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Abstract
Recommending suitable tags for online textual content is a
key building block for better content organization and con-
sumption. In this paper, we identify three pillars that impact
the accuracy of tag recommendation: (1) sequential text mod-
eling meaning that the intrinsic sequential ordering as well
as different areas of text might have an important implication
on the corresponding tag(s) , (2) tag correlation meaning that
the tags for a certain piece of textual content are often seman-
tically correlated with each other, and (3) content-tag over-
lapping meaning that the vocabularies of content and tags are
overlapped. However, none of the existing methods consider
all these three aspects, leading to a suboptimal tag recommen-
dation. In this paper, we propose an integral model to encode
all the three aspects in a coherent encoder-decoder frame-
work. In particular, (1) the encoder models the semantics of
the textual content via Recurrent Neural Networks with the
attention mechanism, (2) the decoder tackles the tag correla-
tion with a prediction path, and (3) a shared embedding layer
and an indicator function across encoder-decoder address the
content-tag overlapping. Experimental results on three real-
world datasets demonstrate that the proposed method signif-
icantly outperforms the existing methods in terms of recom-
mendation accuracy.

Introduction
Tagging has been widely viewed as a very successful prac-
tice of associating metadata with online content, because on-
line content can be better organized and consumed with the
help of tags (Belém, Almeida, and Gonçalves 2017). Con-
sequently, recommending suitable tags for online content
becomes an important task. From the perspective of con-
tent creators, tag recommendation allows them to select tags
from a ranking list, which in turn improves not only the user
experience but also the quality of the chosen tags. From
the perspective of content consumers, tag recommendation
helps provide better services for the consumers’ search and
retrieval requests. For example, tags have been shown to be
effective in a variety of tasks including user interest dis-
covery (Li, Guo, and Zhao 2008) and content recommen-
dation (Guy et al. 2010).

Despite its importance and extensive effort, recommend-
ing suitable tags for online content remains a very challeng-
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Figure 1: An illustrative example of content-tag overlapping
and tag correlation. The word ‘tensorflow’ appears in both
the content and tags (circled with red rectangles); the three
tags (circled with blue rectangles) are semantically related
to each other (i.e., both ‘python’ and ‘machine-learning’ are
closely related to ‘tensorflow’).

ing task. In this work, we tackle the tag recommendation
task for textual content. Let us first identify the following
three key pillars underlying this task (Please see Fig. 1 for
an illustrative example).

• (C1) Sequential Text Modeling. Capturing the semantics
of textual content is an essential step towards recom-
mending better tags. Existing tag recommendation meth-
ods (e.g., (Krestel, Fankhauser, and Nejdl 2009; Ramage
et al. 2009; Wu et al. 2016)) mainly adopt topic models
to understand the textual content. However, topic models
treat textual content as a bag of words, and thus ignore the
sequential nature of sentences.

• (C2) Tag Correlation. Intuitively, the tags for a certain
piece of content are often semantically correlated, which,
if modelled appropriately, can be harnessed to improve
the tag recommendation performance. For the example
in Fig. 1, the three tags (‘python’, ‘tensorflow’, and
‘machine-learning’) are strongly correlated as they are all
closely related to the tensorflow framework. Nonetheless,
it has largely remained unknown on how to model tag cor-
relation in the context of tag recommendation, with the
only exception of (Wang et al. 2016).
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• (C3) Content-Tag Overlapping. In general, the tag vo-
cabulary is often overlapped with the content vocabu-
lary (e.g., many tags may have appeared in the content).
Take Fig. 1 as an example. The tag ‘tensorflow’ has ap-
peared in both the title and the body of the content.
However, such a content-tag overlapping phenomenon
is largely ignored by existing work. For example, ex-
isting tag recommendation methods (Guo et al. 2004;
Wang and Wang 2007) treating the problem as a super-
vised learning task would lead to the separation of the
feature space (i.e., content) and the label space (i.e., tags).

Intuitively, each of the above three aspects plays a mutu-
ally complementary role in recommending tags for textual
content. However, there lacks an integral method that cap-
tures all the three aspects within a coherent model. For ex-
ample, Wu et al. (2016) explicitly considers the content-tag
overlapping phenomenon; however, they ignore the sequen-
tial nature of sentences and the tag correlation phenomenon.
Likewise, Wang et al. (2016) model the tag correlation phe-
nomenon; however, they ignore the content-tag overlapping
as the model is specially designed for image classification.

In this paper, we propose an integral model to encode all
the three aspects in a coherent encoder-decoder framework.
In detail, We first model textual content with a multi-layer
RNN to capture its sequential nature in the encoder, and aug-
ment it with the attention mechanism to learn the text areas
that are more closely related to each of the recommended
tag. This naturally provides an intuitive interpretation on the
recommendation results. Second, we model tag correlation
with a prediction path in the decoder part. That is, when
predicting the current tag, the input includes not only the
encoder output but also the previous tags as a prior. This
enables us to collectively predict all the tags for a given tex-
tual content. Third, based on the encoder-decoder structure,
we model content-tag overlapping with a shared embedding
layer and an indicator function. The shared embedding layer
brings the textual content and tags in the same space by as-
signing the same embedding to the same word, and the in-
dicator function learns the probability of directly copying a
word from the content as the predicted tag.

In summary, the main contributions of this paper include:

• An integral model ITAG to recommend tags for textual
content. The proposed ITAG simultaneously models the
three important aspects (i.e., sequential text modeling, tag
correlation, and content-tag overlapping).

• Extensive experimental evaluations on three real datasets
showing the superior performance of the proposed ITAG.
For example, ITAG can lead up to 23.1% relative improve-
ment compared with its best competitors.

The rest of the paper is organized as follows. Section 2
provides the problem statement and summarizes the existing
work in terms of the three pillars. Section 3 describes the
proposed approach, and Section 4 presents the experimental
evaluations. Section 5 reviews the related work, and Section
6 concludes.

Problem Statement
We consider the tag recommendation problem for textual
content. The input of the training stage includes a collection
of documents, each of which consists of a piece of textual
content (e.g., several sentences containing a list of words)
and several tags related to the content. In the testing stage,
we aim to recommend one or more tags for a new document
which only contains a piece of textual content (i.e., without
any known tags).

To tackle the above tag recommendation problem, we
identify the following three pillars that have a significant im-
pact on the recommendation accuracy. The first pillar lies in
textual content modeling. Instead of using TF-IDF or topic
models to extract the text features, we resort to RNNs to
model the sequential orders of words. We further introduce
attention mechanism to learn different weights of the in-
put words. This is crucial as it renders the interpretability
of the proposed method by flagging the important text seg-
ment w.r.t. the recommended tags. The second pillar is the
tag correlation phenomenon. This means that the tags for
a certain piece of content are often semantically correlated,
e.g., all the tags should be coherent with the meaning of the
given text. This suggests that a collective recommendation
might bring extra performance improvement. The third pil-
lar is the content-tag overlapping, i.e., many words have ap-
peared as both tags and content words, and the same word
usually has the same meaning in both the content space and
the tag space. Therefore, directly using a traditional multi-
label learning framework to model the tag recommendation
problem is suboptimal since the same word in content and
tags is mapped to two different spaces. In this work, we aim
to integrate the above three pillars into a unified model for
textual tag recommendation.

We summarize and compare the existing work and our
proposed method in terms of the three pillars in Table 1. As
we can see, Tagspace (Weston, Chopra, and Adams 2014),
Maxide (Xu, Jin, and Zhou 2013), and ConTagNet (Rawat
and Kankanhalli 2016) consider none of the three pillars.
The other methods consider only one of the three pillars.
For example, Tag2Word (Wu et al. 2016) handles content-
tag overlapping under the context of topic models, CNN-
RNN (Wang et al. 2016) models the tag correlation for im-
age classification, ABC (Gong and Zhang 2016) models the
sequential nature of text with CNN, and TLSTM (Li et al.
2016b) and PBAM (Sun et al. 2018) adopt RNN to model
the text. In contrast to these methods, the proposed ITAG
takes all the three pillars into consideration.

The Proposed Approach
In this section, we present the proposed ITAG model. We
start with the overall framework of the proposed model, and
then describe each of its key components.

Overall Framework
The proposed ITAG is built upon the encoder-decoder frame-
work (See Fig. 2 for an illustration). The encoder section
takes a text sequence as the input, and outputs the vector
representations for the text sequence. Specifically, we use
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Pillars TagSpace Maxide Tag2Word ConTagNet CNN-RNN ABC TLSTM PBAM ITAG
C1 × × × × ×

√ √ √ √

C2 × × × ×
√

× × ×
√

C3 × ×
√

× × × × ×
√

Table 1: The summary of existing work and the proposed method in terms of the three pillars. C1, C2, and C3 correspond to
sequential text modeling, tag correlation, and content-tag overlapping, respectively.
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Figure 2: The overall framework of the proposed ITAG model.

a multi-layer RNN structure with attention mechanism to
model the textual content. For the multiple RNN layers, we
build the attention mechanism upon the top layer to bring
the interpretability to the recommendation results.

In the decoder section, it takes as the input the vector rep-
resentations from the encoder section, and outputs the tags
for the corresponding input text. In particular, we connect
several RNNs as a prediction path to characterize the tag
correlation. That is, the output of the previous RNN serves
as the additional input of the next RNN. For example, we
utilize the first RNN with the output from the encoder to
predict the first tag ‘java’. After that, we utilize the second
RNN with the output of the first RNN and the first tag ‘java’
to predict the second tag ‘eclipse’.

Finally, we design a shared embedding layer and an in-
dicator function that stretch across the encoder and the de-
coder to capture the content-tag overlapping. For example,
the word ‘eclipse’ uses the same embedding in the encoder
and the decoder, and we learn an indicator probability to de-
termine whether to directly assign ‘eclipse’ as a tag.

The overall training objective function is shown below,

J =
1

|T |
∑

(t,z)∈T

∑
zi∈z
− logP (zi|t), (1)

where T is the training set, t and z are the textual content and
its corresponding tag set of each input, zi is the current tag
under prediction, and P (zi|t) is the probability of choosing
tag zi for input text t.

Modeling Textual Content
A unique characteristic of RNNs lies in that it stores infor-
mation circularly by iterating functions. As such, it is par-
ticularly suitable for processing sequential input (Li et al.
2016a; Sun et al. 2018). In our model, we utilize a multi-
layer RNN structure (i.e., the grid-structure RNN) which in-
cludes l layers of RNNs. The bottom layer takes the text se-
quence as its input and generates a sequence of hidden states
accordingly. Next, these hidden states are fed into the next
layer which in turn outputs the hidden states for the next
layer. Finally, the hidden states of the top layer serve as the
final vector representations for the input text sequence.

As to the recurrent neuron for RNNs, we use the Gated
Recurrent Unit (GRU) (Cho et al. 2014). Basically, GRU in-
troduces the update gate to control the extent to which the
state information of the previous moment is kept in the cur-
rent state, and the reset gate to control the degree of ignoring
the state information of the previous moment. We denote it
as

hi = GRU(xi, hi−1), (2)

where hi is the current hidden state (output vector), and xi
is the current input of the GRU neuron. We omit the detailed
equations for GRU for brevity (see (Cho et al. 2014) for de-
tails).

We further introduce the attention mechanism (Bahdanau,
Cho, and Bengio 2014) on the top layer of the multi-layer
RNNs, which weights and aggregates each GRU state for
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generating each tag. For example, given an input sequence
of N words (1, 2, ..., N ) whose hidden states in the top
layer are (h1, h2, ..., hN ). For the i-th tag whose hidden
state/feature is si, we calculate its new feature vector s′i with
attention as follows,

uij = vT1 · tanh(W1 · hj +W2 · si)
αij = softmax(uij)

s′i =

N∑
j=1

αij · hj (3)

where vector v1 and matrices W1 and W2 are parameters.
In the above equations, the normalized αij determines how
much attention should be given to the j-th hidden state of
the encoder (i.e., hj) for the new i-th hidden state of the
decoder (i.e., s′i). Finally, we can either concatenate s′i with
si or add them together to generate the overall feature vector
for predicting the i-th tag. Our empirical evaluations indicate
that there is little difference between these two choices in
terms of recommendation accuracy. For the results we report
in this paper, we add s′i and si together for simplicity.

Modeling Tag Correlation
The vast majority of the existing approaches for tag recom-
mendation typically model the problem as a multi-label clas-
sification problem. Although performing reasonably well,
one major limitation lies in the fact that the tags for a certain
piece of content are usually strongly correlated with each
other. To address this limitation, we utilize RNNs to build
a prediction path in the decoder section. That is, the output
states of the previous RNN as well as the previous tags will
be used in the current RNN to predict the current tag.

Take Fig. 2 as an example. At the beginning, the ‘start’
symbol1 is fed into the first RNN. Along with the output
vectors from the encoder section, we can predict the first tag
as the output of this specific RNN. Next, we feed the output
states of the first RNN as well as the first tag into the second
RNN, and predict the second tag. We repeat such process
until the ‘end’ symbol is predicted.

Inference Stage. In the training stage, we have the ground
truth of previous tags. The situation is different in the in-
ference stage. As mentioned above, we organize all the tags
(e.g., z1, z2, z3, ..., zM ) for a certain input sequence as a pre-
diction path, i.e.,

arg max
z1,...,zM

P (z1, ..., zM |I) = arg max
z1,...,zM

P (z1|I)× (4)

P (z2|I, z1)× ...× P (zM |I, z1, ..., zM−1)

where I is the output of the encoder section, and
P (zi|I, z1, ..., zi−1) indicates that the prediction of the cur-
rent tag is dependent on I as well as the previous tags. How-
ever, the tags are predicted one by one, and the error of
previous tag predictions will accumulate along the predic-
tion path. Moreover, there is no polynomial-time algorithm
for finding the optimal P (zi|I, z1, ..., zi−1). To mitigate this

1We use a ‘start’ symbol as the initial input for the first tag, and
the prediction ends when an ‘end’ symbol is predicted.

problem, we employ the beam search algorithm to obtain
multiple candidate prediction paths. After that, we can di-
rectly select the prediction path with the highest probability
as the final result. However, a subtle issue of this strategy
is that it would favor the shorter paths as they tend to have
higher probabilities. To address this issue, we introduce a
penalty into the probability computation by multiplying the
probability with the length of the current prediction path.

Modeling Content-Tag Overlapping
In textual tag recommendation problem, the decoder vocab-
ulary is usually overlapped with the encoder vocabulary.
In addition, the same word in the encoder and the decoder
should share the same meaning. We design a shared embed-
ding layer and an indicator function that span across the en-
coder and the decoder in order to model such phenomenon.

Shared Embedding. The shared embedding layer maps the
same word in the encoder section and that in the decoder
section to the same embedding. Specifically, given a word
k (the k-th word), we first represent it as a one-hot vector
ek = [0, ...0, 1, 0, ..., 0]T where the k-th position is 1 and the
other positions are 0s; then, we multiply the one-hot vector
with an embedding matrix E in the shared embedding layer,
i.e.,

ωk = E · ek (5)
where ωk is the low-dimensional embedding for word k. In
other words, the embedding of the k-th word corresponds to
the k-th column of the embedding matrix E. In the above
equation, E is a dx × |V | matrix for both the content words
and the tag words, where dx is the embedding dimensional-
ity for input words and |V | is the total vocabulary size.2

Indicator Function. In addition to shared embedding, we
design an indicator function to indicate the probability of di-
rectly copying a word from the content as the tag. For a given
piece of input content, we denote this probability when pre-
dicting the i-th tag as pi, which can be computed as follows,

oi = vT2 · tanh(W3 · s′i)
pi = σ(oi) (6)

where s′i is the overall representation of the current content
as defined in Eq. (3), v2 and W3 are parameters, and σ(x) =
1/(1 + exp(−x)).

After pi is learned, we directly copy one word in the cur-
rent text with probability pi. The chosen word is decided by
the attention weights αij from Eq. (3). By denoting P (zi) as
the original probability of generating a tag from the decoder
section, and α(zi) as the attention weight of word zi,3 the
new probability P ′(zi) of generating the i-th tag zi can be
computed as follows.

P ′(zi) = (1− pi) · P (zi) + pi · α(zi) (7)

Experimental Evaluations
In this section, we present the experimental setup and ana-
lyze the experimental results.

2V is the union of the content vocabulary and tag vocabulary.
3We check word zi before the calculation of P (zi). If word zi

is not in tag vocabulary, we set α(zi) = 0.
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Table 2: Statistics of the datasets.

Dataset Math AU SO
# of posts 89240 259740 350000
vocabulary size 15000 20000 10000
# of tags 1305 2500 1003
# of overlapping words 269 1794 709

Datasets and Setup
Datasets In our experiments, we use three real datasets:
Mathematics Stack Exchange (Math), Ask Ubuntu (AU),
and Stack Overflow (SO). All the datasets are officially pub-
lished and publicly available.4 Each dataset contains several
posts, and each post contains a piece of textual content (a
title and a body) and the corresponding tags. We make the
following pre-processing steps on the datasets. First, we re-
move all the punctuation marks, and then split the remaining
strings into individual words. Here, we preserve the stop-
words in the text. In this way, we can retain the full text or-
der information which is often ignored by the bag-of-words
model. Next, we delete some low-frequency words in the
textual content to reduce noise. Specially, we compute the
frequency of each word and keep the top frequent words for
each dataset in the vocabulary. For the words out of the vo-
cabulary, we define a special symbol ‘unknown’. There are
two types of unknown words: 1) words that appear in the
training set but not in the vocabulary, and 2) words that do
not appear in the training set but in the test set. Finally, as
the low-frequency tags are seldom used, we count the fre-
quencies of tags and keep the most frequently used ones.
The remaining content words and tags form the final vocab-
ulary. We randomly select a subset of the SO datasets, and
the statistics of the datasets after pre-processing are summa-
rized in Table 2. For each dataset, we randomly select 90%
of the data as the training set, and use the rest 10% as the
test set. In the training set, we randomly select 10% data as
the validation set.

Compared Methods We compare our method with the
following existing methods.5

• TagSpace (Weston, Chopra, and Adams 2014). TagSpace
is perhaps the first tag recommendation method that
adopts the CNNs to model text.

• Maxide (Xu, Jin, and Zhou 2013). Maxide is a traditional
multi-label learning method for tag recommendation.

• Tag2Word (Wu et al. 2016). Tag2Word is a supervised
topic modeling method for tag recommendation. It con-
siders the content-tag overlapping.

• ABC (Gong and Zhang 2016). ABC adopts an attention-
based CNN architecture to recommend tags for textual
content. It models the text sequential order with both local
attention and the global attention.

4https://archive.org/details/stackexchange
5We do not compare with the latest work (Sun et al. 2018) as it

requires a hierarchical knowledge graph of tags as input, which is
unavailable in our problem setting.

• TLSTM (Li et al. 2016b). TLSTM combines topic model-
ing with LSTMs to model the text for tag recommenda-
tion. It also considers text sequential order.

Evaluation Metrics In terms of evaluation metrics, we
use recall, precision, and F1-score to measure the perfor-
mance.

Parameters and Initializations For the multi-layer struc-
ture, we use three GRU layers in the encoder section (i.e.,
l = 3). For each layer, we set the maximum text length to
100. We truncate the input text if its length exceeds the max-
imum length, and we add zero-padding if the input length is
less than the maximum length. For all the compared meth-
ods, we set the word embedding dimensionality to 100 (i.e.,
dx = 100) and randomly initialize the embeddings if appli-
cable. For the GRU/LSTM neuron, we set the dimensional-
ity of its hidden state to 256 (i.e., dh = 256). When training
the model, we adopt the RMSProp optimizer with the batch
size set to 64. We adopt dropout with rate 0.1 to prevent
over-fitting, and early stopping to stop the training process
when the loss is no longer decreasing.6

Results and Analysis
Effectiveness Comparisons For effectiveness, we com-
pare the proposed ITAG with the existing competitors, and
the results are shown in Table 3. In the table, we report top-
1, top-3, and top-5 results.

We can observe from the table that the proposed ITAG
generally outperforms the compared methods on the three
datasets. For example, on the F1 metric, the relative im-
provements of ITAG are 9.2 - 23.1%, 11.9 - 22.4%, and
8.2 - 13.5% compared with its best competitors on the three
datasets, respectively. Moreover, we conduct a paired t-test
showing that the improvements are statistically significant
(e.g., p-value< 0.001). The reasons for the performance im-
provement of ITAG are as follows. Maxide and TagSpace
perform relatively poor as they do not pay special attention
on the three pillars as summarized in Table 1. ITAG is better
than Tag2Word as Tag2Word only considers the content-tag
overlapping. For ABC and TLSTM, although they model the
sequential nature of text, the two pillars of tag correlation
and content-tag overlapping are ignored.

Performance Gain Analysis Next, in order to verify the
effectiveness of the three pillars, we perform a performance
gain analysis by removing some of them. To be specific, we
first remove the modeling of content-tag overlapping and tag
correlation. The resulting method uses only the encoder part
to model text, and then builds a classifier via a softmax layer.
We refer to this method as ITAG1. Next, we add the tag cor-
relation component into ITAG1 to obtain ITAG2. The results
are shown in Table 4, where we report the top-3 results on
the AU data for brevity.

As we can see from the table, ITAG1 which simply mod-
els the text with RNN and attention performs relatively poor.
Next, when tag correlation is introduced, ITAG2 significantly

6The code of the proposed method is publicly available at
https://github.com/SoftWiser-group/iTag.
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Table 3: Effectiveness comparisons on the three datasets. The proposed ITAG generally outperforms the existing methods (The
symbol ∗ means that the improvement is significant with p-value < 0.001).

Data Methods @1 @3 @5
Recall Precision F1 Recall Precision F1 Recall Precision F1

Math

TagSpace 0.065 0.144 0.090 0.141 0.115 0.126 0.186 0.091 0.122
Maxide 0.054 0.126 0.075 0.121 0.097 0.108 0.167 0.081 0.109

Tag2Word 0.190 0.396 0.257 0.331 0.246 0.282 0.425 0.194 0.267
ABC 0.317 0.853 0.463 0.656 0.587 0.620 0.779 0.419 0.545

TLSTM 0.281 0.756 0.410 0.548 0.491 0.518 0.658 0.353 0.460
ITAG 0.421∗ 0.876∗ 0.570∗ 0.755∗ 0.737∗ 0.746∗ 0.766 0.486∗ 0.595∗

AU

TagSpace 0.030 0.084 0.044 0.079 0.072 0.075 0.119 0.064 0.084
Maxide 0.054 0.126 0.075 0.121 0.097 0.108 0.167 0.081 0.109

Tag2Word 0.191 0.441 0.266 0.352 0.287 0.316 0.447 0.225 0.299
ABC 0.265 0.724 0.388 0.550 0.500 0.524 0.678 0.370 0.479

TLSTM 0.278 0.759 0.407 0.579 0.527 0.552 0.712 0.389 0.503
ITAG 0.363∗ 0.794∗ 0.498∗ 0.657∗ 0.658∗ 0.657∗ 0.715 0.464∗ 0.563∗

SO

TagSpace 0.051 0.126 0.073 0.113 0.087 0.098 0.161 0.076 0.103
Maxide 0.049 0.121 0.069 0.110 0.088 0.098 0.159 0.075 0.102

Tag2Word 0.219 0.430 0.290 0.366 0.251 0.298 0.463 0.196 0.275
ABC 0.286 0.687 0.403 0.523 0.419 0.465 0.621 0.299 0.403

TLSTM 0.294 0.706 0.415 0.540 0.433 0.480 0.643 0.309 0.417
ITAG 0.337∗ 0.672 0.449∗ 0.551∗ 0.540∗ 0.545∗ 0.630 0.356∗ 0.455∗

Table 4: Performance gain analysis of the proposed ITAG.
All the three pillars contribute to the effectiveness of the pro-
posed ITAG.

Models Recall@3 Precision@3 F1@3
ITAG1 0.073 0.068 0.071
ITAG2 0.579 0.587 0.584
ITAG 0.657 0.658 0.657

improves ITAG1. Moreover, when the content-tag overlap-
ping is modeled and incorporated into ITAG2 (i.e., the ITAG
method), further improvement is achieved. For example, the
relative improvement on the F1@3 metric is 12.5%. We con-
clude that all the three pillars contribute to the effectiveness
of the proposed model.

Parameter Sensitivity There are two major parameters in
the proposed method, including word embedding size (dx)
and GRU hidden state size (dh). The results are shown in
Fig. 3, where we report the Recall@3 and Precision@3 re-
sults on the Math data for brevity. We can observe from
Fig. 3(a) that the results are stable when dx ls no less than
100. We have similar observations from Fig. 3(b), where the
best dh is round 256. Overall, the proposed method is ro-
bust with respect to these two parameters in a relatively large
range. For the results we report in the paper, we fix these two
parameters to 100 and 256, respectively.

Visualization Results Finally, we present some visualiza-
tion results from the proposed method ITAG in Fig. 4, which
could help to improve the interpretability of tag recommen-
dation. The examples are all selected from the test set of
the SO data, with deeper (yellow) color indicating higher at-
tention weights. We can first see from the first two examples
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(a) The word embedding size dx.
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Figure 3: Parameter sensitivity results. The proposed ITAG
is robust with respect to the two parameters in a relatively
wide range.

that, although both methods successfully predict the right tag
‘windows’, the attention learned when considering content-
tag overlapping is more meaningful. That is, the attention
of the model without content-tag overlapping is scattered
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(a) Without modeling content-tag overlapping

(b) With modeling content-tag overlapping

(c) Predicting additional reasonable tags

Figure 4: Visualization examples of ITAG. The first two ex-
amples show that although both models can predict the right
tag, modeling the content-tag overlapping helps to keep the
model focused on the tag-related part of the input text. The
third example shows that the proposed model can sometimes
predict reasonable tags that are not in the ground-truth list.

around the text, whereas most of the attention with content-
tag overlapping is concentrated on the word ‘windows’ in
the text. Moreover, the common evaluation protocol with ex-
isting tag recommendation methods is to evaluate the effec-
tiveness by accurately predicting the real tags in the datasets.
However, the tags in the datasets are manually annotated by
users, and as such they might be incomplete or even im-
proper in some cases. The third example demonstrates that
our model is able to identify some reasonable tags although
these tags are not listed as ground-truth in the datasets. For
example, although the ground-truth tag is ‘mysql’ in the test
set, the predicted tag ‘php’ by our method is also a reason-
able suggestion.

Related Work
In this section, we briefly review the related work, which
is organized into content-based methods and collaborative
filtering methods.

Content-based methods. Content-based methods aim to
recommend suitable tags by directly modeling the content.
The focus of this paper is on the textual content, and we
divide existing methods into two steps: text representation
and candidate tag generation. Text representation methods
include TF-IDF, topic models (Ramage et al. 2009; Kres-
tel, Fankhauser, and Nejdl 2009; Seitlinger et al. 2013; Wu
et al. 2016; 2018), and neural networks (Weston, Chopra,
and Adams 2014; Li et al. 2016a; Gong and Zhang 2016;
Li et al. 2016b; Sun et al. 2018). A recent trend is to apply
neural networks such as RNNs to learn the text represen-
tations. For example, Gong et al. (2016) add the attention

mechanism to CNN to model the text; Li et al. (2016b) fur-
ther combine RNN with topical distributions to learn text
representations. Different from these methods, we further
consider the content-tag overlapping and the tag correlation.
As to candidate tag generation, existing methods mainly
adopt classification (Li et al. 2016a; 2016b; Gong and
Zhang 2016) and clustering-based methods (Mishne 2006;
Sigurbjörnsson and Van Zwol 2008). Different from these
methods, we adopt the sequence generation method for can-
didate tag generation so as to capture the tag correlation phe-
nomenon.

Although the focus of this work is on the textual content,
there are also research on recommending tags for other types
of content. Among them, recommending tags for images are
widely studied (Sigurbjörnsson and Van Zwol 2008; Liu et
al. 2014; Rawat and Kankanhalli 2016; Zhang et al. 2017)).
For example, Liu et al. (2014) combine visual features and
textual information to recommend tags for photos; Rawat et
al. (2016) propose a deep neural network to predict multiple
tags for images. In addition to images, Zhao et al. (2010)
recommend tags for songs based on tag semantic similarity
and music content; Toderici et al. (2010) recommend tags for
YouTube videos solely based on their audiovisual content;
Font et al. (2014) propose a tag recommendation system in
an online platform for audio clip sharing.

Collaborative filtering methods. In general, tag recom-
mendation methods based on collaborative filtering take the
existing tagging history as input, and aim to recommend
tags for users in a personalized manner. Typically, existing
collaborative filtering methods often model the tag recom-
mendation problem as a k-nearest neighbor problem (Zheng
and Li 2011), a tensor factorization problem (Symeonidis,
Nanopoulos, and Manolopoulos 2008; Fang et al. 2015),
or a graph link prediction problem (Feng and Wang 2012;
Zhao, Guan, and Liu 2015). The combination of collabora-
tive filtering method and content-based method is also stud-
ied (Wang, Chen, and Li 2013; Wang, Shi, and Yeung 2015).

Conclusions
In this paper, we have proposed an effective, unified tag rec-
ommendation model ITAG for textual content. The key idea
of ITAG is to model three pillars (i.e., sequential text mod-
eling, tag correlation, and content-tag overlapping) into a
coherent encoder-decoder framework. Experimental results
on three real-world datasets demonstrate that the proposed
method significantly outperforms the existing methods in
terms of recommendation accuracy, and our method is capa-
ble of producing interpretable results. Future directions in-
clude recommending tags for specific domains such as pro-
gramming question answering sites, combining textual con-
tent with other types of content for tag recommendation, and
extending the proposed method into the personalized setting.
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