in
the UHF42 partition. In order to evaluate the performance
in refining coarse-grained data, we used the data that were
aggregated into a coarser-grained partition, i.e., borough par-
tition, via spatial averaging, where the borough partition has
five regions as illustrated in Figure 1(b). The experimental
setting is as follows: 1) Given the poverty rate data set with
borough partition (|Pcoar| = 5), we would like to refine the
data into the community district partition (|Pfine| = 59), and
2) given each air pollution data set with the borough parti-
tion (|Pcoar| = 5), we aim to refine the data into the UHF42

2https://opendata.cityofnewyork.us
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Table 4: Spatial data sets.

Category/Name #data sets Partition #regions Time range Description
Education 3 School district 32 2010 Class size, ratio of #pupils to #teachers, SAT score
Air quality 8 UHF42 42 2009–2010 Average concentration of pollutants
Social indicator 13 Community district 59 2009–2013 Poverty rate, population, mean commute time, etc.
Land use 11 Community district 59 2009–2013 Area percentage for commercial office, parking, etc.
Crime 1 Police precinct 77 2010–2016 Number of crimes
Incident 2 Zip code 186 2010–2016 #311 calls, #fire incidents
Telecommunication 2 Zip code 186 2016 #public telephones, #free Wi-Fi hotspots
Consumption 2 Zip code 186 2010–2014 GHG emission, natural gas consumption
Taxi traffic 2 Taxi zone 249 2014–2016 #taxi pick-up and drop-off events

partition (|Pfine| = 42). In the setting for the poverty rate
data set, we used all data sets other than the target data as
auxiliary data sets, so the number of auxiliary data sets |S|
was 43. In the setting for the air pollution data sets, we used
all data sets not contained in the air quality category, so |S|
was 36.

C Baselines description
For GPR, we predict the fine-grained target data z based
only on the coarse-grained target data a. For LR-based
method and 2-stage SD, given the coarse-grained target data
a and the predictive values of all auxiliary data sets F̄∗, we
predict the fine-grained target data z. Details of these base-
lines are given below.

Gaussian process regression (GPR): We compared our
proposed model with a simple spatial interpolation (i.e.,
GPR) of the coarse-grained spatial data a. This baseline as-
sumes that the target data are explained by only the spatial
correlation. Given a and the set of centroids of the coarse-
grained partition Pcoar, we predicted the fine-grained target
data z by using the predictive distribution. Note that this
baseline does not use the auxiliary spatial data sets.

Linear regression-based method (LR-based method):
We used a linear regression-based method that has been
applied in various studies (Bogomolov et al. 2014; Smith,
Mashhadi, and Capra 2014). The linear regression model
is used for estimating the relationships between the coarse-
grained target data and the auxiliary data sets. The procedure
in the training phase is as follows: 1) aggregate all auxil-
iary data sets into the coarse-grained partition of target data
via spatial averaging; 2) estimate the regression coefficients
w of the respective auxiliary data sets by using the coarse-
grained target data and the auxiliary data sets aggregated via
spatial averaging. In the prediction phase, generate unknown
values z for the target fine-grained partition by applying the
estimated relationships to the predictive values of auxiliary
data sets F̄∗ as follows: z = F̄∗ŵ, where ŵ is the estimated
regression coefficient.

Two-stage statistical downscaling method (2-stage
SD): We used the statistical downscaling method proposed
in (Park 2013). This method assumes that coarse-grained tar-
get data a can be decomposed into linear regression terms
and residual terms. The downscaling procedure is divided
into two stages. In the first stage, we obtain the regression
coefficients w in a manner similar to the training phase of

the LR-based method. In the second stage, given the esti-
mated coefficient ŵ, the fine-grained target data z are esti-
mated to be those that satisfy the following relation:

ai = ŵ0 +
∑
s∈S

ŵs

 1

|Pfine
i |

∑
j∈Pfine

i

fs(xj)


︸ ︷︷ ︸

linear regression term

+ Rcoar
i︸ ︷︷ ︸

residual term

=
1

|Pfine
i |

∑
j∈Pfine

i

[
ŵ0 +

∑
s∈S

ŵsfs(xj) +Rfine
j

]

=
1

|Pfine
i |

∑
j∈Pfine

i

zj . (16)

This relation expresses the spatial aggregation constraint,
i.e., the assumption that value ai associated with coarse-
grained region i is the linear average of the constituent val-
ues in the fine-grained partition. Here, Rcoar

i and Rfine
j are

the residuals in the coarse-grained and fine-grained parti-
tions, respectively. To obtain the fine-grained target data z,
the residual value Rfine

j in the fine-grained partition must be
determined. Since the linear regression terms have already
been fixed in the first stage, Rcoar

i is obtained from (16);
the residuals in the fine-grained partition are predicted by
applying the spatial interpolation method, i.e., simple krig-
ing (Kyriakidis 2004), to the residuals Rcoar

i in the coarse-
grained partition.
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