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Abstract

Traditionally, most of the existing attribute learning methods
are trained based on the consensus of annotations aggregated
from a limited number of annotators. However, the consensus
might fail in settings, especially when a wide spectrum of an-
notators with different interests and comprehension about the
attribute words are involved. In this paper, we develop a novel
multi-task method to understand and predict personalized at-
tribute annotations. Regarding the attribute preference learn-
ing for each annotator as a specific task, we first propose a
multi-level task parameter decomposition to capture the evo-
lution from a highly popular opinion of the mass to highly
personalized choices that are special for each person. Mean-
while, for personalized learning methods, ranking prediction
is much more important than accurate classification. This mo-
tivates us to employ an Area Under ROC Curve (AUC) based
loss function to improve our model. On top of the AUC-based
loss, we propose an efficient method to evaluate the loss and
gradients. Theoretically, we propose a novel closed-form so-
lution for one of our non-convex subproblem, which leads to
provable convergence behaviors. Furthermore, we also pro-
vide a generalization bound to guarantee a reasonable perfor-
mance. Finally, empirical analysis consistently speaks to the
efficacy of our proposed method.

Introduction

Visual attributes are semantic cues describing visual prop-
erties such as texture, color, mood, and efc. Typical in-
stances are comfortable or high heeled for shoes, and smil-
ing or crying for human faces. During the past decade, at-
tribute learning has emerged as a powerful building block
for a wide range of applications (Song, Tan, and Chen 2014;
Su et al. 2017; Wang et al. 2017; Yang et al. 2018).

The status quo of the attribute learning methods are
mostly based on the global labels aggregated from few an-
notators (Farhadi et al. 2009; Sadovnik et al. 2013; Luo et al.
2018). Recently, the rise of online crowd-sourcing platforms
(like Amazon Mechanical Turk) makes collecting attribute
annotations from a broad variety of annotators possible (Ko-
vashka and Grauman 2015), which offers us a chance to re-
visit the attribute learning. For consensus attribute learning,
the underlying assumption is that the user decisions perturb
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slightly at random around the common opinion. However,
different annotators might very well have distinct compre-
hension regarding the meaning of the attributes (typical ones
like "open”, "fashionable”). This suggests that the gap be-
tween the personalized decisions and the common opinions
could not be simply interpreted as random noises. What’s
worse, one might even come to find conflicting results from
different users. In such a case, there is a need to learn the
consensus effects as well as personalized effects simultane-
ously, especially when personalized annotations are avail-
able. There are two crucial issues that should be noticed in
this problem.

The grouping effects, lying in between consensus and per-
sonalized ones, also play an essential role in understand-
ing the user-specific attribute annotations. As pointed out in
the previous literature (Kovashka and Grauman 2015), when
understanding semantic attributes, humans often form the
’school of thoughts” in terms of their cultural backgrounds
and the way they interpret the semantic words. Though per-
sonalized effect might lead to conflicting results from differ-
ent schools or groups, the users within the same group might
very likely provide similar decisions. Moreover, different
groups of people may probably favor distinct visual cues,
as there is significant diversity among user groups. In other
words, each user group should be assigned with a distinct
feature subset. Accordingly, visual features and users should
be simultaneously grouped to guarantee better performance.
Furthermore, seeing that we cannot obtain the user-feature
groups in advance, this constraint should be implicitly and
automatically reflected via the structure of model parame-
ters.

Unlike the consensus-based attribute predictions, prefer-
ence learning is more important than label prediction for per-
sonalized attribute learning, be it recommendation and im-
age searching. Under such circumstances, when the attribute
words are used as keywords or tags, it should be guaranteed
that the positive labeled instances are ranked higher than the
negative ones. It is well-known that the Area Under the ROC
curve (AUC) metric exactly meets this requirement (Yang et
al. 2017), and thus a better objective for our task.

Our goal in this paper is to learn personalized attributes
based on the two mentioned issues. More precisely, we re-
gard attribute preference learning for a specific user as a
task. On top of this, we propose a multi-task model for the



problems we tackle. Our main contributions are listed as fol-
lows: a) In the multi-task model, we propose a three-level
decomposition of the task parameters which includes a con-
sensus factor, a user-feature co-clustering factor and a per-
sonalized factor. b) The proximal gradient descent method is
adopted to solve the model parameters. Regarding our con-
tribution here, we derive a novel closed-form solution for the
proximal operator of the group factor and provide an effi-
cient AUC-based evaluation method. c¢) Systematic theoret-
ical analyses are carried out on the convergence behaviors
and generalization bounds of our proposed method, while
empirical studies are carried out for a simulation dataset and
two real-world attribute annotation datasets. Both theoretical
and empirical results suggest the superiority of our proposed
algorithm. The codes are now available '

Related Work

Attribute learning Attribute learning has long been play-
ing a central role in many machine learning and computer
vision problems. Along this line of research, there are some
previous studies that investigate the personalization of at-
tribute learning. (Kovashka and Grauman 2013) learns user-
specific attributes with an adaption process. More precisely,
a general model is first trained based on a large pool of
data. Then a small user-specific dataset is employed to
adapt the trained model to user-specific predictors. (Ko-
vashka and Grauman 2015) argues that one attribute might
have different interpretations for different groups of per-
sons. Correspondingly, a shade discovery method is pro-
posed therein to leverage group-wise user-specific attributes.
Both works adopt two-stage or multi-stage models and even
extra dataset. For the group modeling , (Kovashka and Grau-
man 2015) only focus on user-level grouping while ignores
the grouping effect of the features. Furthermore, the merit of
AUC is also neglected. In contrast, we propose a fully auto-
matic AUC-based attribute preference learning model where
the user-feature coclustering effect is considered.

Multi-task Learning Multi-task learning aims at improv-
ing the generalization performance by sharing information
among multiple tasks. Many efforts have been made to im-
prove multi-task learning (Chen, Zhou, and Ye 2011; Yu,
Tresp, and Yu 2007; Han and Zhang 2016; Zhao et al. 2018;
Massias et al. 2018), etc. Recently, there is also a wave to in-
vestigate the clustering and grouping based multi-task learn-
ing (Zhou, Chen, and Ye 2011; Kumar and Daumé 2012;
Xu et al. 2015). Among this works, (Xu et al. 2015) is the
most relevant work compared with our work since we adopt
the co-clustering regularization proposed therein. However,
our work differs significantly in that 1) our model is spe-
cially designed for the attribute preference learning problem;
2) we propose a novel hierarchical decomposition scheme
for the model parameters and; 3) we propose a novel closed-
form solution for the proximal mapping of the co-clustering
penalty; 4) we focus on efficient AUC optimization instead
of regression or classification.

'joshuaas.github.io/publication.html
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Model Formulation

In this section, we propose a novel AUC-based multi-task
model. Specifically, we first introduce the notations used
in this paper, followed by problem settings in our model
and a multi-level parameter decomposition. After that, we
systematically elaborate two building blocks of our model:
the AUC-based loss and evaluation, and the regularization
scheme.

Notations

(-,+) denotes the inner product for two matrices or two
vectors. The singular values of a matrix A are denoted as
01(A),- -+ ,0m(A) such that 01(A) > 09(A) > -+, >
om(A) > 0. I is the identity matrix, I[.A] is the indicator
function of the set A, 1 denotes the all-one vector or matrix.
U(a,b) denotes the uniform distribution and N (y1, 02) de-
notes the normal distribution. ® denotes the Cartesian prod-

uct.

Problem Settings
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Figure 1: An illustration of the Multi-level Decomposition
of the model parameters.

For a given attribute?, assume that we have U users who
have annotated a given set of images. Further, we assume
that the ¢th user labeled n; images with n_ ; positive la-

bels and n_ ; negative labels. Sy ; = {k | y,(:) = 1} and

S_i={k]| yg) = —1}. We denote the training data as: S =
{(X<1>,y<1>),.-. ,(X<U),y(U>)}. For §, X ¢ Rnixd
is the image feature inputs for the images that the ith user
labeled. Each row of X (¥ represents the extracted features
for a corresponding image. y(®) € {—1,1}" is the corre-
sponding label vector. If y,(:) = 1, then the user thinks that
the kth image bears the given attribute, otherwise we have
yg) = —1.

Taking advantage of the multi-task learning paradigm, the
attribute preference learning for a user is regarded as a spe-
cific task. Our goal is then to learn all the task models f*(z)
, where, for each task, a linear model is learned as the scor-
ing function, i.e f¥(x) = WO g,

As shown in the introduction, it is natural to observe di-
versity in personalized scores. However, this diversity could

In our model, different attributes are learned separately. In the
rest of this paper, the discussions focus on a specific attribute.



by no means goes arbitrary large. In fact, we could inter-
pret such limited diversity in a consensus-to-personalization
manner. A common pattern is shared among the mass that
captures the popular opinion. Different people might have
different bias and preference, which drives them away from
a consensus. Users sharing similar biases tend to form
groups. The users within a group share similar biases to-
wards the popular opinion based on a similar subset of the
features of the object. Finally, a highly personalized user in a
group tends to adopt an extra bias toward the group opinion.
Mathematically, this interpretation induces a multi-level de-
composition of the model weights : w =e+GW+PW.
0 < R*! is the common factor that captures the popu-
lar global preference. G e R s the grouping factor
for the ¢-th task. For mathematical convenience, we denote
G = [GW ,GY)], and we have G € RV, P jg
the user-specific factor mentioned above. Similarly, we de-
fine P = [PY ... , PY)] and P € R¥V. Anillustration
of this decomposition is shown in Figure 1.

With all the above-mentioned settings, we adopt a general
objective function in the form:

YN+ A R1(0)+ AR (G) +AsR3(P).
()

Given (1), there are two crucial building blocks to be deter-
mined:

e The empirical loss function for a specific user 7 : ¢;(-,-)
which directly induces AUC optimization;

e Regularization terms R1(60), R2(G), and R3(P
are defined by prior constraints on W.

) which

In what follows, we will elaborate the formulation of two
building blocks, respectively.

Regularization

For the common factor 8, we simply adopt the most widely-
used /5 regularization R1(6) = |/0]|3 to reduce the model
complexity. For G, as mentioned in the previous parts, what
we pursue here is a user-feature co-clustering effect. A pre-
vious work in (Xu et al. 2015) shows that one way to si-
multaneously cluster the rows and columns of a matrix in
R™*™ into x groups is to penalize the sum of squares
of the bottom min{n, m} — x singular values. This moti-
vates us to adopt a regularizer on G in the following form

min{d
Ro(@) = Y o2

column P is favorable only when she/he has a significant
disagreement with the common-level and the group-level re-
sults. This inspires us to define R3(P) = | P||1,2 norm to
induce column-wise sparsity.

2(G). For any user 4, a non-zero

Empirical Loss and Its Evaluation

Since the empirical loss is evaluated separately for each user,
without loss of generality, the following discussion only fo-
cus on a given user 4.

5662

Empirical Loss AUC is defined as the probability that a
randomly sampled positive instance has a higher predicted
score than a randomly sampled negative instance. Since
we need to minimize our objective function, we focus on
the loss version of AUC, i.e. the mis-ranking probability.
Though the data distribution is unknown, given each user
u; and Sy ;, S_ ; defined in the problem setting, we could
attain an finite sample-based estimation of the loss version
of AUC:

Qo= Y Y [Emz)

n n_
TpESy i €S i R

where I(x,,x,) is a discrete mis-ranking punish-
ment in the form: I(xp,xz,) = I[f(i)(mp)>f(i)(mq)] +
% I[f@(mp):f(i)(mq)]. It is easy to see that ZEEJC is exactly
the mis-ranking frequency for user ¢ on the given dataset.
Unfortunately, optimizing this metric directly is an NP
hard problem. To address this issue, we adopt the squared
surrogate loss s(t) = (1 — t)? (Gao et al. 2016). Accord-
ingly, the empirical loss £; (@, y®) could be defined as:

s (f(l)(mp)ff(l)(mq)>
> .

(Y, y0) =

N i M — 4
TpESL,i TqES_ 4 ’
A
2
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Figure 2: An illustration of the AUC graph, taking the anno-
tation for attribute smile as an example.

Efficient AUC-based Evaluation At the first glance, the
pair-wise AUC loss induces much heavier computation bur-
dens than the instance-wise losses. It is interesting to note
that, after carefully reformulating ¢; , the computational
burden coming from the pair-wise formulation could be
perfectly eliminated. To see this, let us define a graph as
G = (VO g0 W) The vertex set V() is the set
of all the instances in (X y( )) There exists an edge
(k, m) € £ with weight Wk

#* ym) This graph is further illustrated in Figure 2.
Given W9, the Laplacian matrix LY of G; could be ex-
pressed as: L = diag(W®1) — W. The empirical
loss could be reformulated as a quadratic form defined by
L. g,(f(i) ) — l(g(i) _ f(i))TL(i)(g(i) _ f(i))
where §(*) = y(L +1 We see the AUC loss evaluation in-
volves computlng a quadratic form of L. The following

= s if and only

1fy



proposition gives a general result which suggests an efficient
method to compute ATLYB and ATLW,
Proposition 1. Forany A € ]R"ixa and B € R"*? where

)B and AT LY could
O(abnl) and

a and b are positive integers. AL
be finished within O(n;(a + b + ab))
O(an;), respectively.

Remark 1. According to this proposition, the complex-
ity of ATLY B could be reduced from O(abng n_;) to
O(ab(ny ; +n_;)), whereas the complexity of A" L could
be reduced from O(any in_ ;) to O(a(ng ; +n_;)).

To end this section, we summarize our final objective
function as:

w’ (zp — zq)
* GH(I}’H}D Z Z Z ( Ny iN—j; )

i ®pESy i ®gES_

L(W)

min{d,U}

F A 03+ D> 07 (G)+As || Pl
\\,-/ ){-{-1 H,—/
R1(0) R3(P)

R2(G)

st WO =0+G" 4+ p»

For the sake of simplicity, we denote the empirical loss as
L(W), and we denote the objective function of (P*) as
F(0,G, P). Note that L(W) should be a function of 8, G,
and P.

Optimization

We adopt the proximal gradient method as the optimizer for
our problem. In this section, we introduce the outline of the
optimization method and provide a novel closed-form solu-
tion for the proximal operator of Ro(G).

For each iteration step k, giving a reference point
wrels = (9mefs GTe/r | PT%), then the proximal gradi-
ent method updates the variables as :

1 =2 A
0" = argming— ) 0 — OkH + 71”9”3 2)
2 2 Pk
min{d,U}
1 ~ k)2 A
G" = argming = ‘G - GkH +2 Z (@)
2 Pk k+1
(3)
S B2 A
P* .= argminp= )PfP H +—3HP||172 @
2 F Pk
Ak refr 1 ref ~F refi
where: 0 = 0"F — —V L(W"™), G = G+ —
Pk
— P’I“ka

1 ~r 1 ,
—VaL(W"/), P — —VpL(W"/¥)

Pk Pk
and py, is chosen with a line-search strategy, where we keep
on updating py = apg, « > 1 until it satisfies:

LW) < LW )19, (DO)+V,, (DG)+V,, (DP).

&)
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Here D@ 6 — 6" DG G — G™* and
DP =P — P"/*, 0, (DA) = <VAL‘(W“f’f>, DA> +
% (DA,DA).
Remark 2. The existence of such py; is guaranteed by the
Lipschitz continuity of VL(W). Note that, we choose the
last historical update of the parameter as the reference point
ie. Wrele = wk=1,

The solution to Eq.(2) and Eq.(4) directly follows the
proximal operator of the ¢ norm and the ¢; o norm (Sra,

Nowozin, and Wright 2012). For Eq.(3), we provide a novel
closed-form solution in the following subsection.

A closed-form solution for G subproblem Note that

Z?ﬂ{d’lj} 0;(G)? is not convex, solving the G subprob-
lem is challenging. Conventionally, this problem is solved
in an alternative manner (Xu et al. 2015) which is ineffi-
cient and lack of theoretical guarantees. Thanks to the gen-
eral singular value thresholding framework (Lu et al. 2015;
Lin et al. 2017), we could obtain a closed-form optimal so-

lution according to the following proposition.
Proposition 2. An Optimal Solution of (3) is:

=UT, 5BV’

791\

(6)

where USV' " is a SVD decomposition of G’k
> = diag(gl,... AR

Tr..c maps
Omin{d,u}) to a diagonal matrix

having the same size with T, .(2);; = (T{H)I[DK] o;

Theoretical Analysis

Lipschitz Continuity of the Gradients of L(W')

In the preceding section, we have pointed out that the Lip-
schitz Continuity of the Gradients of £(W) is a necessary
condition for the success of the line search process to find
pr- Now in the following theorem, we formally prove this
property as theoretical support for the optimization method.

Theorem 1 (Lipschitz Continuous Gradient). Suppose that

the data is bounded in the sense that:
Viﬂ ||X(Z)||2 =0x, <00, Ny, > ]-7 n— > 1.

Given two arbitrary distinct parameters W, W', we have:
|VL(vee(W)) — VL(vec(W"))|| < yAW

where: v = 3U+/(2U + 1) max; { } vec(W)
Ny iM—

[0,vec(G),vec(P)], AW = ||vec(W) — vec(W')].

lUX .

Convergence Analysis

Since the regularization term me{d U} 52(@) is non-

convex, the traditional sub-differential is not fully avail-
able anymore. In this paper, we adopt the generalized sub-
differential defined in (Rockafellar and Wets 2009; Liu et
al. 2018). To guarantee a nonempty sub-differential set, the
objective function must be lower semi-continuous. In our
problem, it is obvious that L(W'), R1(0), Ra(P) are lower
semi-continuous functions by their continuity. For the non-

convex term szg{‘f U} 52(@), the following lemma shows

that is also continuous and thus lower semi-continuous.



Lemma 1. The function Sl Ul 52
with respect to G.

Then the convergence properties of the proposed
method could be summarized in the following theo-
rem. Here we define A(8%) = 6" — 6" A(GF) =
Gk _ gk A(Pk) _ pk+l _ pk

Theorem 2. Assume that the initial solutions 68°, G, P°

are bounded, with the line-search strategy defined in (5), the
following properties hold :

e 1) The sequence {F (8", G*, P*)} is non-increasing in
the sense that : Vk,3Cj 1 > 0,

f(0k+17Gk+1,Pk+l) S .F(Bk,Gk,Pk)—
Cre1(1A@°)]3 + 1AGH) I + 1APE)]7)

(G) is continuous

(7
2) limy 00 0 — 0571 = 0, limy0o G* — GF =0,
limg_,0e P* — P* = 0.

3) The parameter sequences {0"}1, {G*}1, {P"*} are
bounded

4) Every limit point of {0%,G*, P*},. is a critical point
of the problem.

VT >1,3Cp >0

Cr
. k . k\ 12
i (1a@"13) < = i (1a@iE) < =
) C
. kN 112 T
Jmin_ (la@)E) < =

Generalization Bound

Define the parameter set © as :
@:{(O,G,P)I ’Rl(B)Swl,RQ(G
||GH2 S Omazx < OO,Rd(P) S QZ}S}

) < o,

We have the following uniform bound.

Theorem 3. Assume that 3A, > 0, all the instances
| < ‘A, .Define C = (1 +

Vibo + K02, + 1/13 Cas ¢ = AXC’, we have, for all
5 €(0,1), forall (6,G,P) €O :

U
ol () <EOW >+Z¢ﬁ

\/Zz 1 anz Xi)

holds with probability at least 1 — 6, where B
8V2CA (14 (), Ba = 10vV2(14¢)¢, xi = 2. The dis-
tribution D = @, (D4 ; ® D_ ;), where for user i, D ;,
D_ ; are conditional distributions for positive and negative
instances, respectively.

Remark 3. According to Theorem 2, the loss func-
tion is non-increasing. For the solution of our method

* * * o 69.GO, PO
(0", G*, P*), we then have: \/R1(0*) < W

5664

Ro(G*) < ZOCLPY Ro(P*) < ZOELPY pean-

while, it could be derived from Theorem 2 that G*

F(6°, G0 PY) by
0 0 PO 0 0 PO
%2’), = %, all solutlons chosen by

our algorithm belongs to ©. Then, with high probability, all
these solutions could reach a reasonable generation gap be-
tween the expected 0-1 AUC loss metric Ep (D, £ AUC) and
the estimated surrogate loss on the training data E( ), with

an order (’)(El 1 7(%)“1(17)(1)) ).

is bounded. By choosing 1

Empirical Study
Experiment Settings

For all the experiments, hyper-parameters are tuned based on
the training and validation set(account for 85% of the total
instances), and the result on the test set are recorded.

Competitors

In this paper, we compare our model with the follow-
ing competitors: Robust Multi-Task Learning (RMTL)
(Chen, Zhou, and Ye 2011): RMTL aims at identifying irrel-
evant tasks when learning from multiple tasks. To this end,
the model parameter is decomposed into a low-rank struc-
ture and group sparse structure. Robust Multi-Task Fea-
ture Learning (rMTFL) (Yu, Tresp, and Yu 2007): rtMTFL
assumes that the model W can be decomposed into two com-
ponents: a shared feature structure P({; o norm penalty)
and a group-sparse structure @ ({12 norm penalty on its
transpose) that detects outliers. Lasso: The the ¢;-norm
regularized multi-task least squares method. Joint Feature
Learning (JFL)(Nie et al. 2010): In JFL all the models
are expected to share a common set of features. To this
end, the group sparsity constraint is imposed on the mod-
els via the /; 5 norm. The Clustered Multi-Task Learning
Method (CMTL): (Zhou, Chen, and Ye 2011): CMTL as-
sumes that the tasks could be clustered into k& groups. Then
a k-means based regularizer is adopted to leverage such a
structure. The task-feature coclusters based multi-task
method (COMT) (Xu et al. 2015): COMT assumes that the
task-specific components bear a feature-task coclustering
structure. Reduced Rank Multi-Stage multi-task learning
(RAMU) (Han and Zhang 2016): RAMU adopts a capped
trace norm regularizer to minimize only the singular values
smaller than an adaptively tuned threshold.

Note that since (Kovashka and Grauman 2013) adopts
an extra data pool and (Kovashka and Grauman 2015) in-
cludes extra initialization algorithms based on (Kovashka
and Grauman 2013), our method is not compared with them
for the sake of fairness.

Simulated Dataset

In this subsection, we will generate a simulated annota-
tion dataset with 100 simulated users, where the features
and AUC scores are produced according to our proposed
model. For each user, 5000 samples are generated as X ) ¢

[R5000x80 and mg) ~ N(0, Iso). This results in a volume



Table 1: AUC Comparison on Simulation Dataset

Alg ‘ RMTL rMTFL LASSO JFL
mean ‘ 83.48 83.45 83.57 83.49
Alg | CMTL COMT RAMU  Ours
mean ‘ 83.47 83.44 83.50  99.65

Table 2: Running Time Comparison (seconds): Original
stands for the original AUC evaluation, wheres ours stands
for our acceleration scheme.

ratio | 20%  40% 60% 80%  100%
Orginal | 18.57 74.22 151.86 268.55 nan
Ours 3.06 5.50 8.65 12.46 15.82

of 500,000 overall annotations. To capture the global infor-
mation, we set @ as 8 ~ U(0,5) + N(0,0.5%). In terms
of the co-cluster nature, G is produced with a block-wise
grouping structure for feature-user co-cluster. Specifically,
we create 5 blocks for G, namely: G(1 : 20,1 : 20), G(21 :
40,21 : 40), G(41 : 50,41 : 60), G(51 : 70,61 : 80)
and G(71 : 80,81 : 100). For each of the block, the ele-
ments are generated from the distribution A/(C;, 2.52) (gen-
erated via element-wise sampling) where C; ~ 1/(0,10) is
the centroid for the corresponding cluster and thus is shared
among a specific cluster. For the elements that do not be-
long to the 5 chosen blocks are set as 0. For P € R*V  we
set P(:,1:5), P(:,10 : 15), P(:,20 : 25) randomly with
the distribution 2/(0, 10), while the remaining entries are set
as 0. For each user, the scoring function are generated as
s = X0+ GV + PY) 4 ) where ¢ ¢ R5000x1,
and € ~ N(0,0.012T5000). To generate the labels y®
for each ¢, the top 100 instances with highest scores are la-
beled as 1, while the remaining instances are labeled as -1.

The performance of all the involved algorithms on the
simulated dataset is recorded in Table 1. The correspond-
ing results show that our proposed algorithm consistently
outperforms other competitors. Specifically, our algorithm
reaches an AUC score of 99.65, where the second best algo-
rithm only attain a score of 83.57.

Besides the generalized performance, we could also ver-
ify empirically the ability of our algorithm to recover the ex-
pected structures on the parameters W. With the same sim-
ulated dataset, we compare the parameter W learned from
our proposed and the Ground Truth parameters in Figure 3.
The results show that our proposed methods could roughly
recover the expected group-based structure.

In Theorem 2, we have proved the convergence behav-
ior of the proposed algorithm. To verify theoretical findings,
we plot the loss and parameter evolution against the num-
ber of iteration in Figure 4. In Figure 4-(a), we see that the
loss function constantly decreases as the iteration proceeds,
whereas in Figure 4-(b), it is easy to find that the parame-
ter difference log(|[W'™' — W'||) also keeps decreasing.
All these empirical observations coincide with our theoreti-
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(a) Ground-Truth (b) Learned Parameter

Figure 3: The Potential of our proposed method to Recover
the Expected Structure of the Parameters
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number of iteration (t)
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number of iteration (t)
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(a) Loss Convergence (b) Paramter Convergence
Figure 4: The Convergence Behavior On Simulation
Dataset: a)shows the loss convergence, whereas b) exhibits
the convergence property in terms of the parameters.

cal results.

To verify the efficiency of the proposed AUC evaluation
scheme, we evaluate the running time of our algorithm with
and without the AUC evaluation scheme. The resulting com-
parison is recorded in Table 2 when different ratios of the
dataset are adopted as the training set. As what exhibited
here, the original algorithm without the efficient AUC eval-
uation scheme gets slowly sharply when the training sample
increases. When 100% samples are included in the training
set, our server couldn’t finish the program within 1h due to
the memory limit (24GB). We denote as nan correspond-
ingly. In contrast, we can see an up to 20 times speed-up
with the help of the proposed scheme in proposition 1.

Shoes Dataset

The Shoes Dataset is collected from (Kovashka and Grau-
man 2015) which contains 14,658 online shopping images.
In this dataset, 7 attributes are annotated by users with a wide
spectrum of interests and backgrounds. For each attribute,
there are at least 190 users who take part in the annotation,
and each user is assigned with 50 images. Overall, 90,000
annotations are collected in this dataset. We concatenate the
GIST and color histograms provided by the original dataset
as the features. To remove the redundant input features, Prin-
cipal Component Analysis (PCA) is performed before train-
ing, and only the components that are capable of interpreting
the first 99% of the total data variance are preserved. Mean-
while, we also need to eliminate the effect of the users who
extremely prefer to provide merely the positive (negative)



Table 3: Performance Comparison based on the AUC metric

‘ Attibutes
Alg | Shoes Sun
\ BR CcM FA FM OP ON PT CL MO OP RU SO
RMTL | 79.31 8499 6690 85.08 75.67 6722 75.14 69.36 62.71 7528 6791 69.23
rMTFL | 70.90 83.78 6727 8591 7371 6521 77.11 69.27 62.15 75.80 68.16 68.76
LASSO | 68.46 80.48 6590 84.01 7147 64.60 75.08 67.64 61.83 7539 68.57 69.13
JFL 72.00 83.10 67.26 8593 73.02 6539 77.09 68.63 61.94 75.00 67.17 68.78
CMTL | 74.54 85.16 6821 8532 75.06 68.17 77.62 72.55 66.61 79.78 7234 72.82
COMT | 84.24 88.68 69.66 89.19 80.93 7299 80.62 70.69 63.72 7693 69.43 70.44
RAMU | 7833 84.58 65.78 84.68 75.25 66.72 73.50 7295 69.25 79.81 7439 72.50
Ours 9295 9092 7324 92.65 8795 81.07 86.22 79.31 78.19 86.50 81.88 78.98
ing Area, RU: Rustic, SO: Soothe) , and Figure 5-(b) shows
oure & on g the average AUC scores over 5 attributes for the 15 repeti-
- — - - tions. Similar to the shoes dataset, we see that our proposed
» COMT ~-—— o COMT { ’ prop
£ am I £ am T algorithm consistently outperforms all the benchmark algo-
5 v - 5 - Ak rithms.
<iasso —{— <usso =+
MTFL {1+ MTFL I+
S T - - s Conclusion

Averag;skuc
(b) Sun Attribute Dataset

0.80
Average AUC

(a) Shoes Dataset

Figure 5: Average performances on all attributes of shoes
dataset

labels. To this end, we remove the users who give less than
8 annotations for at least one of the classes.

The left half of Table 3 shows the average performance of
the 15 repetitions with the experimental setting (BR: Brown,
CM:Comfortable, FA:Fashionable, FM:Formal, OP: Open,
ON: Ornate, PT:Pointy). Furthermore, in Figure 5 ,we visu-
alize the average result over the 7 attributes for 15 repetitions
with a boxplot. Accordingly, we could reach the conclusion
that our proposed algorithm consistently outperforms all the
benchmark algorithms by a significant margin.

Sun Attribute Dataset

The SUN Attributes Dataset (Patterson and Hays 2012), is a
well-known large-scale scene attribute dataset with roughly
1,4000 images and a taxonomy of 102 discriminative at-
tributes. Recently, in (Kovashka and Grauman 2015), the
personalized annotations over five attributes are collected
with hundreds of annotators. For each person, 50 images
are labeled based on their own comprehension and prefer-
ence. Overall, this dataset contains 64,900 annotations col-
lected from different users. As for dataset preprocessing, we
adopt almost the same procedure as the shoes dataset. The
difference here is that we use the second last fc layer of the
Inception-V3 (Szegedy et al. 2016) network as the input fea-
ture. Furthermore, the PCA is done for each attribute pre-
serving 90% of the total data variance.

The right half of Table 3 shows the average performance
over 15 repetitions (CL:Cluttered, MO: Modern, OP: Open-
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In this paper, we propose a novel multi-task model for learn-
ing user-specific attribute comprehension with a hierarchical
decomposition to model the consensus-to-personalization
evolution and an AUC-based loss function to learn the pref-
erence. Furthermore, we propose an efficient AUC-based
evaluation method to significantly reduce the computational
complexity of computing the loss and the gradients. Both
theoretical and empirical analysis demonstrates the effec-
tiveness of our proposed method.
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