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Abstract

The causal effect of a treatment can vary from person to per-
son based on their individual characteristics and predispo-
sitions. Mining for patterns of individual-level effect differ-
ences, a problem known as heterogeneous treatment effect
estimation, has many important applications, from precision
medicine to recommender systems. In this paper we define
and study a variant of this problem in which an individual-
level threshold in treatment needs to be reached, in order to
trigger an effect. One of the main contributions of our work
is that we do not only estimate heterogeneous treatment ef-
fects with fixed treatments but can also prescribe individu-
alized treatments. We propose a tree-based learning method
to find the heterogeneity in the treatment effects. Our exper-
imental results on multiple datasets show that our approach
can learn the triggers better than existing approaches.

Introduction

Developing optimal precision treatments for diverse popu-
lations of interest can lead to more effective public poli-
cies (Grimmer, Messing, and Westwood 2017), medical de-
cisions (Laber and Zhao 2015; Lakkaraju and Rudin 2017),
recommender systems (Li et al. 2010), and more (Ascarza
2018). Treatment effects, also known as causal effects, as-
sess the outcome response difference between applying a
treatment to a unit and not applying one. Heterogeneous
treatment effect (HTE) estimation refers to finding subsets in
a population of interest for which the causal effects are dif-
ferent from the effects of the population as a whole (Athey
and Imbens 2016). For example, if the treatment is a drug
with potential adverse reactions, doctors may want to pre-
scribe it only to those people who would benefit from it the
most. Additionally, HTE analysis allows the discovery of
subpopulations that can react adversely to a treatment and
should avoid the treatment altogether. HTE can be studied
as part of the post-analysis of running a controlled experi-
ment or through observational data.

Supervised machine learning techniques have been
adapted to the problem of HTE estimation (Imai and
Ratkovic 2013; Tian et al. 2014; Xu et al. 2015; Grim-
mer, Messing, and Westwood 2017; Xie, Chen, and Shi
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2018) and the closely related problem of finding individu-
alized treatment regimes which aims to find the best indi-
vidual treatment assignment (Almardini et al. 2015; Laber
and Zhao 2015; Lakkaraju and Rudin 2017; Kallus 2017;
Kallus and Zhou 2018). Most of them rely on recursive parti-
tioning using interpretable tree-based methods, such as deci-
sion lists (Lakkaraju and Rudin 2017), decision trees (Athey
and Imbens 2016; Breiman 2017; Laber and Zhao 2015;
Su et al. 2009; Zeileis, Hothorn, and Hornik 2008) and ran-
dom forests (Foster, Taylor, and Ruberg 2011; Wager and
Athey 2017; Athey, Tibshirani, and Wager 2016). Some of
the splitting criteria include highest parameter instability
(Zeileis, Hothorn, and Hornik 2008), t-statistic for the test
of no difference between splits (Su et al. 2009) and penal-
izing splits with high variance (Athey and Imbens 2016). In
(Kallus 2017), an impurity measure is developed to measure
risk of treatments in a partition. There are also other methods
that rely on clustering (Almardini et al. 2015) or propensity
scores (Xie, Brand, and Jann 2012).

In many realistic scenarios, the treatment is an ordinal (or
monotonously increasing continuous) variable, rather than a
binary one, and the effect depends on the amount of treat-
ment. For example, a clinician might be interested to under-
stand the minimum number of days (the trigger) that patients
with certain characteristics need to take a medication, in or-
der to be cured (the effect). Or, a company might be inter-
ested in offering a personalized discount where the thresh-
old is the minimum discount needed to trigger a customer
with given characteristics to buy a product. Then, the goal
becomes finding the threshold that maximizes the expected
outcome for each discovered subpopulation where the sub-
population is characterized by its set of equal or similar at-
tributes. To the best of our knowledge, none of the existing
work addresses this problem which is the focus of our work.

We formalize this problem under the name trigger-based
HTE estimation and develop a learning procedure that en-
ables the discovery of individual-level thresholds for trigger-
ing an effect. In essence, we turn an ordinal treatment prob-
lem into a binary treatment one where the treatment thresh-
old is learned. For each subpopulation, the treatment effect
refers to the average difference between the outcomes for the
individuals in the subpopulation whose treatment is below
the threshold and those who are above the threshold. A key
assumption here is that the subpopulation that has received
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Figure 1: A small tree illustrating triggers for HTE. The
right most path reads: “If a person is male, started smoking
younger than 197, the average effect of smoking on medical
expenditures is 0.642, for more than 3 log(packyears).

treatment above the threshold represents the same underly-
ing distribution as the subpopulation below the threshold.
Trigger-based HTE estimation is closely related to estimat-
ing dose-response curve used in medical fields for estimat-
ing effects of diet (Wang et al. 2014) and survival analysis
(Spratt et al. 2013). In contrast, our method discovers sub-
populations with heterogeneous triggers and effects.

Our proposed algorithm builds upon previous work on
causal trees (Athey and Imbens 2016) which recursively par-
tition a population using a decision tree-like approach. There
are two main challenges to learning trigger-based HTE that
have not been addressed by previous work on causal trees.
First, a learning algorithm needs to be able to find effects
that are robust and can generalize to unseen data. Sec-
ond, trigger-based HTE requires simultaneous learning of
population-level triggers and population HTE.

We propose a greedy algorithm with a novel scoring func-
tion that separates the full population into partitions with
different effects. To address the first challenge, we treat the
causal effects in different possible populations as hyperpa-
rameters that need to be estimated from a validation dataset.
Our node-splitting criterion learns to generalize to unseen
data by introducing a penalty on a model’s ability to esti-
mate the conditional average causal effect. To address the
second challenge, we search for treatment value thresholds
that trigger the highest effects when binned into binary treat-
ment and control groups based on that threshold.

Our main contributions include:

Framing a new problem of practical interest: trigger-based
HTE estimation;

Developing the first method for discovering groups with
trigger-based HTE;

Utilizing trigger-based HTE estimation with causal trees
for prescribing individualized treatments;

Enabling causal effect generalization in causal tree learn-
ing through an appropriate node-splitting penalty;
Discovering HTE with significantly lower error rates
compared to existing baselines.

To illustrate the trigger-based HTE groups that our
method can discover, we show a simple example in Fig.
1. The data is from the 1987 National Medical Expendi-
tures Survey (NMES) (Johnson et al. 2003). The treatment
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is amount of smoking (in log(packyears)) and the effect is
medical expenditures (in log(cost)). The first splitting fea-
ture is gender, where the left path is true (female) and the
right path is false (male). One example of a path in the
tree is the right-most path: if a person is male and started
smoking younger than 19 years old, then smoking more than
log(packyears) leads to the highest difference in treatment
effects compared to people with the same characteristics
who smoked less, a 64.2% increase in medical expenditures.

Preliminaries

First, we will present some background and definitions for
causal inference, including assumptions needed for inferring
treatment effects in observational data. Then, we present
the heterogeneous treatment effect estimation problem. Fi-
nally, we briefly describe the causal tree approach proposed
by (Athey and Imbens 2016).

Causal Inference

Suppose dataset S has N units which are independently and
identically distributed (i.i.d.). For a unit s;, (i = 1,..., N),
there are a pair of potential outcomes, Y;(0), Y;(1). The in-
dividual causal effect (ICE) is defined as 7; = Y;(1) —Y;(0),
the difference in potential outcomes following the Rubin
Causal Model (Rubin 1974) Define the indicator for treat-
ment group assignment as 7; € {0,1}, where T; = 0
and 7; = 1 indicates that unit s; is in the control or treat-
ment group, respectively. Traditionally, we cannot observe
the outcome when treated and outcome when not treated si-
multaneously. The actual observed outcome is defined as:

Yi(0),
Yi(1),
We assume the potential outcome of one unit should not be
affected by treatment assignment of other units (the stable
unit treatment value assumption (SUTVA) (Rubin 1978)).

We maintain the assumption of unconfoundedness (Rosen-
baum and Rubin 1983), given as: T; L (Y;(0),Y;(1)) | X;.

ifT; =0,
if T; = 1.

YO = yy(T)) = (1)

Heterogeneous treatment effect estimation

The main focus of heterogeneous causal inference is to esti-
mate the conditional average treatment effect (CATE) based
on a set of features (Athey and Imbens 2015). The CATE is
defined as: 7(z) = E[Y;(1) — Y;(0)|X; = x]. The goal is
to obtain accurate estimates 7 () for the CATE 7(x), which
are based on a partitioning of the feature space.

Consider the feature space X C R? (we would like to
note that we make this assumption for simplicity of ex-
position but our algorithms can easily be adapted for dis-
crete features as well). A dataset S consists of triples S =
{(X;,Y;,T;): X; € X} where X; is the feature vector,
Y; is the outcome or response, and 7; is the binary in-
dicator of treatment group assignment for unit s;. A par-
titioning of the feature space into L partitions is defined
as X = Xy U---UAXp, where X, N Xy = () for all
¢ # {'. The set of examples corresponding to partition X
is Sy = {(Xi,)/i,Ti)Z X, € Xg}.



The conditional mean for treatment and control in parti-
tion Ay is defined as:

@

where ¢ € {0,1}, fi; and jip are the conditional means
for treatment and control groups in the partition, and Ny,
and Ny, are the number of units in treatment and control
groups in the partition, respectively. The average causal ef-
fect (ACE) 7 for partition X} is defined as:

7(Se) = @1 (Se) — fio(Se), 3)

When performing estimation on a new set of data, say S,
the test examples are matched to the correct partition given
the features. Given an example s; € S™ in partition ¢, the
estimated ICE for unit s; is given by the ACE for Sy as (3).

Objective function

The goal of HTE estimation is to partition the feature space,
so that heterogeneity is found. Similar to (Athey and Imbens
2016), we define a partition measure that captures the mag-
nitude in ACE for the partition: F'(Sy) = Ny -72(S;), where
Ny = |5y is the number of samples in partition .

To find subgroups for HTE, we wish to partition the fea-
ture space, so that the sum of all partition measures is max-
imized. For a feature space X, the objective is to maximize
the sum of partition measures F' across L partitions:

L
=1
X=X U UAXL,
XeNXy =0, L£LC

To reach this objective for the trigger-based HTE estimation,
we need to optimize partition splits both based on features
and possible feature threshold splits.

@

Recursive partitioning through causal trees

Trees are popular for HTE estimation (Athey and Imbens
2016; Green and Kern 2012; Laber and Zhao 2015). Each
partition is represented by a path in the tree, similarly to de-
cision trees. Trees are built in a greedy manner to maximize a
F from each node split. This results in locally optimizing the
objective (4) as splitting criteria. Given a node ¢ that needs
to be partitioned into two child nodes /1, ¢, the algorithm
finds the split that maximizes F' for the two children:

max F(Se,) + F(Se,) )
Sty .50,
such that X, = Xgl U ng and Xgl n Xg2 = (. A sim-
ple method for building a tree is to directly use this split-
ting, called the adaptive approach, which we denote as CT-
A (Athey and Imbens 2016). The entire training set is used
to build the tree and estimate causal effects.

A penalty can be introduced to the splitting criteria (Athey
and Imbens 2016). This approach, called the honest ap-
proach, denoted as CT-H, is separated into two stages: tree-
building and estimation. The data is split into a training and
estimation sample, denoted by S and S, respectively. S*
is used for tree building and S**' is used for estimation.
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Triggers for HTE

When there is a treatment value threshold (e.g., minimum
number of days to take a medication) that triggers an effect
(e.g., to be cured), the partitions will depend on the opti-
mal thresholds for each subpopulation. Let ¢; € R be the
amount of treatment (e.g., number of days to take a medi-
cation) corresponding to each unit s;. We define the trigger
0, of a population Sy as the threshold that splits Sy into two
subpopulations Sy, and Sy, in a way that optimizes the treat-
ment effect for Sy:

argmax fi1(Se,) — fo(Seo) ©)

0

such that Sy = Sp, U Sy, Se, NSy, = @, where T; = 1
if t; > 0, and T; = 0 otherwise. While we define the
treatment as a real variable, threshold-based triggers also
apply to treatments that are ordinal discrete values. Like in
the non-trigger case, a key assumption here is that S,, and
Sy, represent the same underlying distribution and each unit
s; € Sy is equally likely to be assigned to each subgroup
(T; L (Y3(0),Y3(1)) | Xo).

Learning HTE

Next, we present our general approach to learning HTE!,
that applies to both discrete and trigger treatments. We ex-
plain in detail the specific requirements for the trigger case.

Effect estimation

The formulation given previously may not be optimal on un-
seen test data. In contrast to (Athey and Imbens 2016), we
propose a different splitting criterion by introducing the idea
of a validation set to find splits that generalize well to unseen
data. For our approach, we clearly separate a training, vali-
dation, and testing sample for training and evaluation. Addi-
tionally, we jointly optimize generalizability using training
and validation in a one-stage tree-building process.

For a dataset S, we define the training, validation and
testing samples as S, S*¥, and S*. We build the tree on
the training portion, while penalizing generalization ability
based on the validation set. Our method estimates effects
on the training sample and penalizes estimations that do not
match a validation set by introducing a penalty or cost.

Let 7(Sy) be the true ACE in a node £. The estimated
ACE on the validation set is 7(S}) as in (3). Formally, de-
fine the cost term C as: C(S}™) = Ny - |#(Sp™) — 7(S¥)|.
This measures the error of estimated effect and validation
ACE. Using the cost term C, define a new measure:

1= 0) - F(S5) ~ A CO(S1)
NF-NFT+L

Fo(Se) = ( @)
where A € [0, 1] is a parameter that controls the penalty. By
adjusting A\, we can introduce higher penalty to splits that do
not generalize well. The denominator acts as normalization
for training and validation sizes. This gives fair comparison
of measures across different splits. This new measure max-
imizes partition measures, but encourages generalization on
unseen data through the penalty and the use of validation.

!Code available: https://github.com/chris-tran-16/CTL



Algorithm 1 Learning trigger-based causal trees

Input: Training set S, validation size p, indicator for measure B
(B = 1if binary, B = 0 if trigger-based)
Output: The root of the causal tree

1: 8™, S¥ = split(S, split size=p)
2: root.F <~ PARTITIONMEASURE(S, B) {e.g. equation (9)}
3: root.S < S" {The sample at root node }
4: return TRAIN(root)
5: function TRAIN(currentNode)
6: S¢ « currentNode.S
7: bestPartition <— —oo
8: for each feature split Xy, , Xy, do
9: leftPartition = PARTITIONMEASURE(S, , B)
10: rightPartition = PARTITIONMEASURE(S,, B)
11: if leftPartition + rightPartition > bestPartition
12: bestPartition = leftPartition + rightPartition
13: if bestPartition > currentNode.F
14: left.F, left.S < leftPartition, S¢,
15: right.F, right.S < rightPartition, S,
16: currentNode.left «+— TRAIN(left)
17: currentNode.right <— TRAIN(right)
18: else
19: return currentNode
20: function PARTITIONMEASURE(S, B)
21: if B == 1 { indicates no trigger }
22: return Fo (Sy)
23: else
24: 0¢ < 0; {denotes the trigger}
25: vg < —o0; {v is the best partition measure }
26: T ={ti: t: € S¢}
27: for each t; € 7 do
28: Se, ={(X5,Y3,T5): Ti > t5}
29: Sty = {(Xi Yo T): T < £}
30: temp = F'(S¢, U Se,)
31: if temp > vy
32: Vg, B¢ < temp, t;
33: return vg, 0,

The maximization problem for causal tree learning is the
same as in (4) using our new partition measure. We are find-
ing heterogeneous partitions, while minimizing generaliza-
tion error using a cost C'. This formulation is flexible, since
any cost can be introduced. We call this method CT-L.

We propose two variants, CT-HL and CT-HV. This
method uses the idea of honest estimation from (Athey and
Imbens 2016), where a separate estimation set is used to pe-
nalize variance in the splits. We now introduce a separate
estimation set as S°'. Define an honest term as H (Sy):

H(S:) = (1 + ) : <V(1;(SZ) + V;O)_(ff)) . ®

where p = N /N is the share of treated units, and V(1) (S)
and V(%) (S,) are the variance of treated and control means.

In the first variant, we combine the idea of honest estima-
tion with our validation penalty. We separate an estimation
set from the training data to perform honest estimation to
control variance. We also separate a validation set, so we
have generalization cost and variance penalty. The partition
measure is: Frrr,(Se) = Fo(Se) — H(Se). We call this the
CT-HL method.

In the second variant, we do not separate an estimation

Nest
N
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set. We treat the validation as a hybrid estimation and val-
idation set. Formally, the partition measure is: Fgy (Sy) =
Fo(Se) — Hya(Se). Hya is the same as the honest penalty,
except using the validation set instead of a separate estima-
tion set. We denote this as the CT-HV method.

Learning triggers for HTE

The goal of identifying triggers for HTE estimation is to find
subpopulations in which both the trigger threshold and the
individual characteristics play a role in the observed effect
differences. We define a partition measure that optimizes the
treatment effect for each subpopulation through the choice
of both the feature and the trigger threshold. For each node ¢
and its corresponding sample .Sy, we wish to find the trigger
0, that maximizes the treatment effect in .S,. When finding
splits, we jointly optimize for the choice of feature to split
on and triggers of the node’s children. For example, con-
sider estimating the effect that a product discount has on
the decision to buy that product. In this case, the method
would identify the minimum discount necessary to make a
customer with certain characteristics buy that product.

Let 7 = {t;} be the set of all possible treatment values
in the dataset. Define 6, € T as the trigger value that splits
the sample Sy into two subsamples Sy, and Sy,, found by
maximizing the ACE as in (6). The partition measure for the
trigger-based treatment effect is defined as F'7 :

F7(S,) = max Fco(Se), &)

where S, = Sy, U Sy, is the sample with trigger-based treat-
ment. We are maximizing the previously defined partition
measure in (7), over the possible triggers. For splitting, we
use the trigger-based partition measure, replacing the binary
partition measure in (4). Note that this formulation finds the
best trigger for treatment at each node in the tree. Therefore,
the trigger for heterogeneity is different and can be observed
at each level. We note that the partition measure used in (9),
Fc(Se), can be any partition measure (e.g. Fr(Se)). This
makes our formulation easily applicable to any measure.

Algorithm 1 briefly describes how to learn trigger-based
causal trees. The algorithm requires the validation size, and
an indicator for considering binary treatments or trigger-
based treatments. To determine triggers, we consider all
treatment values in the dataset as possible trigger values.

One potential concern is our strong assumption that the
population above and below the trigger represent the same
underlying distribution. While decision trees take care of it
to some extent (i.e., examples in a subpopulation stored in a
leaf share the feature values of the tree path that leads to that
leaf), in our experiments we ran further tests that compare
the treatment and control population in each leaf.

Experiments

We compare our methods to the adaptive and honest causal
trees developed in (Athey and Imbens 2016), as well as non-
tree based methods that use propensity scores (Xie, Brand,
and Jann 2012). We study two datasets that lend themselves
to the trigger-based treatment problem which is the focus of
our work. We also use the ACIC Causal Inference Challenge
dataset for binary treatments.
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treatment > 1073
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Figure 2: Comparison between trigger-based CT-H and trigger-based CT-L on the cloud storage dataset. Darker and lighter
shading indicate treatment effect is higher and lower, respectively. Our tree can find more statistically significant ACE’s than
the honest tree. This suggests that the adaptation for the honest tree to triggers is not as effective.

Table 1: Error for unpruned and pruned (e.g. CT-L vs CT-
LP) trees on the trigger datasets. Bold results are statistically
significant. Our methods (in grey) have lower error.

Method  NMES Error Cloud Storage Error
CT-A 0.982 0.745
CT-H 0.907 0.766
CT-L 0.597 0.607

CT-HL 0.417 0.613

CT-HV 0.416 0.719

CT-AP 0.982 0.699

CT-HP 0.894 0.667

CT-LP 0.566 0.573

CT-HLP 0.417 0.484

CT-HVP 0.416 0.396

Experimental setup

We run experiments using the adaptive (CT-A) and honest
(CT-H) trees (Athey and Imbens 2016). We also compare
to non-tree based methods that use propensity score such as
stratification-multilevel (SM) method, matching-smoothing
(MS) method, and smoothing-difference (SD) method (Xie,
Brand, and Jann 2012). For propensity score estimation, we
use logistic regression. It is not obvious how to adapt the
propensity based methods to the trigger-based problem, so
we use them for the binary treatment evaluation only. For
each dataset we do an 80-20 randomized split for the training
and testing set for evaluation. For ours and honest trees, we
split the training into two parts: a training S* and validation
S¥a For honest trees, S¥ is the estimation set St

In the experiments, we report results for pre-pruned and
post-pruned trees. We grow a maximum sized tree and prune
all trees based on statistical significance (« 0.05). For
pruned trees, we report error only on leaf nodes that have sta-
tistically significant ACEs. These are denoted with a “P” at-
tached to the method (e.g. CT-HP is the pruned honest tree).
We learn A and the validation split size for our methods on a
separate validation set.

Datasets

We consider two types of datasets: datasets with continu-
ous treatments used for the trigger-based treatment problem,
and binary treatment datasets. We adapt CT-A and CT-H to
the trigger-based treatment problem, by incorporating the
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trigger-based objective (6) into their respective splitting cri-
teria, and applying the same method for finding triggers.

Trigger treatments For the first dataset, we use data from
the 1987 National Medical Expenditure Survey (NMES)
(Johnson et al. 2003). We estimate the effect increased
smoking has on medical expenditures. The treatment is the
log(packyears) and the outcome is log(cost).

The second dataset is a cloud storage usage survey, which
asks users various questions about their cloud storage (Khan
et al. 2018). We look at the effect age has on the file manage-
ment decision. Users were asked whether they would like to
keep, encrypt, or delete the file. We focus on the decision to
keep or delete a file.

Binary treatments The last dataset comes from the ACIC
2018 Causal Inference Challenge?. The dataset provides 24
different simulations with sizes from 1000 to 50000. The
dataset contains information about the treatment and the re-
sponse of a sample. The pre-treatment and post-treatment re-
sponse which provides ground-truth for evaluation is avail-
able. We use this data as a proof our concept our methods on
the binary case, but binary treatments are not our focus.

Evaluation

For trigger-based evaluation (NMES and Cloud Storage),
we report the symmetric mean absolute percentage error
(SMAPE) for estimated and true ACE. For each leaf ¢, we
get the predicted ACE using the estimator 7(Sf°). The true
ACE is the difference in population mean for the sample S}
as in (3). For L leaves, the error for ACE is defined as:

EL|R(SE) - #(SE)
2> |

T PO
For binary treatments (e.g. ACIC), we calculate SMAPE
on the test set. Let the test dataset contain N examples.
Define the true effect to be 7; and the predicted effect to be
7;. The SMAPE error on the test set is defined as:

A =il
Nte Z 76| + 7]

ACE _Error( S (10)

Error(7, 7)

1)

*https://www.cmu.edu/acic2018/data-challenge/index.html
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Figure 3: Plots showing effect of trigger discretization on error rate and hyperparameters using CT-HVP. Fig. 3a shows that
considering more trigger values leads to lower error, but cannot compete with considering all triggers (0.741 compared to 0.416
in Table 1). Fig. 3b and 3c show that varying values of A and the validation size effects the error, which suggests need for
cross-validation. One way is to use the ACE_error defined in (10).

Table 2: Variance across leaves to measure heterogeneity of
effects. Our methods (in grey) have higher variance than the
honest method. The adaptive method has the highest vari-
ance, but sacrifices lower error.

Method  NMES variance Cloud variance
CT-AP 5.177 1.782
CT-HP 0.790 0.209
CT-LP 1.180 0.850
CT-HLP 0.974 0.243

CT-HVP 1.089 0.576

Table 3: Trigger-based selection bias test using average Ma-
halanobis across leaves. Our methods (in grey) have gener-

ally lower distances.

Method NMES Mahalanobis Cloud Mahalanobis
CT-AP 1.378 1.979
CT-HP 0.496 0.833
CT-LP 1.652 0.593

CT-HLP 0.441 0.627

CT-HVP 0.261 0.404

We compute the standard deviation of the SMAPE to get
statistical significance on the difference between evaluation
metrics for different methods. The result is statistically sig-
nificant if the standard deviations do not intersect.

Evaluation on trigger treatments

Error comparison. Table 1 shows results on the NMES
dataset and cloud storage dataset. The adaptive and hon-
est trees were adjusted for building trees on the continu-
ous treatment, using their splitting criterion in tandem with
the trigger-based measure. The results of our methods are
shaded in grey.

For the NMES dataset, we find that our methods give
significantly lower error than the adaptive and honest ap-
proaches. Additionally, as seen in Fig. 1, our conclusion is
consistent with (Imai and Van Dyk 2004) that prolonged
smoking increases medical expenditure. Fig. 1 show the gen-
der and the age when people started smoking are discrimi-
nating factors for heterogeneity.

On the cloud storage dataset, we show that our method
can get significantly lower error than the adapted CT-A and
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CT-H methods. Overall, pruning the trees for statistical sig-
nificance improves the error. In the prepruned trees, our base
method, CT-L, performs better. After pruning, CT-HV per-
forms the best. From both datasets, we see that combining
the honest penalty with our validation method and metric
lowers the error for both trigger-based datasets.

In Fig. 2, we compare two small trees on the cloud stor-
age dataset. We wish to find the trigger age that changes file
management decision. In this case, above and below the trig-
ger is considered as old and new, respectively. We show the
p-value based on a t-test for the average causal effect (ACE).
Positive ACE means that older files are likely to be kept,
while negative ACE means likely to be deleted. For exam-
ple, in the root node for Fig. 2b, files newer than 1073 days
are more likely to be kept. We also see our method can find
partitions with ACE that are statistically significant in a low
depth. In contrast to the honest trees, statistically significant
nodes are found on depth 2. This shows that the adaptation
of honest trees to trigger-based treatments is not as effective.

Heterogeneity comparison. Here, we evaluate whether
our proposed methods discover more heterogeneous popu-
lations by looking at the variance across the discovered leaf
effects for each method, as compared to the estimated popu-
lation effect. Table 2 compares the variance across leaves
for the tree-based methods. We observe that the adaptive
method finds the highest variance or most heterogeneity. At
the same time, the adaptive method has the highest error
on both the NMES and Cloud storage datasets, suggesting
that the discovered heterogeneity does not have good gener-
alizability. In contrast, our methods consistently find more
heterogeneous subgroups compared to the honest method,
while having lower error on the datasets. A visual compar-
ison can be made from Fig. 2. We see that the causal effect
estimations (ACE) vary much more across leaves in ours
compared to CT-H. Visually, this is shown by the shading
of nodes, where darker and lighter means more positive and
negative ACE. The shading varies much more in CT-L.

Trigger-based selection bias. Next, we test our assump-
tion that the treatment and control populations in each leaf
(with treatment value above and below the leaf trigger) have
the same underlying distribution. Although trees take care
of this to an extent (examples in the same leaf have the
same features used on the path), we compare the distance of



Table 4: ACIC data error. The results are for non tree methods (e.g. MS), and the unpruned and pruned trees (e.g. CT-L vs
CT-LP). Bold results are statistically significant. The table shows that our methods (shaded grey), are significantly better in 18
out of 24 datasets. When our method does not perform better the other methods are not significantly better.

Data Size = 1000 Data size = 2500 Data size = 5000
Method  32be 5316  d09f ea8e  6c04 7edd 95ba  c55e  4ed7 9450  a386 f4c2
MS 0.922 0.897 0.685 0.895 0.828 0.823 0.872 0.663 0.914 0.895 0.117 0.200
SD 0.941 0928 0.711 0.886 0.847 0.838 0.818 0.647 0.944 0.888 0.058 0.360
SM 0.826 0998 0.400 0.882 0.864 0.953 0.710 0.191 0.864 0.995 0997 0.223
CT-A 0.927 0971 0.557 0933 0924 0955 0.752 0425 0932 0999 0546 0.330
CT-H 0.970 0998 0473 0.831 0905 0.891 0985 0.244 0.860 0.998 0.855 0.220
CT-L 0.958 0946 0319 0.876 0.782 0929 0.560 0.193 0907 0.947 0362 0.168
CT-HL 0.827 0.980 0.189 0926 0.807 0.894 0.626 0.185 0.802 0.999 0.297 0.016
CT-HV 0935 0986 0.296 0.790 0.793 0.887 0.826 0.127 0.909 0.794 0.679 0.108
CT-AP  0.893 0971 0484 0978 0920 0954 0.756 0247 0930 0.999 0433 0.290
CT-HP 0918 0998 0.341 0.966 0905 0961 0.985 0.105 0924 0.998 0.855 0.149
CT-LP 0927 0.946 0319 0.882 0.782 0924 0.524 0.054 0918 0947 0.193 0.135
CT-HLP 0.815 0.980 0.204 0.926 0.807 0.893 0.527 0.185 0.909 0.998 0.002 0.016
CT-HVP 0.926 0986 0.296 0.889 0.801 0.762 0.826 0.076 0.944 0.883 0.003 0.043

Data Size = 10000 Data size = 25000 Data size = 50000
Method 0099  0a2a  5cc4  ¢93b 247  4dce  536d  630b 3461 9d8c  abcl f2e5
MS 0.649 0914 0.657 0.398 0.830 0.845 0.754 0867 0.764 0918 0.256 0910
SD 0.698 0934 0.517 0.367 0.774 0.949 0.737 0.789 0.782 0916 0.259 0.909
SM 0.293 0562 0.738 0.609 0463 0.752 0959 0955 0.577 0.895 0.999 0.944
CT-A 0.197 0.872 0.142 0.605 0.350 0.872 0457 0961 0998 0.947 0.99 0.939
CT-H 0.191 0954 0.176 0.547 0291 0.835 0.315 0.887 0977 0917 0984 0.973
CT-L 0.189 0.568 0.194 0461 0.198 0.596 0.076 0.749 0.658 0.894 0920 0.712
CT-HL  0.251 0.156 0.177 0.657 0.178 0.632 0.153 0.589 0909 0.998 0.002 0.016
CT-HV  0.092 0.753 0.185 0.349 0.106 0.720 0.060 0.619 0923 0.888 0.965 0.807
CT-AP  0.157 0.754 0.142 0466 0350 0912 0448 0921 0.998 0.947 0.996 0.955
CT-HP  0.084 0.706 0.176 0.366 0.291 0.885 0.108 0.878 0.977 0915 0983 0.848
CT-LP  0.077 0455 0.194 0.176 0.207 0.810 0.076 0.482 0.658 0.894 0.882 0.714
CT-HLP 0.088 0.156 0.177 0.141 0.178 0.857 0.077 0.468 0.884 0.887 0.002 0.016
CT-HVP 0.041 0.753 0.174 0.064 0.106 0.720 0.060 0.451 0.923 0.888 0.965 0.807

treatment and control groups. Table 3 compares the average
Mabhalanobis distance for each tree-based method. For Ma-
halanobis distance, we compute the distance between each
treatment feature vector to the mean of the control group,
and each control feature vector the the mean of the treat-
ment, and average over all distances in each leaf. From the
table, our proposed CT-HV method has lower population
differences at leaves, which means that it deals better with
trigger-based selection bias.

Impact of number of triggers. One concern of find-
ing triggers is the increase in complexity of building causal
trees. Instead of considering all possible treatment values in
the dataset as triggers, we explore the impact of using lower
number of possible triggers. Fig. 3a shows the number of
triggers against the error rate using CT-HV on the NMES
dataset. We see that increasing number of considered trig-
gers generally lowers the error. However, we see that even
after introducing 100 possible triggers, the error is still sig-
nificantly higher than when we consider all possible triggers
(0.741 compared to an error of 0.416 from Table 1). This
shows that there is a significant tradeoff between number of
triggers considered and error.

Evaluation on binary treatments

Table 4 shows the error for each ACIC dataset. For each
dataset, we compare unpruned (e.g. CT-L) and pruned (e.g.
CT-LP) tree results separately. We bold statistically signifi-
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cant results. Our methods are shaded in grey.

Across all the datasets, we see that our proposed meth-
ods achieve lower error compared to the previous tree-based
methods. For those datasets where our method is not signif-
icantly better, the other methods do not have significantly
lower error. Our variants (CT-HL and CT-HV) generally
have lower error than our base method. Careful validation
should be done to choose the best method.

We notice that some of the datasets have very large error
error (> 0.9). A likely reason is that the range of the re-
sponse variable varies wildly in some cases. For example,
in dataset 9450, the range of response is about 429. When
building the tree, large values affect the ACE at each node.

Hyperparameter tuning

Since we introduce two hyperparameters in our methods,
namely the weight )\ for controlling validation penalty, and
the validation split size, we explore varying these values.

Fig. 3b shows the error rate for varying values of A across
different validation sizes. From this plot, we see that with
sizes of the validation set, the lowest error changes with dif-
ferent values of A\. We notice that a larger A is needed for
smaller validation, while a smaller A is needed for larger
validation. Also, the error seems to be more stable when the
validation is the same size as the training set.

Fig. 3c shows the error rate for varying validation sizes,
with X fixed. We can infer that having a validation size close



to the size of the training size is a good choice for lower
error. From both figures, we conclude using a method for
learning these parameters is important. Cross-validation can
be used to tune these parameters (e.g. using (10)).

Conclusion

In this paper, we define the problem of trigger-based hetero-
geneous treatment effect estimation. To do this, we propose
novel splitting criteria for building causal trees and incor-
porate validation data to improve generalizability. We in-
troduce the use of a validation set for HTE estimation for
learning optimal partitioning, by introducing a loss func-
tion that penalizes partitions whose effects do not generalize.
We showed our method can get better coverage on average
causal effect on unseen test data when identifying triggers.
Our experimental results show our method performs better
than previous causal tree methods for binary treatment esti-
mation. Important future directions include outlier detection
for decreasing sample variance, developing methods for dif-
ferent distribution assumptions, such as non-i.i.d data, and
incorporating matching methods into HTE estimation.
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