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Abstract

We formulate and study a novel multi-armed bandit problem
called the qualitative dueling bandit (QDB) problem, where
an agent observes not numeric but qualitative feedback by
pulling each arm. We employ the same regret as the dueling
bandit (DB) problem where the duel is carried out by com-
paring the qualitative feedback. Although we can naively use
classic DB algorithms for solving the QDB problem, this re-
duction significantly worsens the performance—actually, in
the QDB problem, the probability that one arm wins the duel
over another arm can be directly estimated without carrying
out actual duels. In this paper1, we propose such direct algo-
rithms for the QDB problem. Our theoretical analysis shows
that the proposed algorithms significantly outperform DB al-
gorithms by incorporating the qualitative feedback, and ex-
perimental results also demonstrate vast improvement over
the existing DB algorithms.

1 Introduction
The stochastic multi-armed bandit (MAB) problem is a se-
quential decision-making problem, where an agent repeat-
edly chooses one option from K alternatives (which are of-
ten called arms). At each round, the agent receives a ran-
dom reward that depends on the arm being selected, and the
goal is to maximize the cumulative reward. This problem has
been extensively studied for many years, both from theoret-
ical and practical aspects. Numerous algorithms have been
proposed for the problem (Thompson 1933; Auer 2003) and
applied to various fields including the design of clinical trials
(Villar, Bowden, and Wason 2015), economics (Rothschild
1974) and crowdsourcing (Zhou, Chen, and Li 2014).

The dueling bandit (DB) problem (Yue et al. 2012) is a
variant of the MAB problem, where an agent only observes
the result of a “duel”, a noisy comparison between the se-
lected two arms. While the MAB problem assumes that the
feedback is numeric, the DB problem only assumes that the
arms are comparable based on the feedback. Therefore, it is
useful when the numeric feedback is not available, such as
information retrieval and clinical trials.
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1The longer version including all appendices is available at
https://arxiv.org/abs/1809.05274

Even when the numeric feedback is not available, we may
still have direct access to qualitative feedback. For example,
in information retrieval, users might report the relevance of a
document returned by a system on a scale of “Irrelevant”—
“Partially Relevant”—“Relevant”. In such a situation, we
can consider a special kind of the DB problem first intro-
duced by Busa-Fekete et al. (2013), which we call the qual-
itative DB (QDB) problem.

In the QDB problem, an agent pulls one arm at each round
and observes qualitative feedback. Although a duel is not
conducted explicitly in the QDB problem, we consider al-
gorithms to minimize the same regret as the DB problem, in
which the probability of an arm winning a duel with another
arm corresponds to the probability of the arm getting higher
qualitative feedback than the other. Therefore, we can adapt
any algorithms for the DB problem to the QDB problem by
converting the feedback in every two rounds into the result
of one duel.

However, this reduction significantly worsens the perfor-
mance because, in the QDB problem, the winning proba-
bility can be calculated from the estimated feedback distri-
butions. Busa-Fekete et al. (2013) also partially considered
this problem, and they improved the performance of the clas-
sic DB algorithms by constructing a tight confidence bound.
However, they still use the same exploration strategy as the
classic DB algorithm. In this paper, we show that we can
further improve the performance by designing a specific ex-
ploration strategy for the QDB problem.

Several definitions of the “best arm” have been proposed
for the DB problem. In this paper, we consider two types of
winners, the Condorcet winner and the Borda winner, both
of which are defined in Section 3, and we propose algorithms
for each winner. The proposed algorithms are inspired by al-
gorithms in the MAB, namely Thompson sampling (Thomp-
son 1933) and the upper confidence bound (UCB) algorithm
(Auer 2003). Interestingly, the algorithm based on Thomp-
son sampling, one of the most popular algorithms for the
MAB problem, only works for the criterion of the Condorcet
winner and suffers polynomial regret in a specific instance
in the criterion of the Borda winner.

The rest of paper is structured as follows. After discussing
related work in Section 2, we formulate the QDB problem
in detail in Section 3. We introduce two formulations of the
QDB problem and propose algorithms for these problems in
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Sections 4 and 5. Lastly, we show empirical results for an
information retrieval setting in Section 6.

2 Related Work
There are two lines of researches that are related with the
QDB problem. The first is the DB problem (Yue et al. 2012),
which is the MAB problem with feedback given as a form of
noisy comparison between two arms. Many researches have
been conducted for this problem and some of them discuss
specific comparison models. For example, Hofmann, White-
son, and de Rijke (2011) have discussed the case where a
duel is carried out by interleaved comparison with some user
model, and Yue et al. (2012) introduced the Bradley-Terry
model. Among them, several models involve random vari-
ables corresponding to the utilities associated with arms, and
the result of a duel is determined by the order of such vari-
ables. For example, a Gaussian model (Yue et al. 2012) is
the case where the random variables follows a Gaussian dis-
tribution, and Busa-Fekete et al. (2013) considered the case
where random variables are on a partially ordered set in the
QDB problem.

In the DB problem, the definition of the “best arm” is no
longer straightforward because there may exist cyclic pref-
erence. Although early work of the DB assumes the total
order on arms to ensure the existence of the maximal ele-
ment, recent work has mainly sought to design algorithms
for finding the Condorcet winner (Urvoy et al. 2013), which
is the arm that wins over all the other arms with probabil-
ity larger than or equal to 1/2. This definition can be re-
garded as a natural generalization of the maximal element,
since the Condorcet winner coincides with the maximal el-
ement when the total order exists. A number of algorithms
have been proposed for the Condorcet winner, for example
Urvoy et al.; Komiyama et al.; Wu and Liu (2013; 2015;
2016).

A drawback of this formulation is that the Condorcet win-
ner does not always exist. In such cases, we may introduce
other notions of the winners, such as the Borda winner (Ur-
voy et al. 2013) and the Copeland set (Zoghi et al. 2015).
Ramamohan, Rajkumar, and Agarwal (2016) introduced nu-
merous notions of the winners other than the Condorcet win-
ner.

The other line of related work is the qualitative multi-
armed bandit (QMAB) problem (Szorenyi et al. 2015), in
which an agent also receives qualitative feedback according
to the chosen arm. The difference between the QDB prob-
lem and the QMAB problem is that the QDB problem han-
dles winners defined in the classic DB problem, while the
QMAB problem introduces its own definition of a “winner”,
i.e., the arm with the highest τ -quantile of the feedback dis-
tribution for τ ∈ (0, 1).

This definition is, however, sometimes problematic since
it ignores the difference in the feedback distribution below
the τ -quantile. Let us consider the case where we have two
types of medicines, A and B, and want to figure out which
has less side effect. To this end, we may perform clinical
trials and obtain feedback from patients about the severeness
of side effects.

Table 1: An instance that requires a careful choice of τ in
the QMAB problem.

No side effect Moderate Severe
Medicine A 0.995 0.003 0.002
Medicine B 0.995 0.002 0.003

Assume that the feedback is reported on the scale of “No
side effect”—“Moderate”—“Severe” and the true proba-
bilities of getting each feedback are shown in Table 1. Then,
we can clearly conclude that medicine A is more preferable
since it has a less probability of having a severe side effect,
and in fact, medicine A becomes the winner in the formula-
tion of the QDB problem. However, the QMAB problem re-
gards these medicines equally good unless τ ≤ 0.005 since
the τ -quantile feedback is the same. Nevertheless, setting
τ ≤ 0.005 is almost impossible in practice since we do not
have access to the true probabilities beforehand.

On the other hand, the definitions of winners considered
in the QDB problem are well-studied in the context of vot-
ing theory (see Charon and Hudry (2010), for a survey), and
they do not have any hyper-parameter to define the problem
itself. This makes our algorithms more applicable to real-
world problems.

3 Problem Formulation
We formulate the QDB problem in this section. As in the
MAB problem, we consider K arms associated with feed-
back distributions ν1, . . . , νK , and at each round t, the agent
chooses one arm at ∈ [K] = {1, . . . ,K} and receives
feedback rt sampled from distribution νat . While the MAB
problem assumes {νi} to be distributions on real values, the
QDB considers qualitative feedback which corresponds to
the case where {νi} are the distributions on the totally or-
dered set (L,�), where L is the set of possible feedback and
� denotes a total order between feedback. For simplicity, we
assume that L = [L] and total order � corresponds to order
relation ≤, which means 1 � 2 · · · � L. Thus, distributions
{νi}Ki=1 are all categorical, supports of which are [L]. Note
that even though the rewards rt are nominal for notational
simplicity, the sum of the feedback has no meaning in the
QDB setting.

The QDB problem aims to minimize the same regret as
the classic DB problem, which is defined based on pair-
wise comparison. Following early work (Busa-Fekete et al.
2013), we characterize µi,j , the probability of arm iwinning
over arm j, as

µi,j = P [Xi > Xj ] +
1

2
P [Xi = Xj ] ,

where Xi and Xj are mutually independent random vari-
ables following distributions νi and νj , respectively.

We consider two types of winners in this paper. The first
one is the Condorcet winner, which is the arm that wins all
the other arms with probability larger than or equal to 1/2.
Formally, arm i∗ is the Condorcet winner if µi∗,j ≥ 1/2 for
all j 6= i∗. We denote the Condorcet winner as a∗CW, and the
goal of the QDB problem when employing the Condorcet
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winner is to minimize the following regret:

RCW
T =

T∑
t=1

∆CW
at ,

where ∆CW
i = µa∗CW,i

− 1/2.
The second winner is the Borda winner, which is the arm

with the largest Borda score, the average of the winning
probabilities against other arms. Formally, the Borda score
Bi for arm i is defined as

Bi =
1

K − 1

∑
j 6=i

µi,j ,

and thus, the Borda winner a∗BW is defined as a∗BW =
arg maxi∈[K]Bi. The regret to minimize in this case is for-
mulated as

RBW
T =

T∑
t=1

∆BW
at ,

where ∆BW
i = Ba∗BW

−Bi.
The QDB problem can be solved by any algorithm for the

classic DB since the same regret is used between them. Al-
gorithms for the DB problem specify two arms (i, j) to com-
pare at each round and receive a result of the noisy compari-
son generated from Ber(µi,j), where Ber(p) is the Bernoulli
distribution with success probability p. This comparison can
be simulated in the QDB problem as follows: We observe
Xi and Xj by pulling both arms and return which Xi > Xj

or Xi < Xj occurred with ties broken at random.
However, in the QDB problem, we can directly estimate

µi,j from the feedback distribution of each arm, which sig-
nificantly enhances exploration. Considering that {νi} are
all categorical distributions on [L], we have another repre-
sentation for µi,j given by

µi,j =

L∑
k=1

P
(i)
k

(
k∑
l=1

P
(j)
l − 1

2
P

(j)
k

)
,

where P (i)
k = P [Xi = k]. LetPL be the probability simplex

PL = {x ∈ [0, 1]L|
∑L
i=1 xi = 1}, and we define function

µ : PL × PL → [0, 1] as

µ(x,y) =

L∑
k=1

xk

(
k∑
l=1

yl −
1

2
yk

)
. (1)

Hence, µ(P (i),P (j)) = µi,j for P (i) = (P
(i)
1 , . . . , P

(i)
L )>.

4 Qualitative Dueling Bandit with the
Condorcet Winner

In this section, we propose an algorithm for the QDB prob-
lem with the Condorcet winner. The algorithm is called
Thompson Condorcet sampling, which is based on Thomp-
son sampling (Thompson 1933), an algorithm famous for its
good performance in the standard MAB problem and wide
applicability to many other problems.

Algorithm 1: Thompson Condorcet sampling

1 Set C(i) = 0 for all i ∈ [K];
2 Pull all arms t0 times, update C(i);
3 foreach t = Kt0,Kt0 + 1, . . . , T do
4 For each arm i, sample θ(i) from

Dir(C
(i)
1 + 1, . . . , C

(i)
L + 1);

5 if ∃i : µ(θ(i),θ(j)) ≥ 1
2 for all j ∈ [K] then

6 Pull arm at = i, observe reward rt;
7 Set C(at)

rt ← C
(at)
rt + 1;

8 else
// If there is no Condorcet

winner, sample {θ(i)}Ki=1 again.
9 Goto Line 4;

This algorithm maintains Bayesian posterior distributions
of P (i) defined in Section 3. We employ the Dirichlet distri-
bution Dir(α1, . . . , αL) as the prior distribution, the proba-
bility density function of which is

f(θ;α1, . . . , αL) =
Γ
(∑L

i=1 αi

)
∏L
i=1 Γ(αi)

L∏
i=1

θαi−1
i ,

where Γ(x) is the gamma function.
Having Dirichlet distributions as priors is a convenient

choice when observations are sampled from a categorical
distribution. Let C(i)(t) = (C

(i)
1 (t), . . . , C

(i)
L (t)) be the

vector representing the observation until the t-th round,
where C(i)

k (t) ∈ {0, 1, . . . } represents the number of times
that the feedback k ∈ [L] is observed when arm i ∈ [K] is
pulled. If we employ the prior distribution as Dir(1, . . . , 1),
then the posterior distribution given observations C(i)(t) is
Dir(C

(i)
1 (t) + 1, . . . , C

(i)
L (t) + 1). For notational simplicity,

we sometimes denote C(i)(t) as C(i) when the round t is
obvious from the context.

The entire algorithm is shown in Algorithm 1. At each
round t, the algorithm samples θ(i) from the posterior distri-
butions of P (i). Then, the agent tries to pull the Condorcet
winner assuming P (i) = θ(i). If the Condorcet winner does
not exist, the algorithm resamples (θ(1), . . . ,θ(L)) until it
exists.

Let P ∗(i) be

P ∗(i) = arg min
P∈PL

KL(P (i)‖P ) s.t. µ(P ,P (a∗CW)) ≥ 1

2

for Kullback-Leibler (KL) divergence KL(x‖y) =∑L
i=1 xi log xi

yi
. Then, the regret of Thompson Condorcet

sampling is bounded as follows.

Theorem 1. If the Condorcet winner exists, then there exists
t0 > 0 such that the regret of Thompson Condorcet sampling
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is bounded by

E
[
RCW
T

]
≤

K∑
i=1

(1 + ε)
∆CW
i

KL(P (i)‖P ∗(i))
log T

+O
(
(log log T )2

)
+O

(
1

ε2L

)
(2)

for any sufficiently small ε > 0.

The proof is given in the longer version, where the de-
tailed condition on t0 and the precise form of the bound
is also provided. From the precise form of (2) that can be
found in the longer version, one can see that this regret
bound grows exponentially with the number of arms K.
However, this is not the inherent limitation of the Thomp-
son Condorcet sampling but the artifact of pursuing the op-
timal asymptotic dependence on O(log T ). As we will show
in Section 6, this exponential increase in the regret does not
occur in pracitice, and the algorithm works well for rela-
tively large K.

The regret bound has a similar form to the information
theoretic lower bound in the MAB problems for multi-
parameter models (Burnetas and Katehakis 1996). Note
that considering distributions P ∗(i) is essential in these
cases, whereas they are replaced with the distribution of
the optimal arm in the regret bound of Thompson sampling
in the MAB problem with the Bernoulli model given by
Agrawal and Goyal (2013). For example, when P (a∗CW) =
(ε, 1 − 2ε, ε)> and P (i) = (0.5, 0.1, 0.4)>, we have
KL(P (i)‖P ∗(i))/KL(P (i)‖P (a∗CW))→ 0 as ε→ 0.

Theorem 1 suggests the possibility of Thompson Con-
dorcet sampling performing drastically better than the case
when we apply classic DB algorithms for the QDB problem
in the way discussed in Section 3. The regret lower bound of
such direct applications immediately follows from the lower
bound for the classic DB problem given by Komiyama et
al. (2015).
Proposition 1 (Adapted from Komiyama et al., 2015).
When we apply any consistent algorithms for the DB prob-
lem to the QDB problem, we have

lim inf
T→∞

E
[
RCW
T

]
log T

≥
∑

i 6=a∗CW

min
j:µi,j<

1
2

∆CW
i + ∆CW

j

d(µi,j ,
1
2 )

, (3)

where d(x, y) = x log x
y + (1− x) log 1−x

1−y .

From the upper bound given in Theorem 1, we have

lim
T→∞

E
[
RCW
T

]
log T

≤ (1 + ε)
∑

i 6=a∗CW

∆CW
i

KL(P (i)‖P ∗(i))
,

which can be arbitrarily smaller than (3) as stated in the next
lemma.
Lemma 1. Assume that a∗CW 6= 1. For any fixed 0 < ε <

1/(4− 4 log 2), there exist P (a∗CW),P (1) ∈ P2 such that

d(µ(P (a∗CW),P (1)), 1/2)

KL(P (1)‖P ∗(1))
≤ ε. (4)

Algorithm 2: Thompson Borda sampling

1 Set C(i) = 0 for all i ∈ [K];
2 Pull all arms t0 times, update C(i);
3 foreach t = 1, . . . , do
4 For each arm i, sample θ(i) from

Dir(C
(i)
1 + 1, . . . , C

(i)
L + 1);

5 Bi ← 1
K−1

∑
j 6=i µ(θ(i),θ(j));

6 Pull arm at = arg maxi∈[K]Bi;

7 Observe rt and set C(at)
rt ← C

(at)
rt + 1;

The proof can be found in the longer version. From
Lemma 1, we can say that there exists a case where Thomp-
son Condorcet sampling can perform arbitrarily better than
the direct application of any algorithms in the DB. This im-
plies that the algorithm successfully incorporates the quali-
tative information to reduce the regret in the DB.

5 Qualitative Dueling Banidt with the
Borda Winner

In this section, we study two algorithms for the QDB prob-
lem with the Borda winner, the one based on the Thompson
sampling called Thompson Borda sampling and the other
based on the UCB algorithm (Auer 2003) called Borda-
UCB. In spite of the success of Thompson Condorcet sam-
pling, our theoretical analysis reveals that Thompson Borda
sampling can have polynomial regret in some setting. On the
other hand, Borda-UCB achieves logarithmic regret, which
matches the regret lower bound of the classic DB problems.

Thompson Borda sampling given in Algorithm 2 is sim-
ilar to Thompson Condorcet sampling. The only difference
is that Thompson Borda sampling pulls the Borda winner
in samples (θ(1), . . . ,θ(L)). Since there always exists the
Borda winner for any samples (θ(1), . . . ,θ(L)), thus we do
not need resampling. Although it is works surprisingly well
empirically as we will see in Section 6, we prove that it suf-
fers from polynomial regret in the worst case.
Theorem 2. Assume that there are K = 3 arms
such that arm 1 is the Borda winner. Then, there exists
P (1),P (2),P (3) ∈ PL such that under Thompson Borda
sampling with θ(1) = P (1), θ(2) = P (2), and θ(3) ∼
Dir(C

(3)
1 + 1, . . . , C

(3)
L + 1), the statement

lim inf
T→∞

E
[
RBW
T

]
T η

= ξ

holds for some constants ξ, η > 0.
The proof can be found in the longer version. The situa-

tion considered in Theorem 2 may be somewhat unrealistic
since we assume that P (1) and P (2) are known beforehand.
However, we will show by an experiment that Thompson
Borda sampling actually suffers from the polynomial regret
without such an assumption in Section 6.

Another proposed algorithm, Borda-UCB, is based on
the UCB algorithm (Auer 2003), which is shown in Algo-
rithm 3. As in the original UCB algorithm, we consider the
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Algorithm 3: Borda-UCB

1 Set C(i) = 0 for all i ∈ [K] and Ni = 0;
2 Pull all arms τ times and get initial estimations;
3 while t ≤ T do
4 P̂ (i) ← C(i)/Ni for each arm i ∈ [K];
5 B̂i ← 1

K−1

∑
k∈[K]\{i} µ(P̂ (i), P̂ (k));

6 γi ←
√

α log t
Ni

;

7 βi ← γi + 1
K−1

∑
k∈[K]\{i} γk;

8 iUCB ← arg maxi∈[K]Bi + βi;
9 iCount ← {i ∈ [K]|Ni = maxj∈[K]Nj};

10 if iUCB ∈ iCount then
11 Pull arm at = iUCB, observe reward rt;
12 Ni ← Ni + 1, C

(rt)
at ← C

(rt)
at + 1;

13 else
14 Pull all arms in [K]\iCount;
15 Update Ni and C(i)

k ;

upper confidence bound B̂i + βi for each arm i ∈ [K],
where B̂i is an estimated Borda score, and βi is the width
of the confidence interval controlled by a positive parame-
ter α. Let iUCB be the arm with the largest upper confidence
bound. While the original UCB algorithm always pulls the
arm with the largest upper confidence bound, Borda-UCB
pulls all arms that do not belong to iCount, the set of arms
that were pulled the most, if iUCB does not belong to iCount.
This exploration strategy reflects the fact that we have to es-
timate all feedback distributions accurately in order to have
the precise estimation of the Borda score.

The regret of Borda-UCB is bounded as follows.
Theorem 3. Assume that α is set as

α = max

(
2,

3(1 + 3ε′)2

2(1− ε′)2

(
K − 1

K − 2

)2
)

for arbitrarily taken ε′ > 0. Then, for any ε > 0, the regret
of Borda-UCB is bounded as

E
[
RBW
T

]
≤ ∆BW

all

(
4α

(∆BW
min − 2ε)2

log T + Cε + Cε′

)
for some constants Cε = O

(
1
ε2

)
, Cε′ = O

(
1

(ε′)2

)
, where

∆BW
all =

∑
i 6=a∗BW

∆BW
i and ∆BW

min = mini 6=a∗BW
∆BW
i .

The proof is presented in the longer version, where the
explicit forms of Cε and C ′ε are also provided. The regret
bound in Theorem 3 is simplified to O(K∆−2 log T ) when
∆BW
i = ∆ for all i 6= i∗, while the regret of the original

UCB algorithm is O(K∆−1 log T ) (Auer 2003), which is
smaller by O(1/∆). However, this difference is inevitable,
as proved in the following theorem.
Theorem 4. Consider two instances of the QDB problem
with K = 3, in which the feedback distributions of the
arms are represented as Γ = (P

(1)
Γ ,P

(2)
Γ ,P

(3)
Γ ) and Θ =

(P
(1)
Γ ,P

(2)
Γ ,P

(3)
Γ ). Let RΓ

T and RΘ
T be the regret in each in-

stance. Then, there exists a pair of instances (Γ,Θ) that all
algorithms which achieve

E
[
RΓ
T

]
≤ o(T a)

for all constant a > 0 satisfy

lim inf
T→∞

E
[
RΘ
T

]
log T

= Ω

(
1

(∆BW
min)2

)
,

where ∆BW
min = mini6=a∗BW

∆BW
i defined on Θ.

The proof is presented in the longer version. This theorem
states that if the algorithm achieves sub-polynomial regret
for all instances of the QDB problem with the Borda winner,
there exists a case where it suffers from Ω((∆BW

min )−2 log T )
regret. Therefore, we can conclude that the difference in the
regret upper-bound between the original UCB and Borda-
UCB comes from the characteristic of the QDB problem.

The upper bound in Theorem 3 matches the regret lower
bound in the classic DB problem, which is considered in the
context of the δ-PAC DB problem (Jamieson et al. 2015).
The algorithm is called δ-PAC if it finds the Borda winner
with failure probability less than δ. We have the following
bound of the minimum number of samples required in such
δ-PAC algorithms.
Proposition 2 (Theorem 1; Jamieson et al., 2015). Let τ be
the total number of pulls. If K ≥ 4 and 3/8 ≤ µi,j ≤ 5/8
for all i, j ∈ [K], then any δ-PAC DB algorithm with δ ≤
0.15 has

E [τ ] ≥ 1

90
log

1

2δ

∑
i6=a∗BW

1

(∆BW
i )2

.

Existing algorithms for the Borda winner (Busa-Fekete
et al. 2013; Jamieson et al. 2015) use a δ-PAC DB algo-
rithm as a sub-routine. They first run such an algorithm with
δ = 1/T and then pulls the estimated Borda winner in the re-
maining rounds. Therefore, the regret of such algorithms is
at least Ω((log T )

∑
i 6=a∗BW

(∆BW
i )−2) from Proposition 2,

and hence the regret upper bound of Borda-UCB is no worse
than this lower bound.

Although we were not able to prove that the regret of
Borda-UCB is smaller than the direct application of clas-
sic DB algorithms, Borda-UCB performs better than them
empirically as we will see in Section 6. Furthermore, Borda-
UCB has an another advantage that it does not require to
specify T . Since existing algorithms run a (1/T )-PAC al-
gorithm, it requires the number of rounds T to be known
beforehand. However, it is often difficult to guess T before-
hand, and thus our algorithms are more useful in practice.

6 Experiments
We test the empirical performance of the proposed algo-
rithms through experiments based on both synthetic setting
and real-world data. We first conduct the experiments based
on the real-world web search dataset that is also used in the
previous work. In the experiments, our methods significantly
outperform the direct application of the existing algorithms
for the classic DB. Then, we show the results of the experi-
ments in a synthetic setting that Thompson Borda sampling
has polynomial regret.
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(a) (b)

Figure 1: The regret of Thompson Condorcet sampling and
other classic DB algorithms.

Experiments on a Real-World Dataset
We apply proposed methods to the problem of ranker eval-
uation from the field of information retrieval, which is used
for evaluating the algorithms for the classic DB problem in
Jamieson et al. (2015). The task is to identify the best ranker,
which takes a user’s search query as input and ranks the doc-
uments according to their relevance to that query.

We used two web search datasets. The first is the MSLR-
WEB10K dataset (Qin et al. 2010), which consists of 10,000
search queries over the documents from search results. The
data also contains the values of 136 features and a corre-
sponding user-labeled relevance factor on a scale of one to
five with respect to each query-document pair. The other is
the MQ2008 dataset (Qin and Liu 2013) that contains 46
features and a relevance factor labelled from one to three
for each query-document pair. As in Jamieson et al. (2015),
we only consider rankers that use one feature to rank docu-
ments. Therefore, the aim of the task is to determine which
feature is the most capable of predicting the relevance of
query-document pairs.

Although Jamieson et al. (2015) set up the classic DB
problem from these datasets, we can naturally formulate the
QDB problem as well since we have access to the relevance
factors. The qualitative feedback is generated in the follow-
ing way. At each round, the algorithm selects one ranker, and
it ranks the documents for a randomly chosen query. The rel-
evance factor for the top-ranked document is revealed to the
algorithm as the qualitative feedback. Therefore, we have
L = 5 in the MSLR-WEB10K dataset and L = 3 in the
MQ2008 dataset. We compare the regrets of the proposed
algorithms to the direct application of the classic DB algo-
rithms, which corresponds to the experiments conducted in
Jamieson et al. (2015). We repeat 100 runs for each instance
and the mean of the regret is reported.

Experiments for Condorcet Winner We first show the
experimental result of the QDB problem with the Condorcet
winner. We compare Thompson Condorcet sampling with
RUCB (Zoghi et al. 2014), RMED1, RMED2, RMED2F
(Komiyama et al. 2015), which are all promising algorithms
proposed for the classic DB problem with the Condorcet
winner. We set t0 = 10, and the Figure 1 is the experimental
result when the number of rankers is K = 5.

Figure 1 shows the superiority of Thompson Condorcet

Figure 2: The regret of Thompson Condorcet sampling and
other DB algorithms when there are a relatively large num-
ber of arms (K = 15).

(a) (b)

Figure 3: The regret of Thompson Borda sampling and
Borda-UCB with other classic DB algorithms.

sampling. Furthermore, we can observe all existing algo-
rithms incur the large regrets in early rounds while Thomp-
son Condorcet sampling does not. This is because most algo-
rithms for the DB problem construct a set of candidates for
the Condorcet winner and explores it in the first part of the
rounds, but Thompson Condorcet sampling conducts explo-
ration and exploitation at the same time and does not require
such a set. In this sense, Thompson Condorcet sampling per-
forms more stably than the existing methods.

To see the dependency of the performance of Thomp-
son Condorcet sampling on the number of arms, we tried
the setting in which we have a relatively large number of
arms. The result is shown in Figure 2, in which Thompson
Condorcet sampling still performs the best among the other
classic DB algorithms even though the regret upper-bound
proved in Theorem 1 grows exponentially with K. This re-
sult supports the argument that exponential dependency on
K is just an artifact of pursuing the best regret bound in the
asymptotic case and Thompson Condorcet sampling empir-
ically performs much better than the theoretical analysis.

Experiments for Borda Winner For the Borda setting,
we compare our proposed methods, Thompson Borda Sam-
pling and Borda-UCB, with existing classic DB algorithm
SSSE (Busa-Fekete et al. 2013). Furthermore, we also con-
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Figure 4: The regret of proposed algorithms in the instance
that Thompson Borda sampling suffers the polynomial re-
gret.

duct a comparison with an extension of SSSE, which we call
QSEEE, proposed in Busa-Fekete et al. (2013) to utilize the
qualitative feedback explicitly.

The result is shown in Figure 3, which shows the superior-
ity of the proposed methods. As in the Condorcet case, SSSE
and QSSSE suffer from a large regret in the early stage,
while regret always increases logarithmically in the pro-
posed algorithms. This is because existing methods first only
explore, while proposing methods always balance explo-
ration and exploitation. Although existing methods achieve
zero-regret after the exploration, this does not mean that they
perform better than Borda-UCB in T → ∞ since they re-
quire longer exploration phase.

Surprisingly, Thompson Borda sampling works quite well
in this setting, even though Theorem 2 states that it has the
polynomial regret in the worst case. We suspect it is rare to
encounter such a worst case in practice, but the condition for
sub-polynomial regret is unknown and left to future work.

Experiments on a Synthetic Setting
Theorem 2 proves that Thompson Borda sampling can in-
cur polynomial regret for some instances, which we confirm
through experiments in the following. We set up the instance
with K = 3 and L = 4, in which each feedback distribu-
tion is represented as P (1) = (0.0, 0.0, 1.0, 0.0)>, P (2) =
(0.0, 0.5, 0.0, 0.5)>, and P (3) = (0.2, 0.4, 0.3, 0.1)>. Here,
the Borda winner is a∗BW = 1. We repeat running Thomp-
son Borda sampling and Borda-UCB in this instance for 10
times, and the mean of regret is shown in Figure 4.

From Figure 4, we can clearly see that Thompson Borda
sampling suffers from polynomial regret, while Borda-UCB
still has sub-polynomial regret. However, it takes many
rounds for Borda-UCB to have less regret than Thompson
Borda sampling. This is because Thompson Borda sampling
explores less than necessary. In early rounds, UCB-Borda
pulls arm 3 many times, which is necessary for knowing the
Borda winner but incurs large regret. On the other hand,
Thompson Borda sampling exploits arms 1 and 2 more,
which leads its superior performance in early rounds.

7 Conclusions
In this paper, we formulated and studied a novel type of
the dueling bandit, called a qualitative dueling bandit. In
this problem, an agent receives qualitative feedback at each
round and aims to minimize the same regret as the classic
DB when the duel is carried out based on that feedback.

We considered two notions of winners, the Condorcet
winner and the Borda winner. For the Condorcet winner, we
proposed an algorithm, called Thompson Condorcet sam-
pling, and we showed that the regret can be arbitrarily
smaller than the direct application of the algorithms in clas-
sic DB. Thompson Condorcet sampling also exhibited the
superior performance in the experiments based on the real-
word web search datasets.

For the Borda winner, we studied two algorithms, Thomp-
son Borda sampling and UCB-Borda. Although the theo-
retical analysis reveals that Thompson Borda sampling can
have polynomial regret in some instances, the experiments
showed that it performs surprisingly well empirically, espe-
cially when the number of rounds is not very large. On the
other hand, we prove the logarithmic regret upper bound for
UCB-Borda, which is no worse than the regret lower bound
in the classic DB.

As future work, it is important to derive general algo-
rithms that can handle various notions of winners as in Ra-
mamohan, Rajkumar, and Agarwal (2016). Another promis-
ing direction is to improve the algorithms for the Borda win-
ner and achieve regret significantly smaller than the classic
DB as Thompson Condorcet sampling does in the Condorcet
winner case.
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