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Abstract

Multi-view clustering aims to partition data collected from
diverse sources based on the assumption that all views are
complete. However, such prior assumption is hardly satisfied
in many real-world applications, resulting in the incomplete
multi-view learning problem. The existing attempts on this
problem still have the following limitations: 1) the underly-
ing semantic information of the missing views is commonly
ignored; 2) The local structure of data is not well explored;
3) The importance of different views is not effectively eval-
uated. To address these issues, this paper proposes a Unified
Embedding Alignment Framework (UEAF) for robust incom-
plete multi-view clustering. In particular, a locality-preserved
reconstruction term is introduced to infer the missing views
such that all views can be naturally aligned. A consensus
graph is adaptively learned and embedded via the reverse
graph regularization to guarantee the common local structure
of multiple views and in turn can further align the incomplete
views and inferred views. Moreover, an adaptive weighting
strategy is designed to capture the importance of different
views. Extensive experimental results show that the proposed
method can significantly improve the clustering performance
in comparison with some state-of-the-art methods.

Introduction
Multi-view clustering has attracted much attention in the
communities of computer vision and data mining in recent
years. Compared with the single-view clustering, multi-view
clustering generally can achieve a better performance due to
the complementary properties of the heterogeneous features
collected from diverse sources or described by multiple fea-
tures (Xu, Tao, and Xu 2013; Qian and Zhai 2014).

Notably, the conventional single-view clustering methods
are not suitable to group multi-view data, because they ig-
nore the diversity and complementary characteristics of mul-
tiple features from different views (Chao, Sun, and Bi 2017).
∗‘†’ indicates co-first authors with equal contributions; ‘∗’ indi-

cates the corresponding author.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Recently, many researchers focused on learning a common
indicator matrix or shared similarity graph of different views
for multi-view clustering. For instance, based on the spectral
clustering, the diversity-induced multi-view subspace clus-
tering accumulates multiple graphs of all views into a com-
mon graph for clustering (Cao et al. 2015). Multi-view sub-
space clustering directly learns a common and consistent
representation from the representation graphs of all views
(Gao et al. 2015). Xia et al. proposed to learn a common
low-rank graph from multiple similarity graphs constructed
from all views independently (Xia et al. 2014). Moreover,
the kernel based multi-view clustering (Tzortzis and Likas
2012) and deep multi-view clustering (Zhao, Ding, and Fu
2017) have been developed to handle nonlinear features and
achieve a very promising performance. It is worth noting
that these multi-view clustering methods commonly require
that all views of data should be complete. However, it is very
common that the available multi-view data tends to be in-
complete, which means features of some views are miss-
ing. For example, in document clustering, different trans-
lated languages of documents can be regarded as the features
of multiple views. However, some documents may do not
have all translated versions (Hu and Chen 2018). Another
typical example is in the audio-visual appearance, where the
audio and visual represent the two views of a speaker, while
we may only have the samples of the audio or the visual
view for some speakers in some cases (Li, Jiang, and Zhou
2014).

It is clear that the existing multi-view clustering methods
fail to cluster the multi-view data with incomplete views, be-
cause it is impossible to learn the common similarity graph
or low-dimensional representation for all views. Moreover,
the available complementary information among multiple
views is very limited due to the unpaired missing views.
These factors make the incomplete views a challenging clus-
tering problem. Some attempts have been made to adapt
such incomplete learning problem. For example, a kernel
canonical correlation analysis based method is proposed to
complete the incomplete kernel matrices of the incomplete
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views (Trivedi et al. 2010). However, it requires at least
one complete view as reference for view completion. Gao et
al. proposed to learn the consensus representation based on
the kernel alignment (Gao, Peng, and Jian 2016). However,
this method can not handle the case with large incomplete
rate of views. The prevalent incomplete multi-view cluster-
ing methods are mainly based on the matrix factorization
strategy (Hu and Chen 2018; Wen et al. 2018c; Li, Jiang,
and Zhou 2014; Rai et al. 2016; Zhao, Liu, and Fu 2016;
Shao, He, and Philip 2015). Compared with the above spec-
tral clustering based methods, these methods can directly
obtain the consensus representation from the incomplete
views. However, there are still some limitations for these
methods: 1) The local geometric structure of data is not well
explored, and they cannot guarantee the compactness and
discriminability of the obtained common features; 2) The
missing views are not precisely recovered, and they cannot
fully capture the hidden information of the missing views for
consensus representation learning; 3) The importance of dif-
ferent views is ignored, and it is obviously unreasonable for
incomplete multi-view learning when all views are treated
equally during the learning phases.

In this paper, we propose a novel Unified Embedding
Alignment Framework, dubbed as UEAF, to address the
above issues. Firstly, we introduce an error matrix with
Laplacian regularizer to recover the missing views. This ap-
proach not only allows all incomplete views to be aligned
for the consensus representation learning, but also provides
a novel way to exploit the hidden information of the miss-
ing views, which is beneficial to the final clustering tasks.
Secondly, we develop a novel reverse graph regularization
term on all recovered samples view by view to guarantee
the consensus of local structure of multiple views. Thirdly,
we impose an adaptively learned weight vector on the learn-
ing model of each view to identify their importance and in
turn can enhance the discriminability of the learned com-
mon representation. Experimental results demonstrate that
UEAF can greatly improve the clustering performance by
integrating these factors into a unified framework. In brief,
the proposed UEAF has the following contributions.

(1) To the best of our knowledge, it is a new way of
thinking to simultaneously reconstruct the missing views
and learn the common representation of multiple views for
incomplete multi-view clustering.

(2) Different from the existing methods, the missing views
completion and common representation learning are seam-
lessly incorporated into one unified framework to interac-
tively facilitate its counterpart, rather than simply discarding
the missing views or using suboptimal two-phase learning.

(3) A novel reverse graph regularization term is devel-
oped to guarantee the consensus of local structure of multi-
ple views, which jointly enables the incomplete views to be
further aligned and ensures the compactness and consistence
of the learned common representation of multiple views.

Related Work
Multiple incomplete views clustering (MIC) provides a flex-
ible framework to address the incomplete problem of multi-
view clustering. The objective function of MIC is designed

as follows (Shao, He, and Philip 2015):

min
P (v),U(v),P∗

l∑
v

[ ∥∥W (v)
(
X(v) − P (v)U(v)

)∥∥2

F
+

βv
∥∥P (v)

∥∥
2,1

+αv
∥∥W (v)

(
P (v)−P ∗

)∥∥2

F

]
s.t. U(v) ≥ 0, P (v) ≥ 0, P ∗ ≥ 0, (1)

where βv and αv are the penalty parameters of the vth view,
U (v) is the basis matrix of the vth view, and l is the number
of views. In MIC, all missing views are filled in the aver-
age vector of samples in the corresponding view, and then
X(v) ∈ Rn×mv includes the missing and non-missing in-
stances of the vth view, where n and mv are the number of
samples and feature dimensionality of the vth view, respec-
tively. P ∗ ∈ Rn×c is the common representation of all sam-
ples shared by all views. In model (1), the weighting matrix
W (v) ∈ Rn×n is defined as:

W
(v)
i,i =

{
1, if the vth view contains the ith sample
δv , otherwise,

(2)

where δv = nv/n, nv denotes the number of non-missing
instances of the vth view. By introducing the weighting ma-
trix W (v), MIC can exploit the non-missing instances of all
views to learn the common representation.

Proposed Approach
In this section, we present the proposed UEAF, which infers
the missing views and exploits the graph embedding tech-
nique to align all views for effective consensus representa-
tion learning. The proposed UEAF is mainly composed of
three sub-models, i.e., consensus representation learning, re-
verse graph regularization, and adaptively weighted incom-
plete multi-view learning.

Consensus Representation Learning
Learning a consensus representation for all views is one of
the most favorable approaches for incomplete multi-view
clustering. However, all the existing works only exploit the
available non-missing views to learn the common latent rep-
resentation while ignoring the underlying information of
the missing views. In this paper, we propose the following
model to simultaneously exploit the available information
of non-missing views and hidden information of the missing
views for the common representation learning:

min
E(v),U(v),P

l∑

v=1



∥∥X(v) + E(v)W (v) − U (v)P

∥∥2
F

+λ1

2

mv∑
j=1

mv∑
i=1

∥∥∥E(v)
i,: − E

(v)
j,:

∥∥∥
2

2
G

(v)
i,j




s.t. U (v)TU (v) = I, (3)

where λ1 is a positive penalty parameter, X(v) ∈ Rmv×n

denotes the instances from the vth view. For each set X(v),
all elements of the missing instances are filled in to be 0.
E(v) ∈ Rmv×nm

v is the error matrix used to model the miss-
ing instances of the vth view, nmv denotes the number of
missing instances of the vth view, E(v)

i,: and E(v)
j,: denote the

ith row and jth row vector of matrix E(v). U (v) ∈ Rmv×c

is the basis matrix of the vth view, P ∈ Rc×n is the latent
common representation of all views, where c is the cluster
number or dimensionality of the latent representation. I is
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the identity matrix. W (v) ∈ Rn
m
v ×n is an index matrix of

the vth view and is defined as follows:

W
(v)
i,j =

 1,
if the j−th instance is the i−th missing
instance in the v−th view

0, otherwise.

(4)
In model (3), G(v) ∈ Rmv×mv is the neighbor graph of

features from the vth view, which is pre-constructed as:

G
(v)
i,j =

{
1, if X̄

(v)
i,: ∈ ψ

(
X̄

(v)
j,:

)
or X̄

(v)
j,: ∈ ψ

(
X̄

(v)
i,:

)
0, otherwise,

(5)

where ψ
(
X̄

(v)
j,:

)
denotes the set of k nearest neighbors of

the jth feature, i.e., X̄(v)
j,: , X̄(v) is the set of the available

instances of the vth view.
We can easily deduce that the problem (3) can be trans-

formed into the following equivalent formula:

min
E(v),U(v),P

l∑

v=1

( ∥∥X(v) + E(v)W (v) − U (v)P
∥∥2
F

+λ1Tr
(
E(v)TL(v)E(v)

)
)

s.t. U (v)TU (v) = I, (6)

where L(v) is the Laplacian matrix of graph G(v) and is cal-
culated asL(v) = D(v)−G(v),D(v) is a diagonal matrix and
its ith diagonal element is calculated byD(v)

i,j =
∑mv

j=1G
(v)
i,j .

In (6), the orthogonal constraint U (v)TU (v) = I is intro-
duced to make the basis matrix independent.

From (6), we can find that the complete instances of
each view is

(
X(v) + E(v)W (v)

)
. By recovering the miss-

ing views, all incomplete views are naturally aligned to
learn the consensus representation. Importantly, we can ob-
tain more reasonable missing instances by introducing the
graph regularization term, which further efficiently guides
the model to learn the consensus representations of all views.

Reverse Graph Regularization
For multi-view data, it naturally shares some common infor-
mation across different views, such as the common represen-
tation and common local structure (Nie, Cai, and Li 2017).
The local structure preserving is significant and indispens-
able in subspace learning, which is beneficial to improve the
compactness of the learned low-dimensional representation.
However, for the incomplete multi-view data, it is obviously
impossible to capture the local manifold structure of the data
via the existing methods as far as we know since the num-
bers of available instances of all views are less than the total
sample number. To overcome this difficulty, we propose the
following reverse graph learning model:

min
S

l∑

v=1

n∑

j=1

n∑

i=1

∥∥∥U (v)P:,i − U (v)P:,j

∥∥∥
2

2
S2
i,j

s.t. ∀i, Si,:1 = 1, 0 ≤ Si,j ≤ 1, Si,i = 0, (7)

where S ∈ Rn×n denotes the nearest neighbor graph with
each element representing the similarity degree between the
corresponding two instances. 1 is a vector with all 1s. Intro-
ducing the constraint Si,:1 = 1 can avoid the trivial solution
that any sample is not connected with its neighbors.

For the non-negative similarity graph S and its Laplacian
matrix LS , we have the following Theorem (Nie, Cai, and
Li 2017; Nie et al. 2016).

Theorem 1 (Mohar et al. 1991; Chung 1996): The multi-
plicity c of eigenvalue 0 of the Laplacian matrix LS is equal
to the number of the connected components in graph S.

It is notable that for the multi-view data with c clusters,
the constructed ideal similarity graph should also have ex-
actly c connected components, in which samples connected
by each component are naturally regarded as one cluster
(Nie, Cai, and Li 2017). Many works have also proved that
learning such an ideal graph is beneficial to obtain a better
clustering performance (Ren et al. 2018; Wen et al. 2018a;
Zhan et al. 2018). Based on this observation, we add a rank
constraint to model (7) based on Theorem 1 as follows:

min
S

l∑
v=1

n∑
j=1

n∑
i=1

∥∥∥U(v)P:,i − U(v)P:,j

∥∥∥2

2
S2
i,j (8)

s.t. ∀i, Si,:1 = 1, 0 ≤ Si,j ≤ 1, Si,i = 0, rank (LS) = n− c,

where rank(LS) denotes the rank of matrix LS .
By exploiting the reverse graph regularization, the con-

sensus manifold structure across multiple views can be guar-
anteed, which further aligns all recovered incomplete views.

Adaptively Weighted Incomplete Multi-view
Learning
For multi-view data, different views generally have differ-
ent physical meanings and discriminant powers. Especially
for the incomplete multi-view cases, the available discrimi-
native information of different views will have huge differ-
ences due to the different feature dimensions and numbers
of the available instances of multiple views. To this end, we
exploit the following adaptive weighting strategy to balance
the importance of different views:

min
α(v)

l∑

v=1

(
α(v)

)r
Γ(v), s.t.

l∑

v=1

α(v) = 1, α(v) ≥ 0, (9)

where Γ(v) denotes the objective learning model of the vth
view. α(v) is a positive weight to balance the significance of
the vth view. Parameter r > 1 is used to control the smooth-
ness of the weights distribution. In this way, the model can
adaptively figure out the complementary effects of different
views with varying discriminant powers for model training.

Overall Objective Function
Finally, by incorporating the consensus representation learn-
ing and reverse graph regularization into the adaptive
weighting model (i.e., combing (6), (8) and (9)), we obtain
the final incomplete multi-view clustering model as follows:

min
Υ

l∑
v=1

(
α(v)

)r

∥∥X(v) + E(v)W (v) − U(v)P

∥∥2

F
+λ1Tr

(
E(v)TL(v)E(v)

)
+λ2

2

n∑
i,j=1

∥∥U(v)P:,i−U(v)P:,j

∥∥2

2
S2
i,j


s.t. U(v)TU(v) = I,

l∑
v=1

α(v) = 1, α(v) ≥ 0, ∀i, Si,:1 = 1,

0 ≤ Si,j ≤ 1, Si,i = 0, rank (LS) = n− c, (10)
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Figure 1: The framework of the proposed method.

where λ2 is a penalty parameter, Υ ={
E(v), U (v), P, S, α(v)

}
is the set of variables to com-

pute. The overall learning framework of the proposed
method is outlined in Fig.1.

Optimization
We introduce an alternating optimization algorithm to solve
problem (10) (Shen, Wen, and Zhang 2014; Xu et al. 2012).
According to the Ky Fan’s Theorem (Nie, Cai, and Li 2017;
Fan 1949) and constraint U (v)TU (v) = I , problem (10) is
equivalent to the following optimization problem:

min
Υ

l∑
v=1

(
α(v)

)r ∥∥X(v) + E(v)W (v) − U(v)P
∥∥2

F
+λ1Tr

(
E(v)TL(v)E(v)

)
+λ2Tr

(
PLS2PT

)


+ λ3Tr
(
FTLSF

)
s.t. U(v)TU(v) = I,

l∑
v=1

α(v) = 1,

α(v) ≥ 0, ∀i, Si,:1 = 1, Si,i = 0, 0 ≤ Si,j ≤ 1, FTF = I, (11)

where λ3 is a penalty parameter, Υ ={
E(v), U (v), P, S, α(v), F

}
, LS2 denotes the Laplacian

matrix of graph (S � S), � is the hadamard product.
Step 1: Calculate P . Fixing all the other variables, we

can calculate P by minimizing the following function:

Ψ (P ) =
l∑

v=1

(
α(v)

)r ( ∥∥X(v) + E(v)W (v) − U(v)P
∥∥2

F
+λ2Tr

(
PLS2PT

) )
.

(12)
By setting the partial derivation of Ψ (P ) w.r.t. P to zero,

we can obtain the closed-form solution to P as follows:

P = (

l∑
v=1

(
α(v)

)r
U(v)TY (v))(I + λ2LS2 )−1

/
l∑

v=1

(
α(v)

)r
,

(13)
where Y (v) = X(v) + E(v)W (v).

Step 2: Calculate S. Fixing the other variables, the sub-
problem to variable S is simplified as follows:

min
S

l∑
v=1

(
α(v)

)r (
λ2Tr

(
PLS2PT

))
+ λ3Tr

(
FTLSF

)
s.t. ∀i, Si,:1 = 1, 0 ≤ Si,j ≤ 1, Si,i = 0, (14)

which can be further simplified as follows:
n∑
i=1

 min
Si,:1=1,0≤Si,j≤1,Si,i=0

n∑
j=1,j 6=i

(
Si,j +

λ3HF
i,j

2λ2HP
i,j

)2
,
(15)

where HF
i,j = ‖Fi,: − Fj,:‖22, HP

i,j =
l∑

v=1

(
α(v)

)r ‖P:,i − P:,j‖22. The closed-form solution

of problem (15) can be achieved by an efficient algorithm
presented in (Nie et al. 2016).

Step 3: Calculate F . Fixing the other variables, we can
obtain the solution to F by solving the following problem:

min
FTF=I

Tr
(
FTLSF

)
, (16)

which can be optimized by a set of Eigenvectors correspond-
ing to the first c minimum Eigenvalues of LS .

Step 4: Calculate U (v). Fixing the other variables, the
sub-problem to variable U (v) is reformulated as:

min
U(v)TU(v)=I

∥∥∥X(v) + E(v)W (v) − U (v)P
∥∥∥
2

F
. (17)

If we denote Y (v) = X(v) +E(v)W (v), we can obtain the
optimal solution of U (v) = BRT , where B and R are the
left and right singular matrices of matrix

(
Y (v)PT

)
.

Step 5: Calculate E(v). When fixing all the other vari-
ables that are irrelevant to E(v), we have:

min
E(v)

∥∥∥X(v) + E(v)W (v) − U(v)P
∥∥∥2

F
+ λ1Tr

(
E(v)TL(v)E(v)

)
.

(18)
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Algorithm 1 : UEAF (solving (11))

Input: Incomplete multi-view data X =
{
X(v)

}l
v=1

whose missing views are filled in 0s, index matrix of miss-
ing views W =

{
W (v)

}l
v=1

, parameters λ1, λ2, λ3, r,

nearest neighbor graph G =
{
G(v)

}l
v=1

of features.
Initialization: α(v) = 1/l, U (v) is an orthogonal matrix
with random values, random matrix E(v), random graph
S, initialize F by solving (16) based on S.
while not converged do

1. Update P using (13);
2. Update S by solving (15);
3. Update F by solving (16);
for v from 1 to l

4. Update U (v) by solving (17);
5. Update E(v) using (20);

end
6. Update α(v) using (22).

end while
Output: P,U (v), E(v), S

Since all instances of X(v) corresponding to E(v) are ze-
ros, problem (18) can be rewritten as:

Ψ
(
E(v)

)
=
∥∥∥E(v) − U(v)PW (v)T

∥∥∥2

F
+ λ1Tr

(
E(v)TL(v)E(v)

)
.

(19)
By setting the partial derivation ∂Ψ

(
E(v)

)/
∂E(v) = 0,

we can obtain the optimal solution of E(v) as follows:

E(v) =
(
I + λ1L

(v)
)−1

U (v)PW (v)T . (20)

Step 6: Calculate α(v). By fixing the other variables, α(v)

can be obtained by solving the following problem:

min
α(v)>0,

∑l
v=1 α

(v)=1

l∑

v=1

(
α(v)

)r
d(v), (21)

where d(v) =
∥∥X(v) + E(v)W (v) − U (v)P

∥∥2
F

+

λ1Tr(E
(v)TL(v)E(v)) + λ2Tr(PLS2PT ). The opti-

mal solution to (21) is given by (Zhang et al. 2018):

α(v) =
(
d(v)

)1/(1−r)/∑l

v=1

(
d(v)

)1/(1−r)
(22)

Algorithm 1 briefly summarizes the optimization proce-
dures of the proposed method.

Convergence and Computational Complexity
We have provided an iterative algorithm to optimize the
resulting optimization problem, which is divided into six
sub-problems. Obviously, the six sub-problems are all con-
vex and have the closed-form solution w.r.t. each parameter.
Therefore, we conclude that the objective function is mono-
tonically decreasing towards a stationary point. Moreover,
the objective function (11) is lower bounded. The above two
factors ensure the proposed optimization approach to finally

Table 1: Description of the used multi-view datasets.
Database # Class # View # Samples # Features
BUAA 10 2 90 100/100

Handwritten 10 2 2000 240/76
3 Sources 6 3 169 3560/3631/3068
BBCSport 5 4 116 1991/2063/2113/2158

find the local optimal point of the objective problem, which
guarantees the convergence property.

Herein, we discuss the computational complexity of algo-
rithm 1. We can find that the highest computational costs are
the inverse operation in Steps 1 and 5, Eigenvalue decompo-
sition in Step 3, and singular value decomposition (SVD)
in Step 4. For an n × n matrix, the computational com-
plexities of the inverse operation and Eigenvalue decompo-
sition are O(n3). For an m × n matrix, the computational
complexity of SVD is O(mn2). For Step 5, since the in-
verse operation of (I + λ1L

(v))−1 can be calculated outside
the loop, its computational complexity can be ignored. Thus
the total computational complexity of algorithm 1 is about
O(τ(2n3 +

∑l
v=1mvc

2)), where τ is the iteration number.

Experiments and Analysis
Experimental Settings
Dataset: (1) BUAA-visnir face dataset (BUAA) (Huang,
Sun, and Wang 2012): Following the experimental settings
in (Zhao, Liu, and Fu 2016), a subset of BUAA which is
composed of 90 visual images and 90 near infrared im-
ages of the first 10 volunteers is chosen for comparison.
(2) Handwritten digit dataset (Cai, Nie, and Huang 2013):
The used handwritten digit dataset contains 2000 samples
of 10 digits. The average pixels features with 240 dimen-
sions and Fourier coefficient features with 76 dimensions
are extracted as the two views for evaluation. (3) 3 Sources
dataset: In our experiments, we evaluate different methods
on the subset of 3 Sources dataset1, which is composed of
169 stories of six topical labels collected from the three
well-known online news sources, i.e., BBC, Reuters, and the
Guardian. Each source can be regarded as a view. (4) BBC-
Sport: The exploited BBCSport dataset contains 116 sam-
ples from 5 classes. Each sample is represented by 4 views.
The above used datasets are briefly summarized in Table 1.

Compared methods: Eight incomplete multi-view clus-
tering methods, including best single view (BSV), Concat,
partial multi-view clustering (PVC) (Li, Jiang, and Zhou
2014), graph regularized partial multi-view clustering (GP-
MVC) (Rai et al. 2016), incomplete multi-modality group-
ing (IMG) (Zhao, Liu, and Fu 2016), MIC (Shao, He, and
Philip 2015), doubly aligned incomplete multi-view cluster-
ing (DAIMC) (Hu and Chen 2018), and online multi-view
clustering (OMVC) (Shao et al. 2016) are selected to com-
pare with the proposed UEAF. BSV fills in the missing views
with the average instance of the corresponding view, then
performs k-means on each view independently and reports
the highest results among these views. Concat exploits the

1https://github.com/GPMVCDummy/GPMVC/tree/master/
partialMV/PVC/recreateResults/data
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Table 2: Mean NMIs (%), ACCs (%), and purities (%) of different methods on BUAA and Handwritten datasets.
NMI ACC Purity

Database Method\Paired rate 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

B
U

A
A

BSV 43.10 53.03 61.78 69.91 48.33 56.96 64.26 70.81 50.19 58.66 65.96 72.35
Concat 51.22 51.95 52.43 56.51 45.62 46.61 47.46 52.34 47.99 49.41 49.68 54.81
PVC 61.35 67.07 71.97 78.70 57.41 66.46 70.01 75.92 60.58 68.79 71.98 77.95
GPMVC 62.12 70.25 74.33 81.63 58.98 68.75 74.28 78.28 61.26 71.66 75.36 81.71
IMG 54.72 67.53 76.74 82.83 53.95 67.39 76.14 79.36 57.32 68.65 78.23 82.42
MIC 59.92 72.59 69.56 74.11 57.77 70.00 68.22 74.89 61.11 73.33 70.44 75.33
DAIMC 60.16 74.63 79.13 83.32 57.56 71.55 79.78 80.67 60.44 74.00 79.33 82.00
OMVC 60.69 63.99 64.32 66.91 60.59 62.89 65.74 68.37 62.15 65.57 67.48 69.78
Our UEAF 72.24 80.76 82.98 88.54 72.88 82.22 83.77 88.00 74.00 82.68 84.67 88.89

H
andw

ritten

BSV 37.04 44.48 51.50 58.61 43.08 50.45 57.39 64.44 43.81 51.08 58.31 65.92
Concat 47.71 54.43 61.12 70.30 46.01 57.46 66.45 78.64 48.20 58.57 66.73 78.72
PVC 55.13 60.85 64.88 68.54 63.81 70.90 73.44 75.20 65.41 72.14 75.01 76.96
GPMVC 60.99 63.99 72.23 73.68 65.60 74.04 76.94 79.06 66.58 74.85 76.21 79.70
IMG 58.05 62.38 64.91 68.21 69.22 75.41 76.34 77.54 70.76 75.44 76.45 77.55
MIC 44.59 51.09 57.41 66.32 49.13 59.99 64.98 74.70 50.25 60.56 66.73 75.70
DAIMC 40.99 55.81 62.68 66.63 46.75 67.32 75.09 77.63 49.48 68.12 75.12 78.00
OMVC 46.36 54.12 62.11 66.65 54.57 61.80 73.45 77.89 55.83 63.18 73.90 77.89
Our UEAF 62.34 67.94 72.52 74.69 70.15 79.00 82.72 85.11 72.15 79.00 82.61 85.11

Table 3: Mean NMIs (%), ACCs (%), and purities (%) of different methods on the 3 Sources and BBCSport datasets.
NMI ACC Purity

Database Method\Missing rate 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

3
Sources

BSV 50.07 34.46 22.34 56.90 47.38 39.24 68.14 57.63 48.99
Concat 51.98 37.87 18.32 53.54 46.79 37.68 69.78 58.51 46.48
GPMVC 34.82 30.44 28.15 48.24 44.50 42.01 60.47 58.58 57.40
MIC 37.23 38.62 26.08 49.11 47.69 42.49 57.28 61.30 52.31
DAIMC 52.98 49.07 41.64 56.33 52.43 50.73 68.99 67.21 63.56
OMVC 36.48 28.42 24.34 43.95 41.11 39.53 59.37 48.76 45.44
Our UEAF 56.47 52.06 45.19 62.60 55.62 52.78 75.50 71.95 67.69

B
B

C
Sport

BSV 43.73 31.03 21.40 58.62 51.31 44.03 65.79 55.07 47.59
Concat 61.69 38.92 18.61 70.62 58.72 33.21 80.59 63.24 37.00
GPMVC 28.23 20.04 15.48 51.44 46.89 43.91 58.39 52.76 45.29
MIC 29.90 25.84 24.01 51.21 46.21 46.03 55.00 51.72 52.41
DAIMC 56.62 50.17 37.89 68.62 63.45 56.89 76.90 71.72 61.03
OMVC 30.64 41.57 40.63 53.33 51.38 48.79 56.49 59.20 57.47
Our UEAF 70.71 68.25 55.13 78.22 77.24 69.31 87.41 87.07 77.07

same approach with BSV to complete the missing views,
then concatenates all views into one single view, followed
by k-means clustering. PVC and IMG can only deal with the
special incomplete case that some samples have full views
and the remaining samples have only one view.

Evaluation: The clustering accuracy (ACC), normalized
mutual information (NMI), and purity are chosen as the
criterion to compare these methods (Cai, Nie, and Huang
2013). It is noteworthy that: (1) For the above methods ex-
cept BSV and Concat, we exploit the grid search approach
to find the optimal penalty parameters of these methods and
report their best clustering results. (2) For each dataset, all
methods are performed on the same 5 randomly formed in-
complete cases and their mean results are reported for fair
comparison. (3) For the BUAA and Handwritten datasets,
we randomly select 10%, 30%, 50%, and 70% samples as
the paired samples. For the remaining samples, half of them
miss the first view, while the other half of the samples re-
move the second view. For the BBCSport and 3 sources
datasets, we randomly remove 10%, 30%, and 50% in-
stances of each view to form the incomplete multi-view data.

Experimental Results and Analyses
Experimental results on the above datasets are shown in Ta-
bles 2-3. From these tables, we can observe the following
interesting points.

(1) From Tables 2-3, we see that the ACC, NMI, and pu-
rity of all methods dramatically decrease as the missing rate
increases. BSV and Concat achieve the worst performance
in comparison with the other methods, especially for the
case with large rate of missing views. This illustrates that
simply filling in the missing views with the average vector
is harmful to clustering. Compared with BSV and Concat,
the other methods can capture more complementary infor-
mation of the multiple views from the incomplete data. (2)
From Table 2, we can find that IMG, GPMVC, and UEAF
outperform PVC in most cases, which proves the effective-
ness of preserving the local structure of data in multi-view
clustering. (3) From Table 3, UEAF and DAIMC generally
perform much better than MIC and OMVC, which demon-
strates that UEAF and DAIMC can capture more comple-
mentary information from the incomplete multiple views.
Furthermore, the superior performance of our UEAF com-
pared with DAIMC indicates that reconstructing effective
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missing views can greatly facilitate the incomplete multi-
view clustering. (4) From Table 2, UEAF achieves much
higher ACCs, NMIs, and purities than IMG. The difference
is that our method not only takes into account the importance
of different views, but also exploits the hidden information
of the reconstructed missing views to learn the latent rep-
resentation. Therefore, the promising performance demon-
strates the indispensability of two components.

Component Analysis
To analyze the effectiveness of the view completion
and reverse graph regularization strategies, we compare
our model with three degraded models. (1) Degraded
model 1: We remove the reverse graph regularization
terms (i.e., λ2Tr

(
PLS2PT

)
and λ3Tr

(
FTLSF

)
) in (11)

and only preserve the view completion term. (2) De-
graded model 2: We remove both view completion term
λ1Tr

(
E(v)TL(v)E(v)

)
and error matrix E(v)W (v) from

model (11), and the missing instances are filled in the av-
erage samples of the corresponding view. (3) Degraded
model 3: We remove the same terms with the degraded
model 2 from model (11), and exploit the similar approach
as MIC to constrain the missing and non-missing views with
index matrixW (v) defined in (2). Experimental results of the
four models on the BBCSport and BUAA datasets are shown
in Fig. 2. It is clear that UEAF achieves a better performance
than the three models, which proves that both strategies are
beneficial to incomplete multi-view clustering.

Parameter Sensitivity Analysis
We first fix parameters r = 3 and k = 7, and conduct some
experiments on the BBCSport to analyze the sensitivity of
ACC w.r.t. λ1, λ2 and λ3. From Fig. 3, we can see that UEAF
can obtain encouraging results when they are located in the
ranges of

[
101, 105

]
,
[
10−3, 101

]
, and

[
10−4, 101

]
, respec-

tively. In the experiments, we exploit the grid search strat-
egy to find the three optimal parameters (Wen et al. 2018b).
Moreover, we show the ACC (%) w.r.t. r on the BBCsport
and BUAA datasets in Fig. 4. The proposed method achieves
a satisfactory performance with a small parameter r (less
than 5) and we simply set r = 3 in all experiments.

Experimental Convergence Study
In this subsection, we experimentally show the convergence
of the proposed optimization algorithm (Xie et al. 2017).
The objective function value and ACC v.s. iterations on the
BBCSport and BUAA datasets are shown in Fig. 5. It is clear
that the objective function value is no increasing and effi-
ciently converges to the stationary point, which verifies the
effectiveness of our method.

Conclusion
We developed a novel unified common embedding aligned
with missing views inferring framework for incomplete
multi-view clustering. The proposed method simultaneously
considers the hidden information reconstruction of the miss-
ing views, local structure preservation of multi-view data,
and the adaptive importance evaluation of different views

increases. BSV and Concat achieve the worst performance in
comparison with the other methods, especially for the case
with large rate of missing views. This illustrates that sim-
ply filling in the missing views with the average vector is
harmful to clustering. Compared with BSV and Concat, the
other methods can capture more complementary information
of the multiple views from the incomplete data. (2) From
Table 2, we can find that IMG, GPMVC, and the proposed
UEAF outperform PVC in most cases, which proves the ef-
fectiveness of preserving the local structure of data in multi-
view clustering. (3) From Table 3, our UEAF and DAIM-
C generally perform much better than MIC and OMVC,
which demonstrates that our UEAF and DAIMC can capture
more complementary information from the incomplete mul-
tiple views. Furthermore, the superior performance of our
UEAF compared with DAIMC indicates that reconstruct-
ing effective missing views can greatly facilitate the incom-
plete multi-view clustering. (4) From Table 2, the proposed
UEAF method achieves much higher ACCs, NMIs, and pu-
rities than IMG. The difference is that our method not only
takes into account the importance of different views, but also
exploits the hidden information of the reconstructed miss-
ing views to learn the latent representation. Therefore, the
promising performance demonstrates the indispensability of
two components.

Component Analysis
To analyze the effectiveness of the view completion and
reverse graph regularization strategies, we compare our
model with three degraded models. (1) Degraded mod-
el 1: We remove the reverse graph regularization terms
(i.e., λ2Tr

(
PLS2PT

)
and λ3Tr

(
FTLSF

)
) in (11) and

only preserve the view completion term. (2) Degrad-
ed model 2: We remove both view completion term
λ1Tr

(
E(v)TL(v)E(v)

)
and error matrix E(v)W (v) from

model (11), and the missing instances are filled in the aver-
age samples of the corresponding view. (3) Degraded mod-
el 3: We remove the same terms with the degraded model 2
from model (11), and exploit the similar approach as MIC
to constrain the missing and non-missing views with index
matrix W (v) defined in (2). Experimental results of the four
models on the BBCSport and BUAA datasets are shown in
Fig. 2. It is clear that the proposed method achieves a better
performance than the three models, which proves that both
strategies are beneficial to incomplete multi-view clustering.

Parameter Sensitivity Analysis
We first fix parameters r = 3 and k = 7, and conduct some ex-
periments on the BBCSport dataset to analyze the sensitivity
of ACC w.r.t. λ1, λ2 and λ3. From Fig. 3, we can see that our
method can obtain encouraging results when they are locat-
ed in the ranges of

[
101, 105

]
,
[
10−3, 101

]
, and

[
10−4, 101

]
,

respectively. In the experiments, we exploit the grid search
strategy to find the optimal combination of three parame-
ters (Wen et al. 2018b). Moreover, we show the ACC (%)
w.r.t. smoothness parameter r on the BBCsport and BUAA
datasets in Fig. 4. The proposed method achieves a satisfac-
tory performance with a small parameter r (less than 5) and
we simply set r = 3 in all experiments.
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Figure 2: ACCs (%) of the proposed method and different
degraded models on (a) BBCsport and (b) BUAA.
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Figure 3: ACC (%) v.s. (a) parameters λ2 and λ3 when λ1 =
10, and (b) λ1 when λ2 = 0.1 and λ3 = 0.01 on BBCSport,
where 30% instances of each view are missing.
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Figure 4: ACC (%) v.s. parameter r of the proposed method
on (a) BBCSport with 30% missing instances of each view,
and (b) BUAA with 70% paired samples.
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Figure 5: The objective function value and ACC (%) v.s. iter-
ations on (a) BBCsport with 30% missing instances of each
view, and (b) BUAA with 70% paired samples.

Experimental Convergence Study
In this subsection, we experimentally show the convergence
of the proposed optimization algorithm (Xie et al. 2017).

Figure 2: ACCs (%) of the proposed method and different
degraded models on (a) BBCsport and (b) BUAA.

increases. BSV and Concat achieve the worst performance in
comparison with the other methods, especially for the case
with large rate of missing views. This illustrates that sim-
ply filling in the missing views with the average vector is
harmful to clustering. Compared with BSV and Concat, the
other methods can capture more complementary information
of the multiple views from the incomplete data. (2) From
Table 2, we can find that IMG, GPMVC, and the proposed
UEAF outperform PVC in most cases, which proves the ef-
fectiveness of preserving the local structure of data in multi-
view clustering. (3) From Table 3, our UEAF and DAIM-
C generally perform much better than MIC and OMVC,
which demonstrates that our UEAF and DAIMC can capture
more complementary information from the incomplete mul-
tiple views. Furthermore, the superior performance of our
UEAF compared with DAIMC indicates that reconstruct-
ing effective missing views can greatly facilitate the incom-
plete multi-view clustering. (4) From Table 2, the proposed
UEAF method achieves much higher ACCs, NMIs, and pu-
rities than IMG. The difference is that our method not only
takes into account the importance of different views, but also
exploits the hidden information of the reconstructed miss-
ing views to learn the latent representation. Therefore, the
promising performance demonstrates the indispensability of
two components.

Component Analysis
To analyze the effectiveness of the view completion and
reverse graph regularization strategies, we compare our
model with three degraded models. (1) Degraded mod-
el 1: We remove the reverse graph regularization terms
(i.e., λ2Tr

(
PLS2PT

)
and λ3Tr

(
FTLSF

)
) in (11) and

only preserve the view completion term. (2) Degrad-
ed model 2: We remove both view completion term
λ1Tr

(
E(v)TL(v)E(v)

)
and error matrix E(v)W (v) from

model (11), and the missing instances are filled in the aver-
age samples of the corresponding view. (3) Degraded mod-
el 3: We remove the same terms with the degraded model 2
from model (11), and exploit the similar approach as MIC
to constrain the missing and non-missing views with index
matrix W (v) defined in (2). Experimental results of the four
models on the BBCSport and BUAA datasets are shown in
Fig. 2. It is clear that the proposed method achieves a better
performance than the three models, which proves that both
strategies are beneficial to incomplete multi-view clustering.

Parameter Sensitivity Analysis
We first fix parameters r = 3 and k = 7, and conduct some ex-
periments on the BBCSport dataset to analyze the sensitivity
of ACC w.r.t. λ1, λ2 and λ3. From Fig. 3, we can see that our
method can obtain encouraging results when they are locat-
ed in the ranges of

[
101, 105

]
,
[
10−3, 101

]
, and

[
10−4, 101

]
,

respectively. In the experiments, we exploit the grid search
strategy to find the optimal combination of three parame-
ters (Wen et al. 2018b). Moreover, we show the ACC (%)
w.r.t. smoothness parameter r on the BBCsport and BUAA
datasets in Fig. 4. The proposed method achieves a satisfac-
tory performance with a small parameter r (less than 5) and
we simply set r = 3 in all experiments.
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Figure 4: ACC (%) v.s. parameter r of the proposed method
on (a) BBCSport with 30% missing instances of each view,
and (b) BUAA with 70% paired samples.
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Figure 5: The objective function value and ACC (%) v.s. iter-
ations on (a) BBCsport with 30% missing instances of each
view, and (b) BUAA with 70% paired samples.

Experimental Convergence Study
In this subsection, we experimentally show the convergence
of the proposed optimization algorithm (Xie et al. 2017).

Figure 3: ACC (%) v.s. (a) parameters λ2 and λ3 when λ1 =
10, and (b) λ1 when λ2 = 0.1 and λ3 = 0.01 on BBCSport,
where 30% instances of each view are missing.

increases. BSV and Concat achieve the worst performance in
comparison with the other methods, especially for the case
with large rate of missing views. This illustrates that sim-
ply filling in the missing views with the average vector is
harmful to clustering. Compared with BSV and Concat, the
other methods can capture more complementary information
of the multiple views from the incomplete data. (2) From
Table 2, we can find that IMG, GPMVC, and the proposed
UEAF outperform PVC in most cases, which proves the ef-
fectiveness of preserving the local structure of data in multi-
view clustering. (3) From Table 3, our UEAF and DAIM-
C generally perform much better than MIC and OMVC,
which demonstrates that our UEAF and DAIMC can capture
more complementary information from the incomplete mul-
tiple views. Furthermore, the superior performance of our
UEAF compared with DAIMC indicates that reconstruct-
ing effective missing views can greatly facilitate the incom-
plete multi-view clustering. (4) From Table 2, the proposed
UEAF method achieves much higher ACCs, NMIs, and pu-
rities than IMG. The difference is that our method not only
takes into account the importance of different views, but also
exploits the hidden information of the reconstructed miss-
ing views to learn the latent representation. Therefore, the
promising performance demonstrates the indispensability of
two components.

Component Analysis
To analyze the effectiveness of the view completion and
reverse graph regularization strategies, we compare our
model with three degraded models. (1) Degraded mod-
el 1: We remove the reverse graph regularization terms
(i.e., λ2Tr

(
PLS2PT

)
and λ3Tr

(
FTLSF

)
) in (11) and

only preserve the view completion term. (2) Degrad-
ed model 2: We remove both view completion term
λ1Tr

(
E(v)TL(v)E(v)

)
and error matrix E(v)W (v) from

model (11), and the missing instances are filled in the aver-
age samples of the corresponding view. (3) Degraded mod-
el 3: We remove the same terms with the degraded model 2
from model (11), and exploit the similar approach as MIC
to constrain the missing and non-missing views with index
matrix W (v) defined in (2). Experimental results of the four
models on the BBCSport and BUAA datasets are shown in
Fig. 2. It is clear that the proposed method achieves a better
performance than the three models, which proves that both
strategies are beneficial to incomplete multi-view clustering.

Parameter Sensitivity Analysis
We first fix parameters r = 3 and k = 7, and conduct some ex-
periments on the BBCSport dataset to analyze the sensitivity
of ACC w.r.t. λ1, λ2 and λ3. From Fig. 3, we can see that our
method can obtain encouraging results when they are locat-
ed in the ranges of

[
101, 105

]
,
[
10−3, 101

]
, and

[
10−4, 101

]
,

respectively. In the experiments, we exploit the grid search
strategy to find the optimal combination of three parame-
ters (Wen et al. 2018b). Moreover, we show the ACC (%)
w.r.t. smoothness parameter r on the BBCsport and BUAA
datasets in Fig. 4. The proposed method achieves a satisfac-
tory performance with a small parameter r (less than 5) and
we simply set r = 3 in all experiments.
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ations on (a) BBCsport with 30% missing instances of each
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Experimental Convergence Study
In this subsection, we experimentally show the convergence
of the proposed optimization algorithm (Xie et al. 2017).

Figure 4: ACC (%) v.s. parameter r of the proposed method
on (a) BBCSport with 30% missing instances of each view,
and (b) BUAA with 70% paired samples.

increases. BSV and Concat achieve the worst performance in
comparison with the other methods, especially for the case
with large rate of missing views. This illustrates that sim-
ply filling in the missing views with the average vector is
harmful to clustering. Compared with BSV and Concat, the
other methods can capture more complementary information
of the multiple views from the incomplete data. (2) From
Table 2, we can find that IMG, GPMVC, and the proposed
UEAF outperform PVC in most cases, which proves the ef-
fectiveness of preserving the local structure of data in multi-
view clustering. (3) From Table 3, our UEAF and DAIM-
C generally perform much better than MIC and OMVC,
which demonstrates that our UEAF and DAIMC can capture
more complementary information from the incomplete mul-
tiple views. Furthermore, the superior performance of our
UEAF compared with DAIMC indicates that reconstruct-
ing effective missing views can greatly facilitate the incom-
plete multi-view clustering. (4) From Table 2, the proposed
UEAF method achieves much higher ACCs, NMIs, and pu-
rities than IMG. The difference is that our method not only
takes into account the importance of different views, but also
exploits the hidden information of the reconstructed miss-
ing views to learn the latent representation. Therefore, the
promising performance demonstrates the indispensability of
two components.

Component Analysis
To analyze the effectiveness of the view completion and
reverse graph regularization strategies, we compare our
model with three degraded models. (1) Degraded mod-
el 1: We remove the reverse graph regularization terms
(i.e., λ2Tr

(
PLS2PT

)
and λ3Tr

(
FTLSF

)
) in (11) and

only preserve the view completion term. (2) Degrad-
ed model 2: We remove both view completion term
λ1Tr

(
E(v)TL(v)E(v)

)
and error matrix E(v)W (v) from

model (11), and the missing instances are filled in the aver-
age samples of the corresponding view. (3) Degraded mod-
el 3: We remove the same terms with the degraded model 2
from model (11), and exploit the similar approach as MIC
to constrain the missing and non-missing views with index
matrix W (v) defined in (2). Experimental results of the four
models on the BBCSport and BUAA datasets are shown in
Fig. 2. It is clear that the proposed method achieves a better
performance than the three models, which proves that both
strategies are beneficial to incomplete multi-view clustering.

Parameter Sensitivity Analysis
We first fix parameters r = 3 and k = 7, and conduct some ex-
periments on the BBCSport dataset to analyze the sensitivity
of ACC w.r.t. λ1, λ2 and λ3. From Fig. 3, we can see that our
method can obtain encouraging results when they are locat-
ed in the ranges of

[
101, 105

]
,
[
10−3, 101

]
, and

[
10−4, 101

]
,

respectively. In the experiments, we exploit the grid search
strategy to find the optimal combination of three parame-
ters (Wen et al. 2018b). Moreover, we show the ACC (%)
w.r.t. smoothness parameter r on the BBCsport and BUAA
datasets in Fig. 4. The proposed method achieves a satisfac-
tory performance with a small parameter r (less than 5) and
we simply set r = 3 in all experiments.
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Figure 2: ACCs (%) of the proposed method and different
degraded models on (a) BBCsport and (b) BUAA.
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Figure 3: ACC (%) v.s. (a) parameters λ2 and λ3 when λ1 =
10, and (b) λ1 when λ2 = 0.1 and λ3 = 0.01 on BBCSport,
where 30% instances of each view are missing.
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Figure 4: ACC (%) v.s. parameter r of the proposed method
on (a) BBCSport with 30% missing instances of each view,
and (b) BUAA with 70% paired samples.
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Figure 5: The objective function value and ACC (%) v.s. iter-
ations on (a) BBCsport with 30% missing instances of each
view, and (b) BUAA with 70% paired samples.

Experimental Convergence Study
In this subsection, we experimentally show the convergence
of the proposed optimization algorithm (Xie et al. 2017).

Figure 5: The objective function value and ACC (%) v.s. iter-
ations on (a) BBCsport with 30% missing instances of each
view, and (b) BUAA with 70% paired samples.

in one learning framework. Extensive experimental results
demonstrate the superiority of our method.
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