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Abstract
We study the distributed machine learning problem where the
n feature-response pairs are partitioned among m machines
uniformly at random. The goal is to approximately solve an
empirical risk minimization (ERM) problem with the min-
imum amount of communication. The divide-and-conquer
(DC) method, which was proposed several years ago, lets
every worker machine independently solve the same ERM
problem using its local feature-response pairs and the driver
machine combine the solutions. This approach is in one-shot
and thereby extremely communication-efficient. Although
the DC method has been studied by many prior works,
reasonable generalization bound has not been established
before this work.
For the ridge regression problem, we show that the prediction
error of the DC method on unseen test samples is at most
ε times larger than the optimal. There have been constant-
factor bounds in the prior works, their sample complexities
have a quadratic dependence on d, which does not match the
setting of most real-world problems. In contrast, our bounds
are much stronger. First, our 1 + ε error bound is much
better than their constant-factor bounds. Second, our sample
complexity is merely linear with d.

Introduction
We study linear regression, a fundamental problem in ma-
chine learning (ML), and conduct a statistical analysis of
the divide-and-conquer (DC) method (Zhang, Duchi, and
Wainwright 2013; 2015) for solving ridge regression. We
first formally define the problem. Let X = [x1, · · · ,xn]T ∈
Rn×d be the training feature matrix and y = [y1, · · · , yn] ∈
Rn be the training response vector. Assume the observed
response yi is the sum of a linear function wT

0 xi and
unknown random noise. The goal is to estimate w0 based
on the training data and make a prediction for any unseen
test feature vector x′ ∈ Rd.

A principled approach to the estimation of w0 is the
regularized empirical risk minimization (ERM), including
the ridge regression, LASSO (Tibshirani 1996), and the
elastic net (Zou and Hastie 2005). Because of the simplicity,
we focus on the ridge regression model

werm = argmin
w∈Rd

1
2n‖Xw − y‖22 + γ

2 ‖w‖
2
2, (1)
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where γ is the regularization parameter trading off the bias
and variance. It requires O(nd) memory and O(nd2) time
(via the QR decomposition) or O(nd

√
κ log d

ε ) time (via
the conjugate gradient method), where κ is the condition
number of the Hessian matrix 1

nXTX+γI and ε is the error
tolerance. For big-data or high-dimensional problems, the
feature matrix X may not fit in the memory of any single
machine, and the computation may be too expensive.

Different methods have been proposed to address the
computational challenges. One approach is the randomized
approximation which sacrifices some accuracy for a sig-
nificant reduction in the time and space complexities (Lu
et al. 2013; Avron, Clarkson, and Woodruff 2016; Wang,
Gittens, and Mahoney 2018; Wang et al. 2017; Derezinski
and Warmuth 2018). The key idea is the matrix sketching,
which finds a smaller matrix which preserves some task-
specific information in the original matrix and does the
computation on the smaller matrix (Drineas and Mahoney
2016; Mahoney 2011; Woodruff 2014). Although the the-
ories in (Avron, Clarkson, and Woodruff 2016; Clarkson
and Woodruff 2013; Drineas, Mahoney, and Muthukrishnan
2006; Drineas et al. 2011) showed that this approximate
solution, denote w̃, is not far from the ERM solution werm in
the `2 norm sense, it magnifies either the bias or the variance
for all the commonly used matrix sketching (Raskutti and
Mahoney 2015; Wang, Gittens, and Mahoney 2018). Such a
pessimistic result indicates that in ML applications, matrix
sketching leads to much worse statistical risk.

Another popular approach to large-scale linear regression
is distributed computing which uses massive computation
power to handle big data, e.g., the works by (Avron, May-
mounkov, and Toledo 2010; Meng, Saunders, and Mahoney
2014). Although it significantly reduces the local compu-
tation and memory costs, distributed computing inevitably
incurs communication across the computer network. Nu-
merical methods such as conjugate gradient are highly
iterative, and each iteration requires communication and
synchronization. When implemented using distributed com-
puting systems such as MapReduce (Dean and Ghemawat
2008), Apache Spark (Zaharia et al. 2010; Meng et al.
2016), and Parameter Server (Li et al. 2014), communication
and/or synchronization can often be the bottleneck of such
numerical methods. Avoiding or reducing communication
can make distributed computing much more efficient.
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Figure 1: Illustration of the divide-and-conquer (DC)
method for distributed computing. The DC method has only
one round of communication.

In the federated learning framework (Konecnỳ et al.
2016a; 2016b; Bonawitz et al. 2017; McMahan et al. 2017;
Smith et al. 2017), the communication and synchroniza-
tion are much more expensive than computation. Federated
learning assumes the data are generated by or distributed
over a network across nodes that enjoy reasonable compu-
tational resources, e.g., mobile phones, wearable devices,
and smart homes. As the network has limited bandwidth
and high latency, the communication between the central
server and the nodes (e.g., mobile phones) is slow and
may cost money. In such settings, avoiding or reducing the
communication is not only preferable but also necessary.

In recent years, many communication-efficient methods,
e.g., (Mahajan et al. 2013; Zhang, Duchi, and Wainwright
2013; Shamir, Srebro, and Zhang 2014; Smith et al. 2016;
Wang et al. 2018), have been proposed to make distributed
computing more efficient. Among the communication-
efficient methods, the divide-and-conquer (DC) method
(illustrated in Figure 1) reduces the communication to the
extreme. The DC method lets every worker machine solve
the same empirical risk minimization (ERM) problem using
its local data and averages the local solutions. Thus the DC
method has only one round of communication.

Zhang, Duchi, and Wainwright (2013) showed that the
DC solution wdc converges to the ERM solution werm in
terms of the `2 norm distance ‖wdc − werm‖2. However,
such a result does not imply good training or test error.
Wang, Gittens, and Mahoney (2017) showed that for the
ridge regression problem, the DC solution is close to the
ERM solution in terms of the in-sample statistical risk,
which is a more interesting result because it is relevant
to the ML objective. Empirical studies in (Wang, Gittens,
and Mahoney 2018; Zhang, Duchi, and Wainwright 2013)
have shown that the DC solution indeed generalizes under
some conditions. Thus it is interesting to provide theoretical
justification for the empirical observations.

Main Results
Compared to the `2 distance and the in-sample risk (train-
ing error), the machine learning (ML) community is more
interested in the prediction error on the unseen test set. For
this reason, we consider this question: Does the divide-and-
conquer (DC) solution generalize to unseen test samples?

To answer this question, we study the out-of-sample
prediction errors. Let w0 be the unknown ground truth;
assume y is Xw0 plus random noise. For the empirical risk
minimization (ERM), we define the prediction error

Perm(X) , Ex′,y

[(
wT

0 x′ −wT
ermx′

)2]
, (2)

where x′ is an unseen test feature vector and the expectation
is taken w.r.t. the randomness in x′ and y. We analogously
define Pdc(X) by replacing werm by wdc.

Knowing Pdc(X) alone does not provide much informa-
tion about how well the DC solution wdc generalizes. The
ERM solution werm is the “optimal” we can hope for with
the available training set (X,y). Thus we contrast Pdc(X)
with the in-sample (training) risk of the ERM solution,
denote Rerm(X). For the ERM, the in-sample statistical risk
be defined as

Rerm(X) ,
1

n

n∑
j=1

Ey

[(
wT

0 xj −wT
ermxj

)2]
, (3)

where the expectation is taken w.r.t. the randomness in the
training response y. We analogously define Rdc(X).

Under mild assuptions, we show that the prediction error
of the DC solution, denote Pdc(X), converges to Rerm(X)
at a rate of 1√

n
. Because Rerm(X) is the best we can hope

for with the available training data, our result indicates the
generalization of the DC solution.

Our Contributions
The prior works (Zhang, Duchi, and Wainwright 2015;
Lin, Guo, and Zhou 2017) established generalization bounds
for the divide-and-conquer (DC) ridge regression. Their
results have two major limitations. First, they required a high
sample complexity: the number of training samples, n, has a
high-order dependence on the number of features, d, which
is unrealistic in real-world problems. Second, they showed
mere constant-factor bounds, which means that Pdc(X) is at
most constant times larger than Rerm(X).

In contrast, our results are much stronger. First, our
sample complexity has at most linear dependence on d.
Second, we establish 1+ ε bounds, which are much stronger
than the constant-factor bounds. More specifically, we show
that Pdc(X) is ε times worse than Rerm(X) and that ε
vanishes at a rate of 1√

n
.

Paper Organization
The rest of this paper is organized as follows. We first define
the notation and model assumptions. We then summarize our
main result and compare it with the prior works. The two
subsequent sections prove the main result. Since extensive
empirical studies of the DC method have been conducted by
(Zhang, Duchi, and Wainwright 2013; Wang, Gittens, and
Mahoney 2018), we focus on the theory without conducting
experiments.

Notation and Model Assumptions
We define the notation and model assumptions which are
used throughout this paper. In Table 1, we list some com-
monly used notation.
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Table 1: Commonly used notation.

Notation Definition
n total number of training samples
d number of features (attributes)
m number of partitions
dγeff γ-effective dimension of X (dγeff ≤ d)
µγ γ-row coherence of X

werm the empirical risk minimization (ERM) solution
wdc the divide-and-conquer (DC) solution

Notation
Let [n] be the set {1, 2, · · · , }. Let In be the n × n identity
matrix. Let X ∈ Rn×d be the training feature matrix,
r = rank(X), and X = UΣVT =

∑r
j=1 σjujv

T
j be its

singular value decomposition (SVD). The Moore-Penrose
inverse of X is defined by X† = VΣ−1UT .

The row γ-ridge leverage score (for γ ≥ 0) of X is
defined by

`γi = xTi
(
XTX + nγId

)†
xi =

d∑
j=1

σ2
j

σ2
j + nγ

u2ij ,

for i = 1, · · · , n. The γ-effective dimension of X is

dγeff(X) =

n∑
i=1

`γi =

d∑
j=1

σ2
j

σ2
j + nγ

≤ rank(X).

The effective dimension is small when nγ is substantially
larger than the tail singular values of XTX. In particular,
(Cohen, Musco, and Musco 2015) showed that for any
positive k, if nγ ≥ 1

k

∑d
j=k+1 σ

2
j , then dγeff ≤ 2k. In the

worst case where γ = 0, the effective dimension equals d.
The γ-row coherence of X is

µγ =
n

dγeff
max
j∈[n]

`γj .

Low coherence means the information in X are spread out
rather than concentrated to a small number of rows, and vice
versa. The standard row coherence of X can be expressed as

µ0 =
n

d
max
j∈[n]

`0j =
n

d
max
j∈[n]

xTj (XTX)†xj ,

which is widely used in compress sensing (Candes and Tao
2006) and matrix completion (Candes and Recht 2009).

Model Assumptions
We consider the following random design model. Assume
that the training and test feature vectors are independently
sampled and that they have the same second moment:

E[xxT ] = M, (4)

where x ∈ Rd is either a training or test feature vector. Let
w0 ∈ Rd be the true and unknown model. The observed
response associated with x is

y = wT
0 x + ξ, (5)

where ξ captures the random noise. We assume

E[ξ] = 0 and E[ξ2] = σ2

and each copy of ξ is independently drawn.
As for the divide-and-conquer (DC) method, we assume

the n training feature-response pairs, {(xj , yj)}nj=1, are
randomly and uniformly partitioned among m machines.

Main Results and Comparisons
First, we formally define the divide-and-conquer (DC)
method for ridge regression. Then, we present our main
technical result. Last, we compare our result with the prior
works.

Divide-and-Conquer Method for Ridge Regression
Let the rows of X ∈ Rn×d and y ∈ Rn be randomly and
uniformly partitioned to m parts, denote X[1], · · · ,X[m] ∈
R n
m×d and y[1], · · · ,y[m] ∈ R n

m . The i-th worker machine
holds X[i] and y[i] and locally solves the empirical risk
minimization (EMR) problem

w̃i = argmin
w

m
n

∥∥X[i]w − y[i]

∥∥2
2

+ γ‖w‖22. (6)

The driver computes the divide-and-conquer (DC) solution

wdc =
1

m

m∑
i=1

w̃i,

which takes only one round of communication. The DC
method is illustrated in Figure 1.

Summary of Main Results
Let ε, δ ∈ (0, 1) be arbitrary, µγ be the γ-ridge coherence
of X, τ (≈ µ0) is another coherence to be defined, and dγeff
(≤ d) be the γ-effective dimension of X. For the sample
complexity

n = Θ̃
(
µγdγeffm

2

ε2 + µ0dm+ τd
ε2

)
, (7)

it holds with high probability that

Pdc(X) ≤ (1 + ε)Rerm(X). (8)

Here Θ̃ hides the logarithms; the failure probability is from
(1) the random distribution of X and x′, (2) random noise in
y, and (3) the random partition of X and y. This is our main
technical result and can be proved by combining Theorems 6
and 8.

It was established by (Wang, Gittens, and Mahoney 2018)
that under the model assumptions,

Rerm(X) = bias2erm(X) + varerm(X), (9)

where

bias2erm(X) = γ2n
∥∥(Ir + nγΣ−2)−1VTw0

∥∥2
2
,

varerm(X) = σ2

n

∥∥(Ir + nγΣ−2
)−1∥∥2

F
.

Here X = UΣVT is the SVD and r = rank(X). By setting
the regularization parameter γ ∝ 1√

n
,Rerm(X) converges to
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zero at a rate of 1√
n

. This is why we contrast Pdc(X) with
Rerm(X). Since Rerm(X) is the best in-sample risk one can
hope for with the training data and converges to zeros with
the increase of n, Eqns (7) and (8) together show that the DC
solution is a very practical choice when n is big compared
to m2dγeff and d.

Related Works
The divide-and-conquer (DC) method was proposed by
Zhang, Duchi, and Wainwright (2013) for solving a class
of convex optimization problems. Their paper established a
bound on the `2 norm error ‖werm−wdc‖2, where werm and
wdc are the ERM and DC solutions, respectively. However,
such a bound is irrelevant to machine learning. As pointed
out by (Wang, Gittens, and Mahoney 2018), a small ‖werm−
wdc‖2 does not necessarily imply a good training or test
error.

Wang, Gittens, and Mahoney (2017) analyzed the in-
sample statistical riskRdc(X) (defined in (3)) and compared
it to the ERM solution. They showed that for the sample
complexity n = Θ̃(dm2/ε2), where Θ̃ hides logarithms and
coherence, Rdc(X) is ε times worse than Rerm(X), where d
and m are the number of features and the number of parti-
tions, respectively. Their results have two limitations. First,
whether the DC solution generalizes to unseen test samples
was unknown. Second, their bound requires a complexity of
n = Θ̃(dm2/ε2), and thus the bound does not apply to high-
dimensional data (i.e., d is large).

The generalization of the DC solution has been shown by
(Zhang, Duchi, and Wainwright 2015; Lin, Guo, and Zhou
2017). Zhang, Duchi, and Wainwright (2015) established
a constant-factor bound (i.e., O(1) times larger than the
optimal generalization error), assuming the sample com-
plexity is n = Θ̃(md2). Unfortunately, the Θ̃(d2) depen-
dence makes their theory not applicable to most real-world
problems. Lin, Guo, and Zhou (2017) showed different
guarantees for the DC solution; however, because the kernel
function K(x,x) = xTx = Θ(d) for the linear kernel, their
results have high-order dependence on d.

This work provides a stronger generalization bound than
(Zhang, Duchi, and Wainwright 2015; Lin, Guo, and Zhou
2017). First, our result is 1+ε bound, which is much stronger
than their constant-factor bounds. Second, we improve the
sample complexity to n = Θ̃(dγeffm

2/ε2 + dm + d/ε2),
where dγeff (≤ d) is the effective dimension and typically very
small. Our sample complexity is meaningful even for high-
dimensional data. Our analysis techniques are reminiscent
of (Wang, Gittens, and Mahoney 2018) but totally different
from (Lin, Guo, and Zhou 2017; Zhang, Duchi, and Wain-
wright 2015). Our main results are simple and clear, and our
proof techniques are easy to follow.

Analysis of the In-Sample Risk
In this section, we analyze the in-sample risk of the divide-
and-conquer (DC) solution wdc and compare it to the em-
pirical risk minimization (ERM) solution werm. Theorem 6
is the main theorem of this section. We prove Theorem 6

using random matrix theories and the bias-variance decom-
position.

Analysis via Random Matrix Theories
We call S ∈ Rn×s a column selection matrix if each
column has exactly one non-zero entry whose value is

√
n/s

and whose position indicates the selected column. Applying
S to XT ∈ Rd×n, the result XTS ∈ Rd×s contains
s selected and scaled feature vectors. Uniform sampling
can be captured by a column selection matrix; we call the
random matrix the uniform sampling matrix.

The model assumption that the n samples are randomly
and uniformly partitioned among m machines can be ex-
pressed using the notation of uniform sampling matrix.
Let X[1], · · · ,X[m] ∈ Rs×d (s = n

m ) be the parti-
tion of X, y[1], · · · ,y[m] ∈ Rs be the partition of y,
and S1, · · · ,Sm ∈ Rn×s be the corresponding uniform
sampling matrices. (The m subsets are not mutually or
even pairwisely independent, but we do not need such
independence in our analysis.) Then

X[i] = 1√
m

STi X and y[i] = 1√
m

STi y,

for i = 1, · · · ,m. Eqn. 6 can be equivalently written as

w̃i = argmin
w

1
n

∥∥STi Xw − STi y
∥∥2
2

+ γ‖w‖22

=
(
XTSiS

T
i X + nγId

)†(
XTSiS

T
i y
)
.

With the uniform sample matrix notation, we are able to
analyze the DC solution using random matrix theories.
Lemmas 1 and 2 are used in proving Theorem 6.

Lemma 1 shows that when s is large compared to dγeff, we
can form a spectral approximation to the Hessian matrix of
the ridge regression problem 1 by uniform sampling. A very
similar result was previously established by (Cohen, Musco,
and Musco 2015).
Lemma 1. The Hessian matrix of the ridge regression
problem (1) is H = XTX + nγId. Let S ∈ Rn×s be a
uniform sampling matrix and H̃ = XTSSTX + nγId. Let
ε, δ ∈ (0, 1) be arbitrary. When

s = Θ
(µγdγeff

ε2 log
dγeff

δ

)
,

the spectral approximation holds with probability at least
1− δ:

(1− ε)H � H̃ � (1 + ε)H.

Lemma 2, known as the subspace embedding property,
was established by (Wang, Luo, and Zhang 2016; Woodruff
2014). It ensures that all the singular values of UTS ∈ Rr×s
are close to one.
Lemma 2. Let S ∈ Rn×s be a uniform sampling matrix and
ε, δ ∈ (0, 1) be arbitrary. When

s = Θ
(
µ0d
ε2 log d

δ

)
,

it holds with probability at least 1− δ that

1− ε ≤
∥∥UTS

∥∥2
2
≤ 1 + ε.
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Analysis via Bias-Variance Decomposition
Let X ∈ Rn×d be the training feature matrix, r = rank(X),
and X = UΣVT be the SVD. For the DC solution, the in-
sample statistical risk can be decomposed in the following
way. The lemma was established by (Wang, Gittens, and
Mahoney 2018).

Lemma 3 (Bias-Variance Decomposition). The in-sample
risk defined of the DC solution can be decomposed as

R(wdc) = bias2(wdc) + var(wdc).

The bias and variance terms are

biasdc
(
X
)

= γ
√
n
∥∥∥ 1

m

m∑
i=1

(
ΣUTSiS

T
i UΣ + nγIr

)†
ΣVTw0

∥∥∥
2
,

vardc
(
X
)

=
σ2

n

∥∥∥ 1

m

m∑
i=1

(
UTSiS

T
i U + nγΣ−2

)†
UTSiS

T
i

∥∥∥2
F
,

where S1, · · · ,Sm are the uniform sampling matrices cap-
turing the random partition of training samples.

Theorem 4 shows that when the local sample size, s ,
n
m , is sufficiently large, the bias of the DC solution is
comparable to the ERM solution.

Theorem 4 (Analysis of Bias). Let dγeff be the γ-effective
dimension of X. Let µγ be the γ-row coherence of X.
Assume

s , n
m = Θ

(
µγdγeff

ε2 log
mdγeff

δ

)
for some parameters ε, δ ∈ (0, 1). Then

biasdc(X) ≤ 1
1−ε biaserm(X).

holds with probability at least 1− δ.

Proof. Let r = rank(X) and X = UΣVT be the SVD.
The bias can be bounded by∥∥∥ 1

m

m∑
i=1

(
ΣUTSiS

T
i UΣ + nγIr

)†
ΣVTw0

∥∥∥2
2

≤ 1

m

m∑
i=1

∥∥∥(ΣUTSiS
T
i UΣ + nγIr

)†
ΣVTw0

∥∥∥2
2

=
1

m

m∑
i=1

wT
0 VΣ

(
ΣUTSiS

T
i UΣ + nγIr

)†2
ΣVTw0.

Since s = Θ
(µγdγeff

ε2 log
mdγeff
δ

)
, Lemma 1 ensures that with

probability at least 1− δ
m ,

(1− ε)
(
Σ2 + nγIr

)
� ΣUTSiS

T
i UΣ + nγIr � (1 + ε)

(
Σ2 + nγIr

)
,

for any i ∈ [m]. It follows that with probability at least 1−δ,∥∥∥ 1

m

m∑
i=1

(
ΣUTSiS

T
i UΣ + nγIr

)†
ΣVTw0

∥∥∥2
2

≤ 1

(1− ε)2
1

m

m∑
i=1

wT
0 VΣ

(
Σ2 + nγIr

)−2
ΣVTw0

≤ 1

(1− ε)2
∥∥∥(Σ2 + nγIr

)−1
ΣVTw0

∥∥∥2
2
.

It follows from the definition of biasdc(X) that with proba-
bility at least 1− δ,

biasdc(X) ≤ γ
√
n

1−ε

∥∥∥(Σ2 + nγIr
)−1

ΣVTw0

∥∥∥
2

= 1
1−ε biaserm(X),

by which the theorem follows.

Theorem 5 establishes a relative-error bound on the vari-
ance of the DC solution. It states that if the local sample
size, s = n

m , is sufficiently large compared to the effective
dimension, dγeff, then var(wdc) is comparable to var(werm).
The required sample size weakly depends on d, which may
not be an issue when n > md.
Theorem 5 (Analysis of Variance). Let dγeff be the γ-
effective dimension of X. Let µγ be the γ-row coherence of
X. Assume

s , n
m = Θ

(
µγdγeff

ε2 log
mdγeff

δ + µ0d log md
δ

)
for some parameters ε, δ ∈ (0, 1). Then

vardc(X) ≤
(
1 + ε

√
m
)2 · varerm(X)

holds with probability at least 1− δ.

Proof. Let r = rank(X) and X = UΣVT be the SVD. We
define ∆i =

(
UTSiS

T
i U + nγΣ−2

)† − (Ir + nγΣ−2
)†

.
The variance can be bounded by
√
n

σ

√
vardc(X)

=
∥∥∥ 1

m

m∑
i=1

(
UTSiS

T
i U + nγΣ−2

)†
UTSiS

T
i

∥∥∥
F

=

∥∥∥∥ 1

m

m∑
i=1

(
Ir + nγΣ−2

)†
UTSiS

T
i

+
1

m

m∑
i=1

∆iU
TSiS

T
i

∥∥∥∥
F

≤
∥∥∥(Ir + nγΣ−2

)†∥∥∥
F

∥∥∥ 1

m

m∑
i=1

UTSiS
T
i

∥∥∥
2

+
1

m

m∑
i=1

∥∥∆iU
TSi

∥∥
F

∥∥Si∥∥2.
Define S , 1

m [S1, · · · ,Sm] ∈ Rn×n be the scaled
concatenation of all the uniform sampling matrices. It can

5309



be verified that S is obtained by permuting the columns of
the identity matrix In. Thus∥∥∥ 1

m

m∑
i=1

UTSiS
T
i

∥∥∥
2

=
∥∥UTSST

∥∥
2

=
∥∥U∥∥

2
= 1.

Because Si is uniform sampling matrix, each of its nonzero
entry equals to

√
n
s =

√
m, and thus ‖Si‖2 =

√
m. It

follows that
√
n
σ

√
vardc(X)

≤
∥∥∥(Ir + nγΣ−2

)†∥∥∥
F

+
1

m

m∑
i=1

√
m
∥∥∆iU

TSi
∥∥
F
.

(10)

Since s = Θ
(µγdγeff

ε2 log
ndγeff
δ

)
, Lemma 1 guarantees that

with probability at least 1− δ
m , XTSiS

T
i X+nγId is within

(1 ± ε)(XTX + nγId) for any i. By writing X as its SVD
form X = UΣVT , we have that

(
UTSiS

T
i U + nγΣ−2

)†
is within 1

1∓ε
(
Ir + nγΣ−2

)†
, and thus

ε
1+ε

(
Ir + nγΣ−2

)† � ∆i � ε
1−ε
(
Ir + nγΣ−2

)†
with probability at least 1− δ

m . Thus∥∥∆iU
TSi

∥∥2
F

= tr
(
STi U∆2

iU
TSi

)
≤ ( ε

1−ε )
2tr
[
STi U

((
Ir + nγΣ−2

)†)2
UTSi

]
= ( ε

1−ε )
2
∥∥(Ir + nγΣ−2

)†
UTSi

∥∥2
F

holds with probability at least 1 − δ
m . Lemma 2 show that

when s = Θ
(
µ0d log md

δ

)
, it holds with probability at least

1− δ
m that ‖UTSi‖2 ≤ 2 for any i. It follows that∥∥∆iU

TSi
∥∥
F
≤ 2ε

1−ε
∥∥(Ir + nγΣ−2

)†∥∥
F
.

It follows from (10) that
√
n
σ

√
vardc(X) ≤

(
1 + 2ε

√
m

1−ε
)∥∥(Ir + nγΣ−2

)†∥∥
F

holds with probability at least 1 − 2δ. The theorem follows
by the definition of varerm (X).

Main Theorem
Theorem 6 shows that if each partition of the data is
sufficiently large, then Rdc(X) is comparable to the optimal
in-sample risk Rdc(X).
Theorem 6 (In-Sample Risk). The in-sample risk (defined
in (3)) of the divide-and-conquer ridge regression can be
decomposed as

Rdc(X) = bias2dc(X) + vardc(X).

Let ε, δ ∈ (0, 1) be arbitrary constants. Assume the n
samples are randomly and uniformly partitioned among m
machines and

s , n
m = Θ

(
µγdγeffm

ε2 log
mdγeff

δ + µ0d log md
δ

)

Then with probability at least 1− δ,

biasdc(X) ≤ (1 + ε) · biaserm(X),

vardc(X) ≤
(
1 + ε

)2 · varerm(X).

Here biaserm(X) and varerm(X) are defined in (9).

Proof. The theorem is the combination of Lemma 3 and
Theorems 4 and 5.

A similar but weaker result was shown in (Wang, Gittens,
and Mahoney 2018). To get the same bound on biasdc(X)
and vardc(X) as Theorem 6, they require a sample complex-
ity of

s , n
m = Θ

(
µ0d
ε2 log md

δ

)
.

However, in high-dimensional problems (i.e., d is large), n
may not be sufficiently larger than md, and thus their result
is not very meaningful.

In contrast, our sample complexity mainly depends on the
effective dimension, dγeff, which is a small constant if the
regularization parameter γ is not too small. even if md is
comparable to n, our bound ensures that Rdc(X) is close to
Rerm(X).

Analysis of Generalization
In this section, we analyze the generalization. To be specific,
we show the gap between the in-sample risk R and the
out-of-sample prediction error P . Theorem 8 is the main
theorem of this section. We prove the theorem using random
matrix theories. Our analysis of generalization is reminis-
cent of (Hsu, Kakade, and Zhang 2014).

Convergence of the Second Moments
Let x1, · · · ,xn be the training feature vectors and M =
Ex[xxT ] ∈ Rd×d be the second moment. Here we show
that the empirical second moment

M̂ =
1

n

n∑
i=1

xix
T
i

converges to M at a rate of 1√
n

. Before presenting our result,
we define the coherence of probabilistic distribution.

Definition 1 (Coherence of Distribution). Let the training
and test samples have the same probability density function
p. Let M = Ex∼p[xxT ] ∈ Rd×d be the second moment
and D be the set where p has nonzero measure. Let τ =
1
d supx∈D xTM−1x be the coherence of p.

The coherence of distribution is a new notation made by
this paper for analyzing generalization. It is different from
but analogous to the standard coherence which is defined by

µ0 = 1
d sup
j∈[n]

xTj ( 1
nXTX)†xj .

The standard coherence µ0 converges to τ as n→∞.
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Theorem 7. Let τ be the coherence in Definition 1. For
any η, δ ∈ (0, 1), assume the number of samples, n, is
sufficiently large:

n ≥ 10τd
3η2 log d

δ .

Then (1− η)M � M̂ � (1 + η)M holds with probability at
least 1− δ.

Proof. Due to the page limit, we do not show the proof here.

Main Theorem
Theorem 8 is the main theorem of this section. It shows that
the gap between the in-sample risk and the out-of-sample
prediction error vanishes at a rate of 1√

n
.

Theorem 8. Let τ be the coherence in Definition 1. Let
η, δ ∈ (0, 1) be arbitrary constants. Assume n ≥ 10τd

3η2 log d
δ .

Then Perm(X) ≤ 1
1−η Rerm(X) and Pdc(X) ≤ 1

1−η Rdc(X)

both hold with probability at least 1− δ.

Proof. The in-sample statistical risk can be written as

Rerm(X) = 1
nEy

∥∥Xwerm −Xw0

∥∥2
2

= Ey

[
(werm −w0)TM̂(werm −w0)

]
,

where the expectation is taken w.r.t. the random noise in y.
The out-of-sample prediction error can be written as

Perm(X) = Ex′,y

[(
wT

ermx′ −wT
0 x′
)2]

= Ey

[
(werm −w0)TM(werm −w0)

]
,

where the expectation is taken w.r.t. the randomness in the
test feature vector x′. Theorem 7 shows that (1 − η)M �
M̂. Hence (1− η)Perm(X) ≤ Rerm(X). We can prove (1−
η)Pdc(X) ≤ Rdc(X) in the same way.

Conclusions and Future Work
We studied the divide-and-conquer (DC) method for ridge
regression and established a strong generalization bound.
If the total number of samples is n = Θ̃(m2dγeff/ε

2 +
md + d/ε2), where m is the number of partitions, dγeff
(≤ d) is the effective dimension, and Θ̃ hides logarithms
and coherence parameters, then the out-of-sample prediction
error of the DC solution is ε times worse than the optimal
in-sample error. In contrast, the prior works (Zhang, Duchi,
and Wainwright 2015; Lin, Guo, and Zhou 2017) established
constant-factor bounds which are worse than our 1+ε bound.
In addition, their sample complexities are much worse than
ours: they require n to be at least quadratic with the number
of features, d.

Our result is not directly applicable to the divide-and-
conquer kernel ridge regression (DC-KRR) (Zhang, Duchi,
and Wainwright 2015; Lin, Guo, and Zhou 2017). Because
the feature space of kernel method is high-dimenional or
even infinite-dimensional, directly following our theory will
result in a too high sample complexity. Developing elegant
and strong generalization bound for DC-KRR without mak-
ing uncheckable assumptions will be the future work.
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Konecnỳ, J.; McMahan, H. B.; Yu, F. X.; Richtárik, P.;
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