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Abstract

We propose a scalable stochastic variational approach to GP
classification building on Pólya-Gamma data augmentation
and inducing points. Unlike former approaches, we obtain
closed-form updates based on natural gradients that lead to ef-
ficient optimization. We evaluate the algorithm on real-world
datasets containing up to 11 million data points and demon-
strate that it is up to two orders of magnitude faster than the
state-of-the-art while being competitive in terms of prediction
performance.

1 Introduction
Gaussian processes (GPs) (Rasmussen and Williams 2005)
provide a popular Bayesian non-linear non-parametric
method for regression and classification. Because of their
ability of accurately adapting to data and thus achieving high
prediction accuracy while providing well calibrated uncer-
tainty estimates, GPs are a standard method in several appli-
cation areas, including geospatial predictive modeling (Stein
2012) and robotics (Dragiev, Toussaint, and Gienger 2011).

However, recent trends in data availability in the sciences
and technology have made it necessary to develop algo-
rithms capable of processing massive data (John Walker
2014). Currently, GP classification has limited applicabil-
ity to big data. Naive inference typically scales cubic in the
number of data points, and exact computation of posterior
and marginal likelihood is intractable.

Nevertheless, the combination of so-called sparse Gaus-
sian process techniques with approximate inference meth-
ods, such as expectation propagation (EP) or the varia-
tional approach, have enabled GP classification for datasets
containing millions of data points (Hernández-Lobato
and Hernández-Lobato 2016; Salimbeni, Eleftheriadis, and
Hensman 2018).

While these results are already impressive, we will show
in this paper that a speedup of up to two orders magni-
tudes can be achieved. Our approach is based on consid-
ering an augmented version of the original GP classifica-
tion model and replacing the ordinary (stochastic) gradients
for optimization by more efficient natural gradients, which
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is the standard Euclidean gradient multiplied by the in-
verse Fisher information matrix. Natural gradients recently
have been successfully used in a variety of variational in-
ference problems (Honkela et al. 2010; Wenzel et al. 2017;
Jähnichen et al. 2018).

Unfortunately, an efficient computation of the natural gra-
dient for the GP classification problem is not straight for-
ward. The use of the probit link function in Dezfouli and
Bonilla (2015); Hernández-Lobato and Hernández-Lobato
(2016); Mandt et al. (2017); Salimbeni, Eleftheriadis, and
Hensman (2018) leads to expectations in the variational ob-
jective functions that can only be computed by numerical
quadrature, thus, preventing efficient optimization.

We derive a natural-gradient approach to variational in-
ference in GP classification based on the logit link. We ex-
ploit that the corresponding likelihood has an auxiliary vari-
able representation as a continuous mixture of Gaussians in-
volving Pólya-Gamma random variables (Polson, Scott, and
Windle 2013).

Unlike former approaches, our natural gradient updates
can be computed in closed-form. Moreover, they have the
advantage that they correspond to block-coordinate ascent
updates and, therefore, learning rates close to one can be
chosen. This leads to a fast and stable algorithm which is
simple to implement. Our main contributions are as follows:
• We present a Gaussian process classification model using

a logit link function that is based on Pólya-Gamma data
augmentation and inducing points for Gaussian process
inference.

• We derive an efficient inference algorithm based on
stochastic variational inference and natural gradients. All
natural gradient updates are given in closed-form and do
not rely on numerical quadrature methods or sampling ap-
proaches. Natural gradients have the advantage that they
provide effective second-order optimization updates.

• In our experiments, we demonstrate that our approach
drastically improves speed up to two orders of magni-
tude while being competitive in terms of prediction per-
formance. We apply our method to massive real-world
datasets up to 11 million points and demonstrate superior
scalability.

The paper is organized as follows. In section 2 we discuss
related work. In section 3 we introduce our novel scalable
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GP classification model and in section 4 we present an ef-
ficient variational inference algorithm. Section 5 concludes
with experiments. Our code is available via Github1.

2 Background and Related Work
Gaussian process classification Hensman and Matthews
(2015) consider Gaussian process classification with a pro-
bit inverse link function and suggest a variational Gaussian
model that builds on inducing points. By employing auto-
matic differentiation, Salimbeni, Eleftheriadis, and Hens-
man (2018) generalize this approach to use natural gradients
in non-conjugate GP models. Khan and Nielsen (2018) con-
sider natural gradient updates in the setting of variational
inference with exponential families. Unlike our approach,
these methods do not benefit from closed-form updates and
have to resort to numerical approximations. Moreover, our
approach has the advantage that a higher learning rate close
to one can be chosen leading to updates that can be inter-
preted as block-coordinate ascent updates.

Izmailov, Novikov, and Kropotov (2018) use tensor train
decomposition to allow for the training of GP models with
billions of inducing points. The updates are not computed in
closed-form and they do not use natural gradients.

Dezfouli and Bonilla (2015) propose a general automated
variational inference approach for sparse GP models with
non-conjugate likelihood. Since they follow a black box ap-
proach and do not exploit model specific properties they do
not employ efficient optimization techniques.

Hernández-Lobato and Hernández-Lobato (2016) follow
an expectation propagation approach based on inducing
points and have a similar computational cost as Hensman
and Matthews (2015).

Pólya-Gamma data augmentation Polson, Scott, and
Windle (2013) introduced the idea of data augmentation in
logistic models using the class of Pólya-Gamma distribu-
tions. This allows for exact inference via Gibbs sampling or
approximate variational inference schemes (Scott and Sun
2013).

Linderman, Johnson, and Adams (2015) extend this idea
to multinomial models and discuss the application for Gaus-
sian processes with multinomial observations but their ap-
proach does not scale to big datasets and they do not con-
sider the concept of inducing points.

3 Model
The logit GP Classification model is defined as follows. Let
X = (x1, . . . ,xn) ∈ Rd×n be the d-dimensional training
points with labels y = (y1, . . . , yn) ∈ {−1, 1}n. The likeli-
hood of the labels is

p(y|f , X) =

n∏
i=1

σ(yif(xi)), (1)

where σ(z) = (1 + exp(−z))−1 is the logit link function
and f is the latent decision function. We place a GP prior

1https://github.com/theogf/AugmentedGaussianProcesses.jl

over f and obtain the joint distribution of the labels and the
latent GP

p(y,f |X) = p(y|f , X)p(f |X), (2)

where p(f |X) = N (f |0,Knn) andKnn denotes the kernel
matrix evaluated at the training points X . For the sake of
clarity we omit the conditioning on X in the following.

3.1 Pólya-Gamma data augmentation
Due to the analytically inconvenient form of the likelihood
function, inference for logit GP classification is a challeng-
ing problem. We aim to remedy this issue by considering an
augmented representation of the original model. Later we
will see that the augmented model is indeed advantageous
as it leads to efficient closed-form updates in our variational
inference scheme.

Polson, Scott, and Windle (2013) introduced the class of
Pólya-Gamma random variables and proposed a data aug-
mentation strategy for inference in models with binomial
likelihoods. The augmented model has the appealing prop-
erty that the likelihood of the latent function f is propor-
tional to a Gaussian density when conditioned on the aug-
mented Pólya-Gamma variables. This allows for Gibbs sam-
pling methods, where model parameters and Pólya-Gamma
variables can be sampled alternately from the posterior (Pol-
son, Scott, and Windle 2013). Alternatively, the augmenta-
tion scheme can be utilized to derive an efficient approxi-
mate inference algorithm in the variational inference frame-
work, which will be pursued here.

The Pólya-Gamma distribution is defined as follows. The
random variable ω ∼ PG(b, 0), b > 0 is defined by the
moment generating function

EPG(ω| b,0)[exp(−ωt)] =
1

coshb(
√
t/2)

. (3)

It can be shown that this is the Laplace transform of an in-
finite convolution of gamma distributions. The definition is
related to our problem by the fact that the logit link can be
written in a form that involves the cosh function, namely
σ(zi) = exp( 1

2zi)(2 cosh( zi2 ))−1. In the following we de-
rive a representation of the logit link in terms of Pólya-
Gamma variables.

First, we define the general PG(b, c) class which is de-
rived by an exponential tilting of the PG(b, 0) density, it is
given by

PG(ω| b, c) ∝ exp(−c
2

2
ω)PG(ω| b, 0).

From the moment generating function (3) the first moment
can be directly computed

EPG(ω|b,c)[ω] =
b

2c
tanh

( c
2

)
.

For the subsequently presented variational algorithm these
properties suffice and the full representation of the Pólya-
Gamma density PG(ω|b, c) is not required.

We now adapt the data augmentation strategy based on
Pólya-Gamma variables for the GP classification model. To
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do this we write the non-conjugate logistic likelihood func-
tion (1) in terms of Pólya-Gamma variables

σ(zi) = (1 + exp(−zi))−1 =
exp( 1

2zi)

2 cosh( zi2 )

=
1

2

∫
exp

(
zi
2
− z2i

2
ωi

)
p(ωi)dωi, (4)

where p(ωi) = PG(ωi|1, 0) and by making use of (3). For
more details see Polson, Scott, and Windle (2013). Using
this identity and substituting zi = yif(xi) we augment the
joint density (2) with Pólya-Gamma variables

p(y,ω,f) ∝ exp

(
1

2
y>f − 1

2
f>Ωf

)
p(f)p(ω), (5)

where Ω = diag(ω) is the diagonal matrix of the Pólya-
Gamma variables {ωi}. In contrast to the original model (2)
the augmented model is conditionally conjugate forming the
basis for deriving closed-form updates in section 4.

Interestingly, employing a structured mean-field varia-
tional inference approach (cf. section 4) to the plain Pólya-
Gamma augmented model (5) leads to the same bound for
GP classification derived by Gibbs and MacKay (2000).
This is an interesting new perspective on this bound since
they do not employ a data augmentation approach. We pro-
vide a proof in appendix A.5. Our approach goes beyond
Gibbs and MacKay (2000) by providing a fully Bayesian
perspective, including a sparse GP prior (section 3.2) in the
model and proposing a scalable inference algorithm based
on natural gradients (section 4).

3.2 Sparse Gaussian process
Inference in GP models typically has the computational
complexity O(n3). We obtain a scalable approximation of
our model and focus on inducing point methods (Snelson
and Ghahramani 2006). We follow a similar approach as in
Hensman and Matthews (2015) and reduce the complexity
to O(m3), where m is number of inducing points.

We augment the latent GP f with m additional input-
output pairs (Z1, u1), . . . , (Zm, um), termed as inducing in-
puts and inducing variables. The function values of the GP f
and the inducing variables u = (u1, . . . , um) are connected
via

p(f |u) = N
(
f |KnmK

−1
mmu, K̃

)
p(u) = N (u|0,Kmm) ,

(6)

where Kmm is the kernel matrix resulting from evaluating
the kernel function between all inducing inputs, Knm is
the cross-kernel matrix between inducing inputs and train-
ing points and K̃ = Knn −KnmK

−1
mmKmn. Including the

inducing points in our model gives the augmented joint dis-
tribution

p(y,ω,f ,u) = p(y|ω,f)p(ω)p(f |u)p(u) (7)

Note that the original model (2) can be recovered by
marginalizing ω and u.

4 Inference
The goal of Bayesian inference is to compute the poste-
rior of the latent model variables. Because this problem is
intractable for the model at hand, we employ variational
inference to map the inference problem to a feasible op-
timization problem. We first chose a family of tractable
variational distributions and select the best candidate by
minimizing the Kullback-Leibler divergence between the
variational distribution and the posterior. This is equivalent
to optimizing a lower bound on the marginal likelihood,
known as evidence lower bound (ELBO) (Jordan et al. 1999;
Wainwright and Jordan 2008).

In the following we develop a stochastic variational in-
ference (SVI) algorithm that enables stochastic optimization
based on natural gradient updates which are given in closed-
form.

4.1 Why use natural gradients?
Using the natural gradient over the standard Euclidean gradi-
ent is favorable since natural gradients are invariant to repa-
rameterization of the variational family (Amari and Nagaoka
2007; Martens 2017) and provide effective second-order op-
timization updates (Amari 1998; Hoffman et al. 2013).

The superiority of using natural gradients in our approach
can be explained by the following. We reformulate the GP
classification model as an augmented model which is con-
ditionally conjugate. When using a learning rate of one, the
natural gradient updates correspond to block-coordinate as-
cent updates, i.e. in each iteration each parameter is set to
its optimal value given the remaining parameters (see ap-
pendix A.4 and Hoffman et al. (2013)). In practice, we em-
ploy stochastic variational inference, i.e. we only use mini-
batches of the data to obtain a noisy version of the natural
gradient. In this setting, learning rates slightly less than one
have to be chosen.

This is in contrast to former natural gradient based
approaches, e.g. (Salimbeni, Eleftheriadis, and Hensman
2018), that focus on the original non-conjugate GP clas-
sification model. Although they benefit from using natural
gradients, they have the disadvantage that their updates do
not correspond to coordinate-ascent updates. Thus, learning
rates that are much smaller that one have to be used to assure
convergence.

Therefore, in our approach, we can use much higher learn-
ing rates and optimization is faster and more stable which we
demonstrate in the experiments.

4.2 Variational approximation
We aim to approximate the posterior of the inducing
points p(u|y) and apply the methodology of variational
inference to the marginal joint distribution p(y, ω, u) =
p(y|ω,u)p(ω)p(u). Following a similar approach as Hens-
man and Matthews (2015), we apply Jensen’s inequality to
obtain a tractable lower bound on the log-likelihood of the
labels

log p(y|ω,u) = logEp(f |u)[p(y|ω, f)]

≥ Ep(f |u)[log p(y|ω, f)]. (8)
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By this inequality we construct a variational lower bound on
the evidence

log p(y) ≥ Eq(u,ω)[log p(y|u,ω)]−KL (q(u,ω)||p(u,ω))

≥ Ep(f |u)q(u)q(ω)[log p(y|ω,f)]

−KL (q(u,ω)||p(u,ω))

=: L,

where the first inequality is the usual evidence lower bound
(ELBO) in variational inference and the second inequality is
due to (8).

We follow a structured mean-field approach (Wainwright
and Jordan 2008) and assume independence between the in-
ducing variables u and Pólya-Gamma variables ω, yielding
a variational distribution of the form q(u, ω) = q(u)q(ω).
Setting the functional derivative of L w.r.t. q(u) and q(ω) to
zero, respectively, results in the following consistency con-
dition for the maximum,

q(u,ω) = q(u)
∏
i

q(ωi), (9)

with q(ωi) = PG(ωi|1, ci) and q(u) = N (u|µ,Σ). Re-
markably, we do not have to use the full Pólya-Gamma
class PG(ωi|bi, ci), but instead consider the restricted class
bi = 1 since it already contains the optimal distribution.

We use (9) as variational family which is parameterized
by the variational parameters {µ,Σ, c} and obtain a closed-
form expression of the variational bound

L(c,µ,Σ)

= Ep(f |u)q(u)q(ω)[log p(y|ω,f)]−KL (q(u,ω)||p(u,ω))

c
=

1

2

(
log |Σ| − log |Kmm|)− tr(K−1

mmΣ)− µ>K−1
mmµ

+
∑
i

{
yiκiµ− θi

(
K̃ii − κiΣκ

>
i − µ>κ>i κiµ

)
+ c2i θi − 2 log cosh

ci

2

})
, (10)

where θi = 1
2ci

tanh
(
ci
2

)
and κi = KimK

−1
mm. Re-

markably, all intractable terms involving expectations of
log PG(ωi|1, 0) cancel out. Details are provided in appendix
A.2.

4.3 Stochastic variational inference
Our algorithm alternates between updates of the local varia-
tional parameters c and global parameters µ and Σ. In each
iteration we update the parameters based on a mini-batch of
the data S ⊂ {1, ..., n} of size s = |S|.

We update the local parameters cS in the mini-batch S by
employing coordinate ascent. To this end, we fix the global
parameters and analytically compute the unique maximum
of (10) w.r.t. the local parameters, leading to the updates

ci =

√
K̃ii + κiΣκ>i + µ>κ>i κiµ (11)

for i ∈ S.
We update the global parameters by employing stochastic

optimization of the variational bound (10). The optimization
is based on stochastic estimates of the natural gradients of
the global parameters. We use the natural parameterization

of the variational Gaussian distribution, i.e., the parameters
η1 := Σ−1µ and η2 = − 1

2Σ−1. Using the natural parame-
ters results in simpler and more effective updates. The natu-
ral gradients based on the mini-batch S are given by

∇̃η1
LS =

n

2s
κ>S yS − η1

∇̃η2LS = −1

2

(
K−1mm +

n

s
κ>SΘSκS

)
− η2,

(12)

where Θ = diag(θ) and θi = 1
2ci

tanh
(
ci
2

)
. The factor ns is

due to the rescaling of the mini-batches. The global param-
eters are updated according to a stochastic natural gradient
ascent scheme. We employ the adaptive learning rate method
described by Ranganath et al. (2013).

The natural gradient updates always lead to a positive def-
inite covariance matrix2 and in contrast to Hensman and
Matthews (2015) our implementation does not require any
assurance for positive-definiteness of the variational covari-
ance matrix Σ. Details for the derivation of the updates can
be found in appendix A.3. The complexity of each iteration
in the inference scheme is O(m3), due to the inversion of
the matrix η2.

On the quality of the approximation In other applica-
tions of variational inference to GP classification, one tries
to approximate the posterior directly by a Gaussian q∗(f)
which minimizes the Kullback-Leibler divergence between
the variational distribution and the true posterior (Hensman
and Matthews 2015). On the other hand, in our paper, we
apply variational inference to the augmented model, looking
for the best distribution that factorizes in the Pólya-Gamma
variables ωi and the original function f . This approach also
yields a Gaussian approximation q(f) as a factor in the op-
timal density. Of course q(f) will be different from the ‘op-
timal’ q∗(f). We could however argue that asymptotically,
in the limit of a large number of data, the predictions given
by both densities may not be too different, as the posterior
uncertainty for both densities should become small (Opper
and Archambeau 2009).

It would be interesting to see how the ELBOs of the two
variational approaches, which both give a lower bound on
the likelihood of the data, differ. Unfortunately, such a com-
putation would require the knowledge of the optimal q∗(f).
However, we can obtain some estimate of this difference
when we assume that we use the same Gaussian density q(f)
for both bounds as an approximation. In this case, we obtain

Lorig − Laugmented = Eq(f)[KL (q(ω)||p(ω|f, y))].

This lower bound on the gap is small if on average the varia-
tional approximation q(ω) is close to the posterior p(ω|f, y).
For the sake of simplicity we consider here the non-sparse
case, i.e. the inducing points equal the training points (f =
u). However, it is straight-forward to extend the results also
to the sparse case.

We empirically investigate the quality of our approxima-
tion in experiment 5.1.

2This follows directly since Kmm and Θ are positive definite.
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Predictions The approximate posterior of the GP values
and inducing variables is given by q(f ,u) = p(f |u)q(u),
where q(u) = N (u|µ,Σ) denotes the optimal variational
distribution. To predict the latent function values f∗ at a test
point x∗ we substitute our approximate posterior into the
standard predictive distribution

p(f∗|y) =

∫
p(f∗|f ,u)p(f ,u|y)dfdu

≈
∫
p(f∗|f ,u)p(f |u)q(u)dfdu

=

∫
p(f∗|u)q(u)du = N

(
f∗|µ∗, σ2

∗
)
, (13)

where the prediction mean is µ∗ = K∗mK
−1
mmµ and the

variance σ2
∗ = K∗∗ + K∗mK

−1
mm(ΣK−1mm − I)Km∗. The

matrixK∗m denotes the kernel matrix between the test point
and the inducing points and K∗∗ the kernel value of the test
point. The distribution of the test labels is easily computed
by applying the logit link function to (13),

p(y∗ = 1|y) =

∫
σ(f∗)p(f∗|y)df∗. (14)

This integral is analytically intractable but can be computed
numerically by quadrature methods. This is adequate and
fast since the integral is only one-dimensional.

Computing the mean and the variance of the predictive
distribution has complexity O(m) and O(m2), respectively.

Optimization of the hyperparameters We select the op-
timal kernel hyperparameters by maximizing the marginal
likelihood p(y|h), where h denotes the set of hyperparam-
eters (this approach is called empirical Bayes (Maritz and
Lwin 1989)). We follow an approximate approach and opti-
mize the fitted variational lower bound L(h) (10) as a func-
tion of h by alternating between optimization steps w.r.t.
the variational parameters and the hyperparameters (Mandt,
Hoffman, and Blei 2016).

5 Experiments
We compare our proposed method, efficient Gaussian pro-
cess classification (X-GPC), with the state-of-the-art meth-
ods SVGPC (Salimbeni, Eleftheriadis, and Hensman 2018),
provided in the package GPflow3 (Matthews et al. 2017),
which builds on TensorFlow and the EP approach EPGPC
by Hernández-Lobato and Hernández-Lobato (2016), imple-
mented in R. All methods are applied to real-world datasets
containing up to 11 million data points.

In all experiments a squared exponential covariance func-
tion with a common length scale parameter for each dimen-
sion, an amplitude parameter and an additive noise param-
eter is used. The kernel hyperparameters are initialized to
the same values and optimized using Adam (Kingma and
Ba 2014), while inducing points location are initialized via
k-means++ (Arthur and Vassilvitskii 2007) and kept fixed
during training. The SVI based methods, X-GPC and SVGPC,

3We use GPflow version 1.2.0.

Figure 1: Posterior mean (µ), variance (σ) and predictive
marginals (p) of the Diabetes dataset. Each plot shows the
MCMC ground truth on the x-axis and the estimated value
of our model on the y-axis. Our approximation is very close
to the ground truth.

use an adaptive learning rate. All algorithms are run on a sin-
gle CPU. We experiment on 12 datasets from the OpenML
website and the UCI repository ranging from 768 to 11 mil-
lion data points. In the first experiment (section 5.1), we ex-
amine the quality of the approximation provided by X-GPC.
In the next experiment, we evaluate the prediction perfor-
mance and run time of X-GPC and SVGPC and EPGPC on
several real-world datasets. Finally, in 5.3, we examine the
sensitivity of all methods to the number of inducing points.

5.1 Quality of the approximation
We empirically examine the quality of the variational ap-
proximation provided by our method. In Fig. 1, we com-
pare the approximations to the true posterior obtained by
employing an asymptotically correct Gibbs sampler (Polson
and Scott 2011; Linderman, Johnson, and Adams 2015). We
compare the posterior mean and variance as well as the pre-
diction probabilities with the ground truth. Since the Gibbs
sampler does not scale to large datasets we experiment on
the small Diabetes dataset. In Fig. 1 we plot the approxi-
mated values vs. the ground truth. We find that our approxi-
mation is very close to the true posterior.

5.2 Numerical comparison
We evaluate the prediction performance and run time of
our method X-GPC and the competing methods SVGPC and
EPGPC. We experiment on a variety of different datasets
and report the resulting prediction error, negative test log-
likelihood and run time for each method in table 1.

The experiments are conducted as follows. For each
dataset we perform a 10-fold cross-validation and for
datasets with more than 1 million points, we limit the test
set to 100,000 points. We report the average prediction er-
ror, the negative test log-likelihood (14) and the run time
along with one standard deviation. For all datasets, we use
100 inducing points and a mini-batch size of 100 points.

For X-GPC we find that the following simple conver-
gence criterion on the global parameters leads to good re-
sults: a sliding window average being smaller than a thresh-
old of 10−4 . Unfortunately, the original implementations
of SVGPC and EPGPC do not include a convergence crite-
rion. We find that the trajectories of the global parameters of
SVGPC tend to be noisy, and using a convergence criterion
on the global parameters often leads to poor results. To have
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Figure 2: Average negative test log-likelihood and average test prediction error as a function of training time (seconds in a log10
scale) on the datasets Electricity (45,312 points), Cod RNA (343,564 points) and SUSY (5 million points). X-GPC (proposed)
reaches values close to the optimum after only a few iterations, whereas SVGPC and EPGPC are one to two orders of magnitude
slower.

Figure 3: Prediction error as function of training time (on a log10 scale) for the Shuttle dataset. Different numbers of inducing
points are considered, M = 16, 32, 64, 128. X-GPC (proposed) converges the fastest in all settings of different numbers of
inducing points. Using only 32 inducing points is enought for obtaining allmost optimal prediction performance for all methods,
but SVGPC becomes instable in settings of less than 128 inducing points.
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Dataset X-GPC SVGPC EPGPC
aXa Error 0.17± 0.07 0.17± 0.07 0.17± 0.07
n = 36, 974 NLL 0.29± 0.13 0.36± 0.13 0.34± 0.13
d = 123 Time 47± 2.2 451± 7.8 214± 4.8
Bank Market. Error 0.14± 0.12 0.12± 0.12 0.12± 0.13
n = 45, 211 NLL 0.27± 0.22 0.31± 0.26 0.33± 0.20
d = 43 Time 9± 1.5 205± 6.6 46± 3.5
Click Pred. Error 0.17± 0.00 0.17± 0.00 0.17± 0.01
n = 399, 482 NLL 0.39± 0.07 0.46± 0.00 0.46± 0.01
d = 12 Time 4.5± 1.3 102± 3.0 8.1± 0.45
Cod RNA Error 0.04± 0.00 0.04± 0.00 0.04± 0.00
n = 343, 564 NLL 0.11± 0.03 0.13± 0.00 0.12± 0.00
d = 8 Time 3.7± 0.13 115± 4.3 869± 5.2
Diabetes Error 0.23± 0.07 0.23± 0.06 0.24± 0.06
n = 768 NLL 0.47± 0.11 0.47± 0.10 0.48± 0.09
d = 8 Time 8.8± 0.12 150± 5.1 8± 0.45
Electricity Error 0.24± 0.06 0.26± 0.06 0.26± 0.06
n = 45, 312 NLL 0.31± 0.17 0.53± 0.08 0.53± 0.06
d = 8 Time 8.2± 0.48 356± 6.9 13.5± 1.50
German Error 0.25± 0.12 0.25± 0.11 0.26± 0.13
n = 1, 000 NLL 0.44± 0.17 0.51± 0.15 0.53± 0.11
d = 20 Time 17± 0.42 374± 7.3 5.2± 0.03
Higgs Error 0.33± 0.01 0.45± 0.01 0.38± 0.01
n = 11, 000, 000 NLL 0.55± 0.13 0.69± 0.00 0.66± 0.00
d = 28 Time 23± 0.88 294± 54 8732± 867
IJCNN Error 0.03± 0.01 0.06± 0.01 0.02± 0.01
n = 141, 691 NLL 0.10± 0.03 0.15± 0.07 0.09± 0.04
d = 22 Time 17± 0.44 1033± 45 756± 8.6
Mnist Error 0.14± 0.01 0.44± 0.13 0.12± 0.01
n = 70, 000 NLL 0.24± 0.10 0.66± 0.11 0.27± 0.01
d = 780 Time 200± 5.5 991± 23 806± 5.2
Shuttle Error 0.01± 0.01 0.01± 0.00 0.01± 0.01
n = 58, 000 NLL 0.07± 0.01 0.07± 0.00 0.07± 0.01
d = 9 Time 0.01± 0.00 7.5± 0.7 100± 0.63
SUSY Error 0.21± 0.00 0.22± 0.00 0.22± 0.00
n = 5, 000, 000 NLL 0.31± 0.10 0.49± 0.01 0.50± 0.00
d = 18 Time 14± 0.29 10, 000 10, 000
wXa Error 0.03± 0.01 0.04± 0.01 0.03± 0.01
n = 34, 780 NLL 0.27± 0.07 0.25± 0.07 0.19± 0.06
d = 300 Time 66± 16 612± 11 1.4± 0.10

Table 1: Average test prediction error, negative test log-
likelihood (NLL) and time in seconds along with one stan-
dard deviation. Best values are highlighted.

a fair comparison, we therefore monitor the convergence of
the prediction performance on a hold-out set and use a slid-
ing window average of size 5 and threshold 10−3 as conver-
gence criterion for all methods.

We observe that X-GPC is about one to two orders of mag-
nitude faster than SVGPC and EPGPC on most datasets. Only
on the dataset wXa, EPGPC is slightly faster than X-GPC. The
prediction error is similar for all methods but X-GPC outper-
forms the competitors in terms of the test log-likelihood on
most datasets (aXa, Bank Marketing, Click Prediction, Cod
RNA, Diabetes, Electricity, German, Higgs, Mnist, SUSY).
This means that the confidence levels in the predictions are
better calibrated for X-GPC, i.e. when predicting a wrong
label SVGPC and EPGPC tend to be more confident than X-
GPC.

Performance as a function of time Since all considered
methods are based on an optimization schemes, there is a
trade-off between the run time of the algorithm and the pre-
diction performance. We make this trade-off transparent by
plotting the prediction performance as function of time on

each dataset. For each method we monitor on a 10-fold
cross-validation the average negative test log-likelihood and
prediction error on a hold-out test set as a function of time.

The results are displayed in Fig. 2 for three selected
datasets, while the results for the remaining datasets are de-
ferred to appendix A.1. For all datasets we observe that after
a few iterations X-GPC is already close to the optimum due
to its efficient closed form natural gradient updates. Both
the prediction error and test log-likelihood converge around
one to two orders of magnitude faster for X-GPC than for
SVGPC and EPGPC. Moreover, the performance curves tend
to be noisier for SVGPC than for X-GPC and EPGPC. For the
datasets HIGGS and IJCNN, EPGPC lead to slightly better
final prediction performance, but with the cost of a runtime
being up to 4 orders of magnitude slower than X-GPC (ap-
prox. 28 hours vs. 9 and 435 seconds, respectively).

All three methods are implemented in different program-
ming frameworks: X-GPC in Julia, SVGPC in TensorFlow
and EPGPC in R leading to different efficient implemen-
tations. However, we find that the main speed-up of our
method is due to the efficient natural gradient updates and
only marginally related to the usage of a different program-
ming language. To check this we implemented EPGPC also
in Julia and obtained similar runtimes. Since SVGPC is part
of the highly optimized GPflow package we only used the
original implementation.

5.3 Inducing points
We examine the effect of different numbers of inducing
points on the prediction performance and run time. For all
methods we compare different numbers of inducing points:
M = 16, 32, 64, 128. For each setting, we perform a 10-fold
cross validation on the Shuttle dataset and plot the mean pre-
diction error as function of time. The results are displayed
in Fig. 3. We observe that the higher the number of inducing
points, the better the prediction performance, but the longer
the run time. Throughout all settings of inducing points our
method is consistently faster of around one to two orders of
magnitude than the competitors. On the Shuttle dataset us-
ing only M = 32 inducing points is enough and can only be
marginally improved by using more inducing point for all
methods. However, the performance curves of SVGPC are
instable when using less than 128 inducing points.

6 Conclusions
We proposed an efficient Gaussian process classification
method that builds on Pólya-Gamma data augmentation and
inducing points. The experimental evaluations shows that
our method is up to two orders of magnitude faster than the
state-of-the-art approach while being competitive in terms
of prediction performance. Speed improvements are due to
the Pólya-Gamma data augmentation approach that enables
efficient second order optimization.

The presented work shows how data augmentation can
speed up variational approximation of GPs. Our analysis
may pave the way for using data augmentation to derive ef-
ficient stochastic variational algorithms also for variational
Bayesian models other than GPs. Furthermore, future work
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may aim at extending the approach to multi-class and multi-
label classification.
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