The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Robustness Can Be Cheap: A Highly Efficient
Approach to Discover Outliers under High Outlier Ratios

Siqi Wang,'> En Zhu,' Xiping Hu,? Xinwang Liu,' Qiang Liu,' Jianping Yin,’ Fei Wang

4

ICollege of Computer, National University of Defense Technology, Changsha, China
2Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science, Shenzhen, China
3Dongguan University of Technology, Dongguan, 523808, Guangdong, China
4Healthcare Policy and Research, Weill Cornell Medical School, Cornell University, New York, NY 10065, USA

Abstract

Efficient detection of outliers from massive data with a high
outlier ratio is challenging but not explicitly discussed yet. In
such a case, existing methods either suffer from poor robust-
ness or require expensive computations. This paper proposes
a Low-rank based Efficient Outlier Detection (LEOD) frame-
work to achieve favorable robustness against high outlier ra-
tios with much cheaper computations. Specifically, it is worth
highlighting the following aspects of LEOD: (1) Our frame-
work exploits the low-rank structure embedded in the similar-
ity matrix and considers inliers/outliers equally based on this
low-rank structure, which facilitates us to encourage satisfy-
ing robustness with low computational cost later; (2) A novel
re-weighting algorithm is derived as a new general solution to
the constrained eigenvalue problem, which is a major bottle-
neck for the optimization process. Instead of the high space
and time complexity (O((2n)?)/O((2n)*)) required by the
classic solution, our algorithm enjoys O(n) space complexity
and a faster optimization speed in the experiments; (3) A new
alternative formulation is proposed for further acceleration of
the solution process, where a cheap closed-form solution can
be obtained. Experiments show that LEOD achieves strong
robustness under an outlier ratio from 20% to 60%, while it
is at most 100 times more memory efficient and 1000 times
faster than its previous counterpart that attains comparable
performance. The codes of LEOD are publicly available at
https://github.com/demonzyj56/LEOD.

Introduction

Outlier detection aims to identify the unusual patterns that
do not conform to frequently-seen behaviors in a data set.
As outliers cannot be defined by any specific class, classic
methods are usually based on the “few and different” as-
sumption (Chandola and Kumar 2007): (1) “Few”: The ratio
of outliers is much lower than inliers. (2) “Different”: Out-
liers evidently differ from inliers. However, this commonly-
used assumption will fail when the proportion of outliers is
large, i.e. a high outlier ratio. In fact, a high outlier ratio
is frequently seen in many real-life scenarios since outliers
may originate from a variety of different underlying causes
and account for a high overall outlier ratio. For example,
online reviews of Yelp contain up to 30% outlying faked re-
views from various sources (Luca and Zervas 2016); Images

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

5313

Key word "Apple"

Normal images Outliers

Figure 1: Top images returned by Google on “apple”.

crawled from Internet are often mixed with massive outliers
from a host of unknown classes, which may occupy nearly
50% of the top search results (see Fig. 1). As handling a
high outlier ratio is vital for practical applications but has
not been specifically discussed by prior literature, this paper
will focus on this problem and formally formulate it later.

Under a high outlier ratio, existing methods are faced with
some important challenges: As traditional outlier detection
methods often explicitly or implicitly assume outliers to be
minority, they suffer from poor robustness, which refers to
a very high vulnerability to the high outlier ratio, so their
performance will be severely degraded when the outlier ra-
tio gets higher (see Fig. 2a). In the meantime, despite that
our experiments show that the recent method Unsupervised
One-class Learning (UOCL) (Liu, Hua, and Smith 2014) ob-
tains satisfying robustness under high outlier ratios since it
no longer assumes “few” outliers in the first place (blue line
in Fig. 2a), it requires intolerably expensive computations
(see Fig. 2b): It costs 50 minutes and 12 GiB memory to pro-
cess merely n = 7000 128-dimension data on a benchmark
dataset. What is worse, the growth rate of its memory/time
cost is quadratic/cubic. Such fatal flaw in efficiency makes
it only applicable to small-scale problems. Thus, a solution
that can preserve good outlier detection performance under
a high outlier ratio (“robust”’) but require low memory and
time cost (“cheap”) remains open to be explored.

To address the aforementioned challenges, this paper pro-
poses Low-rank based Efficient Outlier Detection (LEOD).
Specifically, our approach (1) introduces a novel framework
that utilizes the low-rank structure embedded in the simi-

f1 on svhn dataset

Computational cost of UOCL

3000f —@= Time

—#— Memory
09
2500 12

2000 10

1500

—— LOF
0CSVM
DRAE
- KPCA
IsoForest
RKDE
uocCL

Running time (/sec.)

1000

Peak RAM Usage (/GiB)

500

0.3 04 0.5

Outlier ratio

(a)

0.6 1000 2000 3000 4000 5000 6000

Number of data

(b)

7000

Figure 2: Existing methods suffer from poor robustness or
require expensive computations under high outlier ratios.

larity matrix and evaluates outliers/inliers equally based on
such low-rank structure, which lays the foundation to pre-
serve good robustness under high outlier ratios with much
cheaper computations; (2) develops a novel re-weighting al-
gorithm to solve the constrained eigenvalue problem during
optimization. Its classic solution needs O((2n)?) space and
O((2n)?) time complexity, while our algorithm enjoys O(n)
space complexity and tens of times speedup in experiments;
(3) proposes a even faster alternative, which yields a highly
efficient closed-form solution and a significantly faster op-
timization speed. Experiments on benchmarks demonstrate
that LEOD possesses strong robustness against high outlier
ratios (20%-60%), while at most 100 times more memory
efficient and at most 1000 times faster than the previous
method that reaches the same level of robustness.

Related Work

A closely related problem to outlier detection is novelty
or anomaly detection (Japkowicz, Myers, and Gluck 1995;
Gupta and Ghosh 2005; Désir et al. 2013), which requires
pure training data from a single target class to fit a pro-
file to detect deviated data. By contrast, outlier detection
handles completely unlabeled data and detects outliers by
their intrinsic properties, e.g. local data density (Breunig
et al. 2000), cluster membership (Aggarwal, Zhao, and Yu
2011), pair-wise distance (Ramaswamy, Rastogi, and Shim
2000), probabilistic density (Parzen 1962; Kim and Scott
2012), reconstruction error distribution (Scholkopf, Smola,
and Miiller 1997; Xia et al. 2015) or path length of random
binary trees (Liu, Ting, and Zhou 2008; 2010). Besides, out-
liers can be automatically detected by optimizing a soft deci-
sion boundary of hyper-plane/sphere (Scholkopf et al. 2001;
Tax and Duin 2004). However, as we discussed above, they
usually suffer from significant performance loss under a high
outlier ratio. Notably, although it does not specifically for-
mulate and study the case of high outlier ratios, the recent
work (Liu, Hua, and Smith 2014) provides a promising for-
mulation using margin maximization and manifold regular-
ization, which no longer assumes outliers to be minority and

5314

is found to be robust under high outlier ratios. Unfortunately,
it requires quadratic space and cubic time complexity for
optimization. In addition, another related topic is low-rank
analysis, which is rarely considered in outlier detection. The
most relevant works to our knowledge are (Li, Shao, and Fu
2014a; 2014b), which embed a low-rank constraint into the
classic one-class support vector machine or support vector
data description to improve their performance. Besides, (Li,
Shao, and Fu 2018) conduct cross-view low-rank analysis to
perform multi-view outlier detection.

The Proposed Algorithm
Problem formulation: A high outlier ratio

We begin with a formal discussion on data with a high out-
lier ratio: Given an unlabeled data collection X = {x; €
R4} | its data originate from q underlying classes (or data
distributions) {V1,---V,} (2 < ¢ < n). In particular,
the underlying classes {V1,---),} are “compact”, which
means data have very large similarity within a class and very
small similarity between classes. Denoting the ratio of data
from class Y; by |V;|, x €); is discriminated as an outlier if
|V;| is small: When |);| is small, x rarely appears in X and
it evidently differs from data from other classes (); is com-
pact). In this way, we simply assume | V1| > V2| - - > | V]
and data from the last ¢’ classes {Vy—g/ 41, - Yy} are out-
liers, 1 < ¢’ < q. When ¢’ is small (e.g. ¢’ = 1), the overall
outlier ratio p = >_¢_ g—q'+1 | Vil is low, which is the case of
the “few and different” assumption. However, p can be very
high when ¢’ is large, e.g. suppose | V1| = 50%, ¢’ = 50 and
|Va| = V3| - = | V51| = 1%, data from Vs, - - - V51 should
be viewed as outliers since their ratio is significantly lower
than Y, but the outlier ratio is very high (p = 50%).

Low-rank based outlier detection framework

Motivation Under a high outlier ratio, outliers cannot be
assumed to be “few”, so we can only rely on “different”,
i.e. the pair-wise similarity of data to discriminate outliers.
Thus, it is often necessary to compute a similarity matrix K
with its element K;; = K (x;,x;), where K is a function
that returns a similarity measure for data x; and x;. Since
storing and computing with K usually induce O(n?) space
and O(n?) time complexity, which are very expensive with
large n, it naturally motivates us to observe the structure of
K for outlier detection: We still assume |V;| > |Vo| -+ >
|V, | and the last ¢’ classes are outliers. As {1, ---),} are
compact, in the ideal case we have K (x;,x;) ~ 1 if x; and
x; are from the same class, otherwise K (x;, x;) ~ 0. Thus,
K can be rewritten into a block-diagonal matrix, which can
be divided into the inlier part K;,, and outlier part K,,,+:

17L1 XNy

>

1n2><n2 KZ’IL
K,,|

1'!'7.,1 an

where n; = |);| x n is the number of data from); and
1,5 denotes an a x b all-1 matrix with its rank r(1,xp) = 1.

As inliers are from class); withn; > 1 (1 <1 < g —¢'),
Kin’s rank r(K;,) g;f T(Ln;xn,) < g;f N,
which indicates that K;, has a clear low-rank structure.
Compared with inliers, outliers under high outlier ratios of-
ten originates from a much larger number of classes (¢’ >
g—q") and n; of each outlier class are much smaller (in many
cases n; = 1 for outliers), so its rank 7(K,y;) > r(K;p,).
Meanwhile, the eigenvalues of K are ny,ng, - - - ng, which
exactly correspond to each all-1 block 1,,xy,. Since for
outlier detection we actually do not care about the pair-
wise similarity of outliers, which accounts for the high-rank
structure in K, we are naturally inspired to exploit the low-
rank structure in K to obtain a more efficient representation
of inliers’ pair-wise similarity. This representation can be
obtained by low-rank matrix approximation (Williams and
Seeger 2001), which computes a rank-/ (I < n) approxi-
mation that preserves only the low-rank structure that corre-
sponds to large eigenvalues of K. Specifically, as similarity
matrix K is usually positive semi-definite (PSD), we com-
pute the rank-! approximation of K efficiently by Random-
ized Nystrom approximation (Li, Kwok, and Lii 2010) with
O(nml + 13) time complexity (m is the number of columns
that need to be randomly sampled from K and [< m < n):

Kisn & (Ug)nxi(Dg)ixi(Uf)ixn 2

where D is a low-rank diagonal matrix. Since comput-

ing (2) does not require building the complete K, the space

complexity is reduced from O(n?) to O(nl + I?), which fa-

cilitates us to discover outliers in an effective and efficient

manner later. Other recent low-rank approximation methods
are applicable to this framework as well.

General formulation As we solely rely on pair-wise sim-
ilarity under a high outlier ratio, we discover outliers by
a classifier f(x) 2?21 a; K(x,x;) based on the rep-
resenter theorem (Scholkopf, Herbrich, and Smola 2001).
With the low-rank based similarity representation in (2), the

scores of data in X’ can be computed in an efficient form:

f=[f(x1),f(x2)," f(xa)]" = UxkDg(Uga) (3)

where & = [y, - - @] . Note that the brackets in (3) is
the proper matrix multiplication order for cheaper computa-
tions: Computing f by Ux Dk (U j-x) only involves n x [,
Ix1and nx 1 matrix, but (U gD ¢ U}) will generate nxn
intermediate matrix. In this way, we can lower the cost of
all intermediate computations associated with U D KUIT(.
To handle high outlier ratios without priorly assuming out-
liers to be few, we are inspired by (Liu, Hua, and Smith
2014) and consider a basic formulation that jointly learns
a similarity based classifier f and a soft label assignment
Yy = [y1, Y2, -~ yn] ", which evaluates each datum fairly by
its pair-wise similarity to other data in a self-guided manner:

S —)+l — 22 ST i)

%,Y;>0

min
acD,y

“

=1

sty €{ct,c7}, 0<nt <n

In Eq. 4), 1,72 > 0 are two trade-off hyperparam-
eters. nT denotes the number of assigned positive labels

5315

iny. [|[fl|3 = fTLf is a manifold regularizer, where
L is the Laplacian matrix. Soft labels (¢, c™) are set to
be (v/(n —nt)/nt, —/nt/(n —nT)) so as to guarantee
ly||2 is constant and avoid a trivial solution. The weights
« of classifier f is constrained into the domain D to avoid
overly large a. Each term of Eq. (4) serves a specific pur-
pose: The first term > (f(x;) — y;)? enforces the classifier
f(xi) to output a close label to the assigned label y;; The
manifold regularizer || f||3, encourages neighboring data to
share a consistent label assignment. The last term maxi-
mizes the margin of those data assigned with positive label
y; = cT. The objective in (4) can be simplified as follows:

min_ £ (I, + nL)f -2y 'f
aeD,y 5)
V2 (

st. g; € {cm + n—_pc*}, 0<nt<n

where ¥ = [fj1, - - §n] | and I, is a n x n identity matrix.
However, despite that we have already provided an efficient
way to compute output scores f by Eq. (3), formulation (5)
is still inefficient to be adopted because it involves the n X n
matrix (I, ++1L). Since (I,, +71 L) is also a PSD matrix, a
straightforward solution is to compute the low-rank approx-
imation of (I,, + 71 L), but it is not a good solution since
our later experiments show that it will severely undermine
the performance (see Fig. 5a-5b). Instead of this naive solu-
tion, the low-rank structure in Eq. (3) enables us to kill two
birds with one stone and yield a new low-rank based general
formulation: As Laplacian matrix L = diag(K1,x1) — K,
we notice that the similarity matrix K can be substituted by
its sparsified form W, i.e. if the set of x’s k-nearest neigh-
bors is knn(x), we set W,;; = K;; if x; € knn(x;) or
x; € knn(x;), otherwise W;; = 0. After sparsification, W
has at most 2nk non-zero elements (k is small and k& < [),
which are cheap for storage and computation. Therefore, we
can represent W by a more efficient sparse form:

W= [{Vlvzl}v{v2712}a"' v{vnaIﬂ}] (6)

where v; is a column vector formed by those non-zero
elements of W’s 7, column, and Z; is the corresponding
indexes. Since L = diag(W1,x1) — W and I is a sparse
diagonal matrix, (I 4 ;L) has a similar sparse form to W:

I+71L = [{V&,I{},{Vé,zé},w- 7{V:L7I’£L}] (7)
As Eq. (3) gives f = UgDg (U), we can compute a
I x I matrix M £ U (I + v, L)Ug efficiently by:

M = ([Ug vy, U vy, -, Uz vy Dixn - (Uk)nxt (8)
where Uz, is the matrix built by concatenating those se-
lected columns of U} using indexes Z;. Thus, we have:

f(I, + nL)f =o' (UgDg)M(UgDg) ' (9)
By UxgDg £ U, we obtain a new general formulation:

min_ o' UrMUta -2 UgDgU o
aeD,y

72 (10)
st g € {ct + T,c‘}, 0<nt <n
n

Algorithm 1 Re-weighting Algorithm
: Input: Ur, M, y.
: Output: .
: Randomly initialize o(* that satisfies ||a? || = 1and t = 1.
: Calculate 8 = MazFigenValue(UxkDgUL).
:b=UgDx(ULY).
. repeat
Calculate u = o'~V — UrM(ULa™Y) + b.
Update a¥) = 8.
lhall2
t=t+41.
: until convergence.

SO oAU A WN—

Ju—

The general formulation (10) of the proposed low-rank
based framework is favorable as it involves absolutely no
n X n matrix and only builds a much smaller n x [and a
I x [matrix. By (10), we develop two alternative formula-
tions, LEOD-basic and LEOD-fast, as well as corresponding
algorithms to optimize them with fairly cheap computations.

The basic solution: LEOD-basic

If no additional hyperparameter is introduced, a direct way
to avoid overly large « for classifier f is to impose the con-
straint |||z = 1, which is the objective of LEOD-basic:

min o' UrMUja - 2§ ' UgkDgULa

=1,y

lleell2=1,5 N, an
L o<nt<n

nt

s.t. §; € {ct +

We can optimize (11) by alternate optimization that op-

timizes the a-problem and y-problem alternatively with y
and « fixed respectively. The details are shown below.

Re-weighting algorithm for a-problem The major bot-
tleneck to solve (11) is the a-problem, which actually re-
quires solving the constrained eigenvalue problem below:

min o' UrMUJa —2b"«

lecll2=1

(12)

where b = UgDg (UL ¥). However, the classic solu-
tion to (12) (Gander, Golub, and Matt 1991) requires build-
ing and decomposing a large 2n X 2n asymmetric matrix
to yield its smallest real-valued eigenvalue. This results in
a 0((2n)?) space and O((2n)3) time complexity, which
can be computationally prohibitive for even medium n and
are not straightforward to reduce. To make the optimiza-
tion cheap, we propose a brand new algorithm to solve
the constrained eigenvalue problem: Recall the constraint
aa = 1, so we can cleverly transform (12) into the equiv-
alent form below by reversing the sign of (12) and adding a
positive constant fa ' Iax = f3:

max a' (fI-UrMUz)a+2b'a (13
alla=1

Note that § should be sufficiently large to make (51 —
UrMU/J) £ Q a PSD matrix, so we choose 3 to be the
largest eigenvalue of (UrMU,.), which can be obtained
efficiently by power iterations or randomized SVD (Halko,

5316

Martinsson, and Tropp 2009). In this way, we obtain a con-
vex function h(a) = o' Qa +2b " a. With g(a) = o and
p(a) = 0, the objective (13) actually has the form below:

max h(g(x)) + p(x)

Objective functions with form (14) can be solved by iter-
atively re-weighting x, which is originally used to seek the
optimal mean for Robust PCA (Nie, Yuan, and Huang 2014):

(14)

x+) = arg max Tr(D " (x)g(x)) + p(x)
xE

15)

where D(x;) denotes any subgradient function of h at the
point g(x;). In our problem, it is easy to know D(c)
Qa + b. Using Cauchy-Schwarz inequality, we can find the
optimal a* by re-weighting o as follows:

Qa' +b

(t+1) — (1) T —
« = arg ma a’+b)a= ——~+1——

8, (Qe D) = @ T,
(16)

leefl2=1

Based on (16), a novel re-weighting based algorithm is
summarized in Algorithm 1, which is easy to implement and
only takes O(n) additional space complexity. The conver-
gence of the proposed re-weighting algorithm is guaranteed
by the proved convergence of re-weighting (Nie, Yuan, and
Huang 2014), which is examplified by Fig. 3a: Given a PSD
matrix (UrMU}.) and a vector b for problem (12), the ob-
jective value of the re-weighting algorithm can quickly con-
verge to the optimal value yielded by the classic solution
(Gander, Golub, and Matt 1991). Based on the proposed
novel re-weighting algorithm, optimizing LEOD-basic be-
comes significantly cheaper, especially in terms of space
complexity (O(n) vs. O((2n)?)). More importantly, our re-
weighting algorithm provides as a general solution to solve
the constrained eigenvalue problem efficiently.

Optimization of y-problem When we fix a and remove
the constant term in (11), the second step of alternate opti-
mization is to solve the y-problem below:
min —b'Ty
y
72 an
st. g e{ct + 2,7 0<nT <n
nt

where b’ = UgDg (U). We simply follow (Liu,
Hua, and Smith 2014) to solve problem (17): Consider the
m-subproblem that assumes there exist m positive labels in
y,ie.nT = m (0 < m < n). The optimal solution to this
m-subproblem ¥*, is obtained by assigning §; = ¢ + z
when b/ is among the m largest element of b’, and §; = ¢~
otherwise. Therefore, we simply scan m from 1 ton — 1 and
find the global optimal solution y* in (17) efficiently by:

y* =arg max —(UxDg(Ujia)) 35,
0<m<n

To be even faster: LEOD-fast

Despite that LEOD-basic is very cheap in terms of space
complexity, it involves an iterative re-weighting algorithm,

(18)

Algorithm 2 LEOD Algorithm

: Input: Ur, M, Uk, Dg, hyperparameter A (if needed).
: Output: Optimal o, soft label assignment y*.

: Initialize og by %ln, 1 =0.

: Initialize yo by Eq. (18) with oo, Ug,Dk.

: repeat

Update ;41 by either of the two methods:

(1) LEOD-basic: Algorithm 1 with y;, U, M
(2) LEOD-fast: Eq. (22) with §;, Ur, M and X .
Update ¥;+1 by Eq. (18) with a;4+1, Ux,Dx.
1=1+4 1

: until convergence.

oA R I S

0o %

which may not be fast enough to handle the growing demand
for high processing speed. Thus, we propose a faster alterna-
tive formulation named LEOD-fast by using a regularization
term rather than imposing any constraint on o:

min «' UrMUJa —2b'a + o'«
o,y

_ e . (19)
st g €{c + T Lo<n™ <n
n

where A > 0 is a tunable hyperpaprameter and b is identi-
cally defined as (12). As the y-problem of LEOD-fast is the
same as LEOD-basic, we will only discuss the optimization
of the a-problem, which is the key for acceleration.

Closed-form solution for a-problem With y fixed, we
can yield the following unconstrained optimization problem:
(20)

We note that problem (20) is a kernel ridge regression
problem, which can be solved by the closed-form solution:

min o' (UrMU; + A\)a — 2b"
(o7

a* = (UrMU; + AL,) " 'b 1)

Solution in (21) still requires inverting a n X n matrix by
O(n?) space complexity and O(n?) time complexity. Con-
sidering that the formulation is based on the low-rank repre-
sentation UTMU;, we can apply the Woodbury-Sherman-
Morrison formula and covert (21) into a more efficient form:

1
a” = $(b—Ur(MU7 Uz + M) "' M(Uzb)) (22)

By Eq. (22), we can compute o™ analytically by simply
inverting a small [x [matrix, which takes merely O([?)
space complexity and O(I®) time complexity. Therefore, it
enjoys an overall O(I? + nl) space complexity. Finally, we
summarize the entire algorithm of LEOD in Algorithm 2.
The alternate optimization of LEOD is convergent, the proof
of which is provided in supplementary material, and exper-
iments show that LEOD usually converges in less than 5 it-
erations (see Fig. 3a).

Experiments
Experimental settings

We conduct experiments on five widely-used benchmark
datasets: Caltech101, Cifar-10, MNIST, Fashion and SVHN.

5317

—e— Re-weighting —e— QObjective value

=== Original solution

560

580

0 100 200 300
Number of iterations

(a)

100 6 8

2 1
Number of iterations

(b)

Figure 3: Algorithm convergence. Left: The re-weighting al-
gorithm. Right: The entire LEOD algorithm.

For performance evaluation, we first follow (Liu, Hua, and
Smith 2014) to obtain noisy data mixed with outliers: On
each dataset, each time data from a certain class of testing
set are used as inliers, while data from other classes are ran-
domly sampled as outliers by a certain outlier ratio p and
then mixed with the inliers. On Caltech101, the performance
is evaluated by averaging the results on four big classes with
more than 300 images, while for Cifar-10, MNIST, Fashion
and SVHN dataset the results are averaged on all classes.
Since we are interested in robustness against high outlier
ratios, p is varied between 20%-60%. As to feature ex-
traction, images of Caltech101 are represented by Locality-
constrained Linear Coding (LLC) descriptor (Wang et al.
2010), while images from Cifar-10, MNIST, SVHN and
Fashion are represented by features extracted by a pre-
trained deep neural network!. For an extensive comparison
of performance, we compare the proposed LEOD with seven
prevalent methods for outlier detection: Local Outlier Factor
(LOF) (Breunig et al. 2000), one-class Support Vector Ma-
chine (OCSVM) (Scholkopf et al. 2001), Discriminative Re-
construction Autoencoder (DRAE) (Xia et al. 2015), Kernel
Principal Component Analysis (KPCA) (Scholkopf, Smola,
and Miiller 1997), Isolation Forest (Liu, Ting, and Zhou
2008), Robust Kernel Density Estimation (RKDE) (Kim and
Scott 2011) and UOCL (Liu, Hua, and Smith 2014). The im-
plementation details are given as follows: For LEOD, we set
m = ceil(n/10), I = ceil(n/20) for low-rank approxima-
tion, and we set A = 1.0 for LEOD-fast. 1 and 75 are both
fixed to be 1.0, which are shared by UOCL. As for k-nn,
we adopt kd-tree or ball-tree to find k-nn for and fix £ = 6
for LEOD, LOF and UOCL. The standard Gaussian kernel
is adopted for OCSVM, RKDE, KPCA, UOCL and LEOD
to calculate pair-wise similarity, and the kernel width o is
estimated by o2 szzl ||x; — x;||3/n?. For DRAE, we
strictly follow (Xia et al. 2015) by using an autoencoder with
30 linear hidden neurons and an encouraging term weight

"https://github.com/yanssy/pytorch-playground

f1 on Caltech101 dataset

f1 on cifar dataset

f1 on mnist dataset

f1 on fashion dataset f1 on svhn dataset

090 090 090 090 090
~
\‘.
085 0 0 085
N
N
150 050 §\\ 050 080 080)\ X
. | = LoF | = LoF | =« LoF —— LOF
0771 —e= 0ocsvM 0707 —&= 0CSVM 0707 —&= 0CSVM 077 —= ocsvm 0707 —&= 0CSVM
070d —— DRAE 0704 —— DRAE \ 0704 —— DRAE 0704 —— DRAE 0704 —— DRAE
- KPCA = KPCA -+ KPCA - KPCA = KPCA
065 IsoForest 065 IsoForest 065 IsoForest 065 IsoForest 065 IsoForest
RKDE RKDE RKDE RKDE RKDE
060 Uber 060 uber 4 060 oL 060 Uber 060 Uber
0551 —® LEOD-basic 0554 @ LEOD-basic 055 @ LEOD-basic 055 @ LEOD-basic 0554 @ LEOD-basic
—¥— LEOD-fast —¥— LEOD-fast —¥— LEOD-fast —¥— LEOD-fast —¥— LEOD-fast
0.0 050 050 050 050
03 01 05 06 02 03 04 05 06 02 03 01 05 06 02 03 01 05 06 02 03 01 05 06
Outlier ratio Outlier ratio Outlier ratio Outlier ratio Outlier ratio
(@) () © (d) (e

Time cost on Caltech101 dataset Time cost on cifar dataset
6

Time cost on mnist dataset

Time cost on fashion dataset Time cost on svhn dataset

—— UOoCL
—o~ LEOD-basic
—%— LEOD-fast

—— UOCL
—e- LEOD-basic
—¥— LEOD-fast

-

10

30

10

—— UoCL
LEOD-basic

—¥— LEOD-fast

140 3300
—— UOoCL
—e~ LEOD-basic

—— UOCL
—e- LEOD-basic
—¥— LEOD-fast

3000

—¥— LEOD-fast

2500

2000

1500

1000

500

u.--_--—-—’—- u""-_"___"'_-r_—-. u""-_r—-—'_-—.___. 0
0. 03 04 0.5 0.6 02 03 04 0.5 0.6 0.2 0.3 04 0.5 0.6 0.2 03 04 0.5 0.6 0.2 0.3 04 0.5 0.6
Outlier ratio Outlier ratio Outlier ratio Outlier ratio Outlier ratio
® €3] (h) ® ()

Figure 4: Average performance and time cost on benchmark datasets.

0.1. For OCSVM, we set v = p to enable OCSVM to ex-
clude outliers during optimization. All methods are imple-
mented in a Python 3.6 environment with PyTorch 0.3.0%
and scikit-learn 0.19.1% packages.

Experimental results

Performance To evaluate the performance under high out-
lier ratios, the f1-score of different methods under outlier
ratios from 20% to 60% on five benchmark datasets are re-
ported in Fig. 4a-4e and Table 1. We obtain the following ob-
servations: First, LEOD-basic, LEOD-fast and UOCL have
shown evidently stronger robustness by significantly outper-
forming other methods under high outlier ratios, and they
are even able to attain at most 29.5% f1-score gain (see
Fig. 4e) when compared to the best performer among other
methods (RKDE). Such robust performance demonstrates
that the proposed low-rank based framework can be readily
applied to discovering outliers under high outlier ratios. Sec-
ond, LEOD-basic, LEOD-fast and UOCL yield comparable
performance with minor differences. Interestingly, with the
proposed low-rank based similarity representation, we note
that in many cases LEOD-basic and LEOD-fast are able to

>https://pytorch.org/
*http://scikit-learn.org/stable/

5318

outperform UOCL that uses the full similarity matrix (see
Table 1). Such results justify our analysis to preserve only
the low-rank structure of similarity matrix for outlier detec-
tion. Consequently, results above identify LEOD as a robust
solution to outlier detection under high outlier ratios.

Computational cost Since LEOD and UOCL stand out
with evidently stronger robustness against high outlier ra-
tios than other methods, we specifically compare their com-
putational cost (running time/peak memory usage) during
the algorithm implementation in Fig. 4f-4j and Table 1: In
terms of time cost, LEOD-basic and LEOD-fast are both
significantly faster than UOCL, and the advantage tends
to be larger as p gets larger and more data (outliers) are
added. In particular, LEOD-fast has constantly been the
fastest method, which only costs a few seconds and achieves
at most 1000 times acceleration compared to UOCL that
can takes minutes or even hours (see Table 1). As to the
peak memory usage, LEOD-basic has constantly been the
most memory-efficient method as it only involves an it-
erative O(n) optimization, while LEOD-fasr uses slightly
more memory than LEOD-basic. By contrast, UOCL tends
to consume astonishing memory when n gets large, e.g. it
uses 39.06 GiB memory when p = 60% on SVHN dataset
(n ~ 12000), which is about 100 times more expensive than

Table 1: Comparison of f1-score (%), time (sec.) and peak memory usage (GiB) on benchmark datasets. From top to bottom:
Caltech101, Cifar-10, MNIST, Fashion, SVHN. UOCL, LEOD-basic and LEOD-fast are shorted as “U”, “Lb” and “Lf”. Best

results are shown in bold.

p=02 p=0.3 p=04 p=0.5 p=0.6
f1 Time Mem. | f1 Time Mem. | f1 Time Mem. | f1 Time Mem. | f1 Time Mem.
U | 948 78 .11 | 96.0 109 1.26 | 94.8 16.6 126 | 91.1 278 1.34 | 826 51.0 1.58
Lb | 93.8 22 097 | 950 23 1.01 | 935 2.5 1.06 | 91.0 33 1.12 | 853 4.9 1.25
Lf | 952 03 098 | 965 04 1.01 | 95.7 0.5 1.08 | 90.4 0.6 1.12 | 823 0.9 1.25
U940 176 050 |91.0 263 0.66 | 86.7 435 0.89 | 81.3 73.0 122 | 68.4 1382 1.64
Lb | 93.7 37 0.09 | 90.7 4.6 0.09 | 86.5 54 0.09 | 81.2 6.5 0.12 | 68.2 10.9 0.15
Lf | 937 0.6 0.09 | 90.7 0.6 0.09 | 864 0.8 0.09 | 81.3 0.9 0.12 | 68.0 1.4 0.16
U | 991 16.7 0.58 | 989 245 0.75 | 97.8 39.4 1.05 | 959 68.5 1.40 | 89.2 1327 2.03
Lb | 990 24 0.05 | 98.8 26 0.05 | 98.0 2.7 0.05 | 95.8 34 0.05 | 90.2 54 0.06
Lf | 992 03 005 | 986 0.3 005 | 974 0.4 0.05 | 95.9 0.6 0.05 | 88.7 0.7 0.06
U | 949 163 048 |93.0 248 0.64 | 90.1 403 0.83 | 834 69.5 1.15 | 73.3 133.0 1.61
Lb | 946 26 0.02 | 927 30 0.02 | 894 33 0.02 | 83.1 3.7 0.03 | 73.2 6.1 0.03
Lf | 953 0.2 0.02 | 93.3 0.2 0.02 | 91.1 0.3 0.02 | 83.5 04 0.03 | 73.9 0.6 0.05
U | 97.0 4862 9.84 |97.0 692.0 12.81 | 96.8 1062.7 17.42 | 959 18229 2520 | 91.1 3439.0 39.06
Lb | 960 648 012 | 961 71.7 017 | 96.0 824 0.20 | 95.8 1219 023 | 924 2472 0.36
Lf | 974 1.1 012 | 97.3 14 0.17 | 97.0 1.6 0.20 | 95.2 2.3 0.27 | 88.8 34 0.40
o f1 on Caltech101 dataset o f1 on cifar dataset . f1 on Caltech101 dataset » f1 on Caltech101 dataset o f1 on Caltech101 dataset
095 095 005 = 095 I 05—
oo o Y o \ oo \\
" :j " —— m=n/5 N
' —— =100 " —— m=n/7 R I=n/10
0651 e A=10 0651 —¥— m=n/10 0651 —<&— |=n/15
0.60 0604 —¥— A=1 o0 —— m=n/12 os0] —F 1=n/20
- —e— Approximating (I+7,L) . —e— Approximating (I47L) . —— A=0.1 - m=n/15 o —+— |=n/25
—¥— Proposed —¥— Proposed A=0.01 m=n/20 I=n/30
" OutIin’ ratio " v ” “! Oul:li‘e‘rl ratio " . " " Outﬁgrl ratio ‘ " Outli!r‘ ratio " v " ” Outli!r‘ ratio ’
(a) (b) (© (d) (e)

Figure 5: Discussion on approximating both K and L, as well as the influence of hyperparameter A, m and .

LEOD (0.36/0.40 GiB). Therefore, LEOD also turns out to
be a much cheaper solution when compared with UOCL.

Discussion

Approximating (I 4+ ;L) To eliminate the n X n matrix
(I + 11 L), we compare the naive solution, which directly
computes its low-rank approximation, with our solution that
exploits the sparsification of L. The performance compari-
son is shown in Fig. 5a and 5b), which indicate that the per-
formance of the naive solution is constantly worse than our
solution by at most 6% performance loss.

Influence of hyperparameters The proposed LEOD ad-
ditionally introduces three hyperparameters: A for LEOD-
fast, as well as m and [for low-rank approximation. With
other hyperparamters fixed, we explore their influence by
varying A from 0.01 to 100.0, m from n/5 to n/20 and
[from n/10 to n/30 respectively (the ceil(-) operator is
temporarily omitted for simplicity). The corresponding per-

5319

formance is shown in Fig. 5c-5e. For A, we obtain the two
observations: First, with some minor variations, the perfor-
mance is insensitive to A when it is varied between 0.01 and
10.0. Second, we notice that a large A (e.g. A = 100) tend
to obtain better performance (at most 4% f1 gain) under a
very high outlier ratio (e.g. p = 60%), but it severely de-
grades the performance when p < 40%. By contrast, a very
small A (e.g. A = 0.01) usually leads to a bad performance
under a very high outlier ratio like 60%. Empirically, we can
set A to be 1.0 or 10, but one can use a large A when p is
estimated to be very high (> 50%). As for m and [, our re-
sults (see Fig. 5d and 5e) show that LEOD’s performance re-
mains relatively stable with different m and [/ in most cases
(the performance variance is within 3%), so we simply set
m = ceil(n/10) and | = ceil(n/20).

Conclusion

In this paper, we formally discuss the problem of outlier
detection under high outlier ratios and proposes a highly

efficient method named LEOD to achieve good robustness
with much cheaper computations. Based on the proposed
low-rank based framework, LEOD-basic enjoys very low
space complexity by utilizing a novel algorithm to solve the
general constrained eigenvalue problem efficiently, while
LEOD-fast realizes a significantly faster learning speed by a
new objective that takes a very cheap closed-form solution.
Therefore, LEOD provides a promising solution for robust
and efficient outlier detection in practical applications.

Acknowledgement

The work is supported by the National Key R&D Pro-
gram of China under Grant No. 2018 YFB1003203, Na-
tional Natural Science Foundation of China under Grant No.
61672528, 61773392, 61702539. Xinwang Liu, En Zhu and
Jianping Yin are corresponding authors of this paper (email
addresses: xinwangliu@nudt.edu.cn, enzhu@nudt.edu.cn,
jpyin@dgut.edu.cn).

References

Aggarwal, C. C.; Zhao, Y.; and Yu, P. S. 2011. Outlier de-
tection in graph streams. In IEEE International Conference
on Data Engineering, 399—409.

Breunig, M. M.; Kriegel, H.-P.; Ng, R. T.; and Sander, J.
2000. Lof: identifying density-based local outliers. In ACM
sigmod record, volume 29, 93-104. ACM.

Chandola, V., and Kumar, V. 2007. Outlier detection : A
survey. Acm Computing Surveys 41(3).

Désir, C.; Bernard, S.; Petitjean, C.; and Heutte, L.
2013. One class random forests. Pattern Recognition
46(12):3490-3506.

Gander, W.; Golub, G. H.; and Matt, U. V. 1991. A Con-
strained Eigenvalue Problem. Springer Berlin Heidelberg.
Gupta, G., and Ghosh, J. 2005. Robust one-class clustering
using hybrid global and local search. In Proceedings of the
22nd international conference on Machine learning, 273—
280. ACM.

Halko, N.; Martinsson, P.-G.; and Tropp, J. A. 2009. Finding
structure with randomness: Stochastic algorithms for con-
structing approximate matrix decompositions.

Japkowicz, N.; Myers, C.; and Gluck, M. 1995. A novelty
detection approach to classification. In International Joint
Conference on Artificial Intelligence, 518-523.

Kim, J. S., and Scott, C. D. 2011. Robust kernel density esti-
mation. Journal of Machine Learning Research 13(1):2529—
2565.

Kim, J., and Scott, C. D. 2012. Robust kernel density estima-
tion. Journal of Machine Learning Research 13(Sep):2529—
2565.

Li, M.; Kwok, J. T.-Y.; and Lii, B. 2010. Making large-
scale nystrom approximation possible. In ICML 2010-
Proceedings, 27th International Conference on Machine
Learning, 631.

Li, S.; Shao, M.; and Fu, Y. 2014a. Locality linear fitting
one-class svm with low-rank constraints for outlier detec-

5320

tion. In International Joint Conference on Neural Networks,
676—683.

Li, S.; Shao, M.; and Fu, Y. 2014b. Low-Rank Outlier De-
tection. Springer International Publishing.

Li, S.; Shao, M.; and Fu, Y. 2018. Multi-view low-rank anal-
ysis with applications to outlier detection. Acm Transactions
on Knowledge Discovery from Data 12(3):1-22.

Liu, W.; Hua, G.; and Smith, J. R. 2014. Unsupervised
one-class learning for automatic outlier removal. In CVPR,
3826-3833.

Liu, F. T.; Ting, K. M.; and Zhou, Z.-H. 2008. Isolation
forest. In 2008 Eighth IEEE International Conference on
Data Mining, 413-422. 1IEEE.

Liu, E. T.; Ting, K. M.; and Zhou, Z.-H. 2010. On detecting
clustered anomalies using sciforest. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in
Databases, 274-290. Springer.

Luca, M., and Zervas, G. 2016. Fake it till you make it:
Reputation, competition, and yelp review fraud. Manage-
ment Science 62(12):3412-3427.

Nie, F.; Yuan, J.; and Huang, H. 2014. Optimal mean robust
principal component analysis. In International conference
on machine learning, 1062—1070.

Parzen, E. 1962. On estimation of a probability den-
sity function and mode. Annals of Mathematical Statistics
33(3):1065-1076.

Ramaswamy, S.; Rastogi, R.; and Shim, K. 2000. Effi-
cient algorithms for mining outliers from large data sets. In
ACM SIGMOD International Conference on Management of
Data, 427-438.

Scholkopf, B.; Platt, J. C.; Shawe-Taylor, J.; Smola, A. J.;
and Williamson, R. C. 2001. Estimating the support
of a high-dimensional distribution. Neural computation
13(7):1443-1471.

Scholkopf, B.; Herbrich, R.; and Smola, A. J. 2001. A gen-

eralized representer theorem. european conference on com-
putational learning theory 416-426.

Scholkopf, B.; Smola, A.; and Miiller, K.-R. 1997. Kernel
principal component analysis. In International Conference
on Artificial Neural Networks, 583-588. Springer.

Tax, D. M., and Duin, R. P. 2004. Support vector data de-
scription. Machine learning 54(1):45-66.

Wang, J.; Yang, J.; Yu, K.; Lv, F.; Huang, T.; and Gong, Y.
2010. Locality-constrained linear coding for image classifi-

cation. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 3360-3367.

Williams, C. K., and Seeger, M. 2001. Using the nystrém
method to speed up kernel machines. In Advances in neural
information processing systems, 682—688.

Xia, Y.; Cao, X.; Wen, F.; Hua, G.; and Sun, J. 2015. Learn-
ing discriminative reconstructions for unsupervised outlier
removal. In Proceedings of the IEEE International Confer-
ence on Computer Vision, 1511-1519.

