The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Interpreting Deep Models for Text Analysis
via Optimization and Regularization Methods

Hao Yuan
Washington State University
hao.yuan@wsu.edu

Xia Hu
Texas A&M University
hu@cse.tamu.edu

Abstract

Interpreting deep neural networks is of great importance to
understand and verify deep models for natural language pro-
cessing (NLP) tasks. However, most existing approaches only
focus on improving the performance of models but ignore
their interpretability. In this work, we propose an approach
to investigate the meaning of hidden neurons of the con-
volutional neural network (CNN) models. We first employ
saliency map and optimization techniques to approximate the
detected information of hidden neurons from input sentences.
Then we develop regularization terms and explore words in
vocabulary to interpret such detected information. Experi-
mental results demonstrate that our approach can identify
meaningful and reasonable interpretations for hidden spatial
locations. Additionally, we show that our approach can de-
scribe the decision procedure of deep NLP models.

Introduction

Deep neural networks have shown great success in many
NLP tasks, such as sentence classification (Kim 2014;
Zhang, Zhao, and LeCun 2015), natural language gener-
ation (Yu et al. 2017; Lin et al. 2017), machine transla-
tion (Vaswani et al. 2017; Gehring et al. 2016) and visual
question answering (Wang and Ji 2018). Most existing ap-
proaches treat deep neural networks as black-boxes and only
focus on the performance. Without understanding the work-
ing mechanisms of neural networks, deep models cannot be
fully trusted, since we do not know how and why decisions
are made. However, due to the complex structures of deep
neural networks, it is challenging to interpret deep models
and their behaviors, especially for NLP tasks that deal with
discrete data.

Most existing approaches for interpreting NLP models
only investigate the relationships between input sentences
and output decisions to explore which input words are more
important to make decisions (Lei, Barzilay, and Jaakkola
2016; Li et al. 2015). However, the inner workings of net-
works should also be studied to answer important questions
regarding hidden layers, such as which hidden units are more
important for a decision and why they are important. To the
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best of our knowledge, there are no related studies focusing
on the interpretation of hidden neurons of NLP models.

In this paper, we propose an approach to interpret and un-
derstand deep NLP models. Specifically, we focus on convo-
lutional neural networks (CNN) (Krizhevsky, Sutskever, and
Hinton 2012) for sentence classification tasks. Our approach
employs gradient-based approaches (Simonyan, Vedaldi,
and Zisserman 2013) and optimization techniques (Erhan et
al. 2009) to select spatial locations with high contribution to
the decision from hidden layers and study what is detected
by these locations. We propose to approximately interpret
the meaning of detected information using the nearest neigh-
bors of the optimized representation based on the special
property of word representations, which imply that words
with semantically similar meanings are embedded to nearby
points (Mikolov et al. 2013). Experimental results demon-
strate that our approach can obtain reasonable and mean-
ingful interpretation for hidden units. It is shown that our
approach can explain the decision process in NLP models.

Background and Related Work

Most of the existing interpretation approaches are proposed
to investigate deep models in computer vision rather than the
NLP area. The saliency map techniques study which input
pixels are more important to the final decision (Simonyan,
Vedaldi, and Zisserman 2013; Du, Liu, and Hu 2018; Du et
al. 2018). The importance of different pixels can be approx-
imated by the gradient of output score with respect to the
inputs (Zeiler and Fergus 2014; Springenberg et al. 2014;
Mordvintsev, Olah, and Tyka 2015). The similar idea was
applied to NLP models to study which input words con-
tribute more to the prediction (Li et al. 2015). However, such
techniques only provide word-level interpretation while dif-
ferent words are highly correlated to convey a meaning.

In addition, several approaches focus on feature visualiza-
tion, which investigates what pattern the hidden neurons of a
model try to detect (Olah, Mordvintsev, and Schubert 2017;
Erhan et al. 2009; Nguyen et al. 2016; Mahendran and
Vedaldi 2015; Nguyen, Yosinski, and Clune 2015). Opti-
mization techniques are commonly used for such purposes.
The key idea is to iteratively update a randomly initial-
ized input to investigate a specific behavior in hidden lay-



ers, such as maximizing the activation values of neurons or
maximizing the score of a class. The optimized input can
then be visualized as abstracted images to reflect the mean-
ing. However, such a technique cannot be directly applied
to NLP models since word representations are discrete and
the meaning cannot be abstracted. Thus the optimized input
is difficult to interpret. By combining the above two tech-
niques, (Olah et al. 2018) investigate the meaning of hid-
den layers to interpret models for image classification tasks.
However, as we mentioned above, the optimized input is a
sequence of abstract vector representations and cannot be
visualized as abstracted texts. We propose an approach to
approximately interpret the high-level meaning of the opti-
mized input by selecting the neighbors of these vector rep-
resentations from the embedding space.

Methods

As discussed above, it is not enough to only build saliency
maps on input sentences to visualize word-level interpreta-
tion, since different words may combine together to convey
a meaning. In addition, without investigating the hidden lay-
ers, we still do not understand how the hidden neurons work,
and neural networks remain a black box. To better under-
stand deep NLP models, we propose an approach to focus
on the contribution and meaning of hidden neurons, thereby
allowing us to visually interpret the decision process.

Visual Interpretation of Hidden Units

In this work, we investigate the interpretation of CNN mod-
els for sentence classification tasks in NLP. The general
structure of CNN models we study is shown in Figure 1.
Given an input sentence, it first passes through an embed-
ding layer and several convolutional layers. Then it is fed
into a max-pooling layer and a fully-connected layer with
softmax function to make predictions.

Intuitively, we wish to investigate the hidden units of a
deep NLP model so that we can answer three questions;
those are, which hidden spatial locations are more important
to decisions? what is detected by these spatial locations from
input sentences? and what is the meaning of the detected in-
formation? However, there are two main challenges for an-
swering these questions; those are, how to explore what is
detected by hidden units? and how to interpret the detected
information? Existing approaches in computer vision cannot
be directly applied since word representations are discrete
from each other and cannot be abstracted as images.

We first combine the idea of saliency map and optimiza-
tion to answer the question of what is detected by hidden
units. Based on the property of word representations, we
propose to approximately interpret the meaning of detected
information using the nearest neighbors of the optimized
representation. Then we develop regularization terms to help
interpretation. Generally speaking, the interpretation proce-
dure consists of three main steps. First, we employ gradient-
based approaches to estimate the contributions of different
spatial locations in a hidden layer. Based on the magnitude
of contributions, the spatial locations are sorted, and those
with high contribution are selected to be interpreted in the
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following steps. Second, to obtain what is detected by differ-
ent spatial locations in hidden layers, we iteratively update a
randomly initialized input via optimization. Finally, the op-
timized input is a sequence of numerical vectors but such
abstract values are hard to interpret. Based on the property
of word representations that words with semantically similar
meanings are embedded to nearby points, we design regular-
ization terms to encourage different vectors in the optimized
input to be similar to each other. Then we explore the near-
est neighbors (Altman 1992) in term of cosine similarity to
approximately represent the meaning of the target spatial lo-
cation. The general logic flow of our approach is illustrated
in Figure 1.

Saliency Maps for Hidden Units

Since there are a large number of neurons in hidden layers,
it is not possible to interpret each neuron. Hence we em-
ploy saliency map techniques to select spatial locations with
high contributions for further interpretation. The saliency
map acts like a heatmap, where saliency scores are esti-
mated by the first order derivatives and reflects the contribu-
tion of different neurons. While most of existing approaches
build saliency maps to explore the contribution of individual
words in input sentences, we study the importance of differ-
ent hidden spatial locations instead.

Formally, for an input sentence X, the model predicts that
it belongs to class ¢ and produces a class score S.. Let a;;
represents the activation vector of the spatial location ¢ of
layer j, and its dimension is equal to the number of chan-
nels. Also let A; denotes the activations of layer j, whichis a
matrix, where each column corresponds to one spatial loca-
tion. The relationship between the score S. and A; is highly
non-linear due to the non-linear functions in deep neural net-
works. Inspired by the strategy in recent work (Li et al. 2015;
Simonyan, Vedaldi, and Zisserman 2013), we compute the
first-order Taylor expansion as a linear function to approxi-
mate the relationship as

Se~ Tr(w(A;)TA;) +b, (1)

where Tr(-) denotes the trace of a matrix and w(A;) is the
gradient of class score S. with respect to the layer j. Such
gradient can be obtained by using the first order derivative
of S, with respect to the layer A; as
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For the spatial location ¢ in the layer j, the gradient of
S, with respect to this spatial location is the i*" column of
w(A;), denoted as w(A;),. Then the saliency score of this
location Score.(X); ; is calculated using linear approxima-
tion:

w(4;) = 2)

SCOI‘GC(X)i7j = ’U)(Aj)l c Qg

where - refers to the dot product of vectors.
It is noteworthy that we do not directly use gradients as
saliency scores. The reason is that gradients only reflect the
sensitivity of the class score when there is a small change
in the corresponding spatial location. The employed linear
approximation incorporates the activation values to measure
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Figure 1: Illustration of the overall pipeline of our approach. Part 1 shows the general structure of the CNN model that we try
to investigate. After training, we first build saliency maps for different hidden spatial locations, where saliency scores reflect
contributions to the final decision. As the example shown in Part 2, the CNN model classifies the test sentence to class ¢ (shown
in green). For the conv1 layer, the saliency score is computed for each spatial location, and three spatial locations are selected
(highlighted in yellow). Next, for each selected location, optimization technique is employed to determine what is detected
from the test sentence. As shown in Part 3, for the spatial location k, a randomly initialized input X, is fed to the network and
we iteratively update X towards the objective function shown in Equation 6. Finally, based on the receptive field of location
k (shown in blue with red bounding box), we obtain an overall representation for this receptive field. We search the vocabulary
and select word representations with high similarity to the overall representation. Then, the t-SNE is employed to visualize

these representations, as shown in Part 4.

how much one spatial location contributes to the final class
score. In addition, after training, the weights and parameters
in the model are fixed so that the gradient of S, with respect
to a specific spatial location is fixed and does not depend
on the input. By using the linear approximation, the saliency
score becomes input-dependent.

Input Generation via Optimization

By employing the saliency map technique, we can select
spatial locations with high influence on the final decision.
However, it is still not clear why they are important. In or-
der to explore this direction, we propose to use optimiza-
tion techniques to understand what is detected from the in-
put sentence by these spatial locations. The key idea of op-
timization techniques for interpretation is to iteratively up-
date a randomly initialized input towards an objective func-
tion. Such optimization procedure is similar to the training
of deep neural networks. The main difference is that in such
optimization techniques, the parameters of the networks are
fixed but the input is optimized. When maximizing the acti-
vation value of a certain neuron, the optimized input reflects
the pattern that this neuron tries to detect (Zeiler and Fergus
2014; Erhan et al. 2009). The activation value of each neu-
ron shows the strength of the pattern detected from inputs.
For the neuron k in the spatial location ¢ of hidden layer j,
we can obtain an optimized input X;;;, and the activation
value a;;;. When considering spatial locations as a whole,
what is detected can be approximated using a weighted sum
of Xijk and 5k AS

Yij = Zaijkfijk, @
k=1
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where n is the number of neurons in the spatial location ¢ of
layer j, which is equal to the number of channels.

Such approximations are not efficient since the number
of channels can be large, and we need to obtain an opti-
mized input for each neuron. Furthermore, it is challenging
to add regularization since the optimized input is generated
for each neuron separately. Hence, we propose to incorpo-
rate the activation vector of a spatial location and optimize
the input for the whole spatial location. Formally, for a spa-
tial location ¢ of layer j, let a;; represents its activation vec-
tor given the input sentence X. We randomly initialize an-
other input X and feed it to the network. For the same spa-
tial location, we obtain another activation vector a;;. Then
we iteratively update the input X towards the following ob-
jective function:

&)

/
maxa;j; - aij,

where - refers to the dot product of vectors.

Regularization

In Equation 5, there is no regularization term for optimiza-
tion. However, without any regularization, the updating pro-
cedure will not converge since the input X can be updated
without any constraint, and the target a;; - a; ; keeps increas-
ing. Hence, we add L regularization to the objective func-
tion. In addition, in order to interpret the optimized input,
we propose to add another regularization term, known as the
similarity regularization, to make the optimized inputs read-
ily interpretable.

Formally, let )/(B denotes the receptive field of the spa-
tial location we try to investigate, and [ and r are the left-

most and rightmost corresponding indices in X. Then we



have Xo = [xo,- - ,Toi, " , Tor), Where zo; denotes the
it" column of X. By adding the regularization terms, the
objective function becomes

—~ |2 —~
max G 'Cl;j —)\1 “Xo“2+/\25im(X0), (6)

where - denotes the dot product of vectors, Sim(-) is the
similarity term, and A1, Ao are regularization parameters.

L5 Term: By adding the L2 regularization, the optimiza-
tion procedure converges much faster. Furthermore, the L2
term encourages features with high contributions to the tar-
get a;; - agj to increase more than others. This is beneficial,
since features of high importance can better represent the
meaning of hidden spatial locations.

Similarity Term: Intuitively, we try to assign each spatial
location an estimated meaning to represent what is detected
from the input sentence. After optimization, we obtain mul-
tiple vector representations. However, such representations
may be very different from each other. In this case, it is chal-
lenging to find an overall representation for them. Based on
the property of word representation that words with seman-
tically similar meanings localize closer in the embedding
space (Mikolov et al. 2013; Li et al. 2015), we propose the
similarity regularization for optimization, which encourages
different vector representations in optimized X to be sim-
ilar to each other. In this way, these vector representations
are encouraged to have similar semantically meanings when
mapping back to the word space. Formally, the similarity
term is defined as

L 1
Sim(Xo) = >
Yi,j

where - refers to dot product of vectors, N = r — [ + 1 and
i,j €[l

Toq Toj

||730i||2 ||330jH27

(N

Visualization of Optimized Inputs

By combining saliency maps and optimization, we know
which spatial locations in hidden layers contribute most to
the final decision. We also obtain an optimized input for
each selected hidden spatial location to represent what is de-
tected by this location. However, the optimized input con-
sists of several numerical vectors and is still hard to inter-
pret. It is challenging because words representations are dis-
crete so that the optimized representations cannot be mapped
to words directly. We propose to find representative words
whose vector representations have high cosine similarity
with the optimized input as an estimation of the meaning.

Given an optimized input X, based on the spatial loca-
tion we can obtain its receptive field with respect to X, de-
noted as Xo = [zo;, - ,%oi, ", Tor)- Since we employ
the similarity regularization term, different representations
xq,; are encouraged to be similar. Additionally, in the case of
word embedding, similar representations lead to similar se-
mantic meanings. Hence, it is reasonable to take an average
of these representations as an overall approximation as

1 r
Loverall = N Zx0i~ (8)
i=l
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Dataset ¢ Nigain  Neest V]
MR 2 9596 1066 18160
AG’s News | 4 120000 7600 84252

Table 1: The summary statistics of the MR dataset and the
AG’s News dataset. In the table, c represents the number of
classes, Nyrqin denotes the number of training examples in
the dataset, N;.s; is the number of test examples, and |V|
denotes the size of vocabulary.

It is impossible to find the exact meaning for Z,yerail-
Instead, we study the neighbors of Z,yerqi in the embed-
ding space. We believe the neighbors share similar high-
level semantic meaning with ,ycrq11. Specifically, we com-
pare Toyerqi With different word representations in the vo-
cabulary using cosine similarity and obtain the top words
and their corresponding representations. By studying the se-
mantic meaning of these neighbors, we can understand the
high-level meaning of the detected information by this spa-
tial location. Finally, these representations can be visualized
in the 2D space via dimension reduction techniques, such as
t-SNE (Maaten and Hinton 2008) and principal component
analysis (Wold, Esbensen, and Geladi 1987).

Experimental Studies

To demonstrate the effectiveness of our approach, we eval-
uate our methods both quantitatively and qualitatively. We
first introduce two datasets we are using and the setup of the
experiments in detail. Next, we report the interpretation re-
sults for several sentence examples. Finally, we present the
quantitative evaluations of our methods.

Datasets

We conduct experiments to show the effectiveness of our ap-
proach based on two NLP datasets; namely the MR dataset
and AG’s News dataset. We report the summary statistics of
these two datasets in Table 1.

MR Dataset: The MR dataset' contains movie review
data for sentiment analysis. Each sample in the dataset is
a one-sentence movie review and labeled with “positive” or
“negative”.

AG’s News Dataset: The AG’s News dataset? is con-
structed from AG’s corpus of news articles. The dataset con-
tains the largest 4 classes of news in the original AG’s cor-
pus, where only the title and description are used (Zhang,
Zhao, and LeCun 2015). The label of each news example
depends on the topic of the news, which can be “World”,
“Sports”, “Business” or “Sci/Tech”. Each class has 30,000
training examples and 1,900 testing examples.

Experimental Setup

In this section, we introduce the CNN model that we inves-
tigate in this work. We then discuss the interpretation setup

"https://www.cs.cornell.edu/people/pabo/movie-review-data/

Zhttp://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.
html



MR AG’s News
Length 56 195
Conv num 3 4
Kernel size 5 5
Conv channel | 128, 64,32 | 512,256,128,64
Activation Relu Relu
Embedding 300 300
Pre-train Word2vec Word2vec
Learning rate 2e-4 Se-4
Batch size 128 64

Table 2: The CNN models we used for the MR dataset and
AG’s News dataset. Different columns refer to the network
settings for different dataset. Length: the length of input
sentence; Conv num: the number of 1D convolutional lay-
ers in the model; Conv channel: the number of channels for
convolutional layers; Activation: activation function in con-
volutional layers; Embedding: dimension of word embed-
ding; Pre-train: the type of pre-trained word embedding em-
ployed.

in detail. Finally, we discuss the preprocessing procedure for
text inputs.

CNN Model: We build CNN models for both datasets,
and the overall structures are shown in Part 1 of Figure 1.
The input sentence is padded to the same length and fed into
the embedding layer, where the word2vec word embedding
is employed (Mikolov et al. 2013). Then several 1D convo-
lutional layers (LeCun et al. 1998) and a max-pooling layer
are applied. Finally, a fully-connected layer with the softmax
function produces the predictive decision. Detailed descrip-
tions of models are given in Table 2.

Interpretation: After training, the parameters and vocab-
ulary in CNN models are saved for interpretation. These
trained parameters in CNN models are reused and fixed
during the interpretation procedure. Given a test sentence,
the saliency map technique returns the top m spatial loca-
tions for a hidden layer. We set m equal to 3 in our experi-
ments and focus on the first hidden layer. The input in opti-
mization is randomly initialized using the Xavier initializa-
tion method (Glorot and Bengio 2010). For the MR dataset,
the regularization parameters are set as A; = 0.004 and
Ao = 0.02. For the AG’s News dataset, we set \; = 0.002
and A2 = 0.01. We implement our approach using Tensor-
Flow and conduct our experiments on one Tesla K80 GPU.
The learning rate in optimization procedure is set to 2 x e =4
and we apply the Adam optimizer (Kingma and Ba 2014)
with momentum parameters 51 = 0.9 and 8> = 0.999.

Preprocessing: The way to preprocess the text data is
similar to the existing NLP application (Kim 2014). It is
noteworthy that we do not convert words to lower case since
the meaning of a word is case-sensitive.

Visual Interpretation Results

We first report the prediction accuracy of the CNN mod-
els that we try to interpret. The results are shown in Ta-
ble 3. The CNN models we build can achieve competi-
tive or even better performance compared with the baseline

5721

Dataset MR AG’s News
Our CNN model 79.96% 92.05%
Baseline CNN model | 81.50% 91.45%

Table 3: Comparison of prediction accuracy between the
CNN models we build and the baseline CNNSs.

CNNs (Kim 2014; Zhang, Zhao, and LeCun 2015). The rea-
son why we conduct such comparison is that we wish to
show the CNNs we investigate are models with reasonable
performance. Next, we present the visual interpretation re-
sults to demonstrate the effectiveness of our approach.

MR Dataset: For the MR dataset, we show the visualiza-
tion results for two testing examples; those are, “As a good
old fashioned adventure for kids spirit stallion of the cimar-
ron is a winner”; and “Plays like one of those conversations
that comic book guy on the simpsons has”. Clearly, the first
example is a positive review while the second one is a neg-
ative one. Both of them are correctly classified by the CNN
models.

The visual interpretation result of the first example is
shown in Figure 2. As demonstrated, three spatial locations
(grids in red, blue and green) of the first convolutional layer
are selected based on their saliency scores. The bounding
boxes reflect the receptive fields of these spatial locations
with respect to the input. The receptive fields contain words
like “good”, “fashioned”, “adventure”, and “spirit”’, which
are commonly used in positive movie reviews. In addition,
the top part of Figure 2 shows the visual interpretation for se-
lected hidden spatial locations. Most of the neighbors iden-
tified by our approaches are positive adjectives, such as
“unflinching”, “ok”, “smartly”, and “gritty”. We use these
neighbors to represent the meanings of hidden spatial loca-
tions so that the locations should be interpreted as positive
meaning. This is consistent with their receptive fields and
the final positive prediction. Such interpretation helps us un-
derstand how the decision is made; that is, the information
detected by these spatial locations is positive and these spa-
tial locations have high contribution to the final decision so
that the final prediction is positive.

In addition, we show the visualization result of the sec-
ond MR example in Figure 3. Clearly, many words with
negative meanings are selected to interpret the meaning of
hidden spatial locations, such as “terribly”, “awkward”, “de-
void”, “unwatchable” and “brainless”. Hence, these spatial
locations can be interpreted as negative meaning, and it is
consistent with the prediction. We also observe that most of
neighbors are adjectives or adverbs.

AG’s News Dataset: Similarly, we show the interpreta-
tion results for two examples from the AG’s News dataset.
Both of them are correctly classified by CNN models.

The first example with label “sports” is “Looking at his
ridiculously developed upper body, with huge biceps and
hardly an ounce of fat, it’s easy to see why Ty Law, arguably
the best cornerback in football, chooses physical play over
finesse. That’s not to imply that he’s lacking a finesse”. As
shown in Figure 4, several nouns are selected to interpret the
hidden locations. Most of them are highly related to the topic
“sports”, for example, “Toni”, “Elarton” and “Fahrenhorst”
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Figure 2: The visualization interpretation result for the first example for the MR dataset. The middle part of the figure shows
the contribution of different spatial locations in hidden layers, where red color means highest contribution to the final decision;
blue color refers to the second highest contribution; and green means the third highest contribution. The bounding boxes in
different colors correspond to the receptive field of different spatial location. The top part shows the t-SNE visualization of
the interpretation obtained by our approach. The interpretations of target spatial locations are marked as “targetword” and
connected to the corresponding spatial locations by dash lines.

are names of famous players; “Toulouse ” and “Newcastle”
are names of famous sports teams. One may argue that such
names can be used in many areas and are not limited in topic
“sports”. We claim that our interpretation results are based
on the model and datasets where there are only four classes:
“World”, “Sports”, “Business” and “Sci/Tech”. When only
considering these four types of news, these names are highly
related to “sports”. Hence, we believe the selected words are
reasonable and consistent with the prediction.

The second example is “Jet Propulsion Lab — Scientists
have discovered irregular lumps beneath the icy surface of
Jupiter’s largest moon, Ganymede”. Obviously, it belongs to
topic “Sci/Tech”. The interpretation result is shown in Fig-
ure 5. Similarly, the word selected by our approaches are
highly related to “Sci/Tech” topic, such as “Solar”, “pro-
torosaur”, “datacenter” and “Scientistcom”.

In addition, it is interesting that for the MR dataset, the in-
terpretation results are mostly adjectives and adverbs while

5722

the results of AG’s News data contains more nouns. This
is reasonable since in movie review, the positive or nega-
tive meaning is mostly expressed by adjectives and adverbs
while the topic of a news is highly related to nouns. Such ob-
servation also demonstrates that our approach provides rea-
sonable interpretation based on the model and dataset. In
conclusion, the words selected by our approach to interpret
the hidden locations are meaningful and reasonable. They
interpret the information detected from the input sentence.
In addition, such interpretations help explain how the deci-
sion is made and why the decision is made.

Evaluation of Interpretability

Intuitively, if the interpretations of hidden spatial locations
are meaningful and reasonable, the hidden layers should
convey similar high-level meaning compared with the origi-
nal input sentence. In this section, we explore if the interpre-
tations generated by our approach are reasonable. We first
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Figure 3: The visualization interpretation result for the sec-
ond example for the MR dataset. Only the final result is pre-
sented due to space constraints.

MR AG’s News
0.934 0.843

Dataset
Matching rate

Table 4: The matching rates for the MR dataset and AG’s
News dataset.

introduce how we quantitatively evaluate the interpretation.
Given an input sentence X, the model classifies it to class c.
We obtain the interpretation of k locations with the highest
contribution to the decision. For each location we use the m
nearest neighbors to represent its meaning. In this way, for
each input, we have a sentence with km words to interpret
the hidden layer, denoted as X’ . If we feed X' to the same
network, we obtain another classification result ¢’. If ¢ is
equal to ¢/, we call it a matching, and it means the interpre-
tation of hidden locations shares similar high-level meaning
with the input. Here, we focus on the first hidden layer and
setk=3andm =25, .

We conduct such evaluation for the two datasets and the
results are reported in Table 4. It is obvious that for both
datasets, our method provides reasonable interpretation for
most examples. In addition, our approach has better perfor-
mance on the MR dataset. We believe the reason is that the
length of input examples in the AG’s News is much greater
than that of MR data. Then it is more challenging to use the
interpretation of three locations to represent the meaning of
whole input sentences.

Conclusion

Investigating hidden units in neural networks are of great im-
portance to understand their working mechanisms. However,
most current approaches focus on models for images tasks.
It is challenging to understand the meaning of hidden units
in NLP models, since word representations are discrete and
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example for the AG’s News dataset.
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Figure 5: The visualization interpretation result of the sec-
ond example for the AG’s News dataset.

cannot be abstracted. In this work, we propose an approach
to interpret deep NLP models. We first combine the saliency
map and optimization techniques to explore the information
detected by the most important hidden units in NLP mod-
els. Then we propose to approximately interpret the mean-
ing of detected information using the nearest neighbors of
the optimized representation based on the special property
of word representations. Experimental results show that our
approaches can identify reasonable interpretation for hidden
locations, which shares similar high-level meaning with the
input sentence. It is also shown that our method helps ex-
plain how the decision and why the decision is made.
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