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Abstract

Deep learning has been applied successfully to many biomed-
ical image segmentation tasks. However, due to the diversity
and complexity of biomedical image data, manual annota-
tion for training common deep learning models is very time-
consuming and labor-intensive, especially because normally
only biomedical experts can annotate image data well. Hu-
man experts are often involved in a long and iterative process
of annotation, as in active learning type annotation schemes.
In this paper, we propose representative annotation (RA), a
new deep learning framework for reducing annotation effort
in biomedical image segmentation. RA uses unsupervised
networks for feature extraction and selects representative im-
age patches for annotation in the latent space of learned fea-
ture descriptors, which implicitly characterizes the underly-
ing data while minimizing redundancy. A fully convolutional
network (FCN) is then trained using the annotated selected
image patches for image segmentation. Our RA scheme of-
fers three compelling advantages: (1) It leverages the ability
of deep neural networks to learn better representations of im-
age data; (2) it performs one-shot selection for manual anno-
tation and frees annotators from the iterative process of com-
mon active learning based annotation schemes; (3) it can be
deployed to 3D images with simple extensions. We evaluate
our RA approach using three datasets (two 2D and one 3D)
and show our framework yields competitive segmentation re-
sults comparing with state-of-the-art methods.

Introduction
Image segmentation is a central task in diverse biomedical
imaging applications. Recently, deep learning (DL) has been
successfully applied to many image segmentation tasks and
achieved state-of-the-art or even human-level performance
(Ronneberger, Fischer, and Brox 2015; Chen et al. 2016a;
2016b; Zhang et al. 2017; Xu et al. 2017). It is well known
that the amount and variety of data that DL networks use
for model training drastically affect their performance. How-
ever, it is often quite difficult to acquire sufficient training
data for DL based biomedical image segmentation tasks, be-
cause biomedical image annotation highly depends on ex-
pert experience and variations in biomedical data (e.g., dif-
ferent modalities and object types) can be large. With limited
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resources (e.g., money, time, and available experts), reduc-
ing annotation efforts while maintaining the best possible
performance of DL models becomes a critical problem.

Currently, there are two main categories of methods for
alleviating the burden of annotation. The methods in the
first category aim to utilize unannotated data by leveraging
weakly/semi-supervised learning methods (Lin et al. 2016;
Yang et al. 2018a; Cheplygina, de Bruijne, and Pluim 2018).
Though promising, the performance of such methods is still
far from that of supervised learning methods. Accuracy in
biomedical analysis is of high importance and thus perfor-
mance is a big concern.

The methods in the second category aim to identify and
annotate only the most valuable image areas that contribute
to the final segmentation accuracy. To achieve this goal, such
methods usually explore the following two properties of
biomedical images. (1) Biomedical images for a certain type
of applications are usually similar to one another (e.g., gland
segmentation, heart segmentation). Thus, a great deal of re-
dundancy may exist in biomedical image datasets. Fig. 1(a)
and (c) show some frequent patterns in glands and heart MR
images, respectively. (2) Although regions of interest (ROIs)
in biomedical images may have different appearances, we
notice that they can be roughly divided into a certain number
of groups (e.g., see Fig. 1(b)). Hence, it is helpful to select
representative samples to cover the diverse cases in order to
achieve good segmentation performance.

Up to date, the most popular approaches (Jain and Grau-
man 2016; Yang et al. 2017) designed to leverage these two
properties are all based on active learning (AL). In general,
AL based approaches iteratively conduct two steps: select-
ing informative samples from unlabeled sets and querying
labels from human experts. The ability of AL on reduc-
ing annotation cost while maintaining good learning per-
formance hinges on the fact that it can iteratively add the
most diverse and influential samples from unlabeled sets for
learning a better model and simultaneously update its se-
lection strategy to help human experts reduce labeling re-
dundant samples. However, this iterative process is usually
quite time-consuming and not practical in real-world appli-
cations for several reasons. (1) It is implied that human ex-
perts should be constantly and readily available for label-
ing whenever new unlabeled samples are queried. (2) The
AL process needs to be suspended until newly queried sam-
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Figure 1: (a)-(b) Example patches showing similarity and
diversity in the gland dataset. The samples in (b) are queried
by the active learning (AL) based method (Yang et al. 2017).
(c) Similarity in consecutive slices of the 3D heart dataset of
HVSMR 2016 (slices #80, #82, . . . ,#88 in the xz plane).

ples are annotated. (3) In each round of the AL process, the
model needs to be applied to all unannotated images, which
can take a large amount of time, especially for 3D biomedi-
cal images.

To address these issues, in this paper, we propose a new
DL framework, representative annotation (RA), to directly
select effective instances with high influence and diversity
for biomedical image segmentation in one-shot (i.e., no iter-
ative process and only training a DL model once). To achieve
one-shot selection, we need to address two main challenges.
(1) Comparing to AL, in which the model has access to man-
ual annotation and can be trained in a supervised manner
to extract informative features, the image feature extraction
component in our framework has only raw image data and
can only be trained in an unsupervised manner. (2) AL meth-
ods mainly rely on uncertainty estimation of unannotated
images which is not used in our framework. Instead, we need
to develop a new criterion for valuable ROIs.

For the first challenge, we investigate and tune various
predominant unsupervised models that can be applied to
extract image features: autoencoder (AE) (Rumelhart, Hin-
ton, and Williams 1986), generative adversarial networks
(GANs) (Goodfellow et al. 2014), and variational autoen-
coder (VAE) (Kingma and Welling 2013). For the sec-
ond challenge, we develop an effective geometry based
data selection approach that combines a clustering based
method and a max-cover based method. The clustering
based method divides the whole dataset into K clusters and
selects the most representative samples from each cluster.
To a large extent, it reduces intra-cluster redundancy, but
the number of clusters, K, is usually not given. The max-
cover based method forms a candidate set containing se-
lected samples such that the coverage score for the whole
dataset is maximized, which implies that both influential
samples from large clusters and diverse samples from differ-
ent clusters have a chance to be selected. But, the max-cover
problem is NP-hard and the performance of approximation
algorithms may degrade a lot when the size of the whole
dataset increases. To combine the advantages of both these

methods, we leverage the clustering based method to reduce
intra-cluster redundancy and utilize the max-cover approach
to reduce inter-cluster redundancy without sacrificing inter-
cluster diversity. In this way, representative (i.e., high influ-
ential and diverse) image samples are selected. Fig. 2 out-
lines our main idea and steps. Further, our one-shot frame-
work enables efficient annotation selection for 3D images.

We conduct extensive experiments, and the results show
that our framework outperforms state-of-the-art methods.

Our new RA framework reduces annotation efforts for
biomedical image segmentation while maintaining good per-
formance. Our main contributions are as follows.

• We decouple representative selection from segmentation,
and achieve “one-shot” selection, alleviating the key issue
of keeping human experts standby in AL schemes.

• We introduce a clustering-based representative selection
method to select representatives for human annotation.

• Our experiments demonstrate that our approach yields
higher efficiency and considerably improves the results of
state-of-the-art methods on two 2D datasets. Further, we
show that our RA framework is effective for a 3D dataset.

Related Work
Semantic Segmentation and Network Structures. Since
FCNs (Long, Shelhamer, and Darrell 2015), an array of
DL networks has been proposed and significantly improved
performance by adapting state-of-the-art deep convolutional
neural network (CNN) based image classifiers to seman-
tic segmentation. ResNet-based approaches (He et al. 2016)
achieve higher accuracy with substantially deeper struc-
tures (Ronneberger, Fischer, and Brox 2015; Chen et al.
2016a). To further increase information flow, DenseNets
(Huang et al. 2017) replace identity mapping in the resid-
ual block by concatenation operation, so that new feature
learning can be reinforced while keeping old feature re-
usage. The idea of dense connections has been extended to
semantic segmentation (Jégou et al. 2017; Yu et al. 2017;
Li et al. 2017). In line with this view, CliqueNets (Yang
et al. 2018b) incorporate recurrent connections and atten-
tion mechanism into CNNs by allowing information flow
between any pair of layers inside each block (of the same
scale). In this study, we make use of most of these advanced
techniques to design our 2D/3D FCNs for segmentation.
Active Learning (AL). Active learning was not incorpo-
rated with DL for image classification and segmentation to
reduce annotation efforts until recently. Among various vari-
ants, different active selection schemes were proposed to it-
eratively query annotators to label the most informative ex-
amples from unlabeled data and re-train the model. Besides
the aforementioned inherent drawbacks of AL-based meth-
ods, recent advanced approaches also had their own con-
straints. Jain et al. (Jain and Grauman 2016) needed a series
of preprocessing to generate region proposals and descrip-
tors which are not always easy to obtain due to large vari-
ations in biomedical images. Yang et al. (Yang et al. 2017)
utilized the last convolutional layer of FCNs to generate im-
age descriptors, and multiple FCNs were trained to estimate
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Figure 2: An overview of our representative annotation (RA)
framework: (a) Feature extraction network (FEN) training
(Enc: encoder, Dec: decoder); (b) feature extraction and
clustering-based representative selection (RS); (c) annota-
tion and fully convolutional network (FCN) training.

the uncertainty of segmentation results, which used consid-
erable computational resources. Besides, using random sam-
pling to initialize their data selection also makes the initial-
ization unstable, which may considerably influence the fi-
nal performance. Zhou et al. (Zhou et al. 2018) proposed
to find worthy candidates via a combination criterion of the
entropy and diversity of patches based on the prediction of
CNNs. But, it is not clear how to extend their method from
image classification to segmentation. To overcome these
drawbacks, we develop a new “one-shot” RA framework
that consists of an unsupervised feature extraction network
(FEN) and a representative selection (RS) scheme.

Representative Annotation
Our RA framework (see Fig. 2) has three key components:
(1) an unsupervised feature extraction network (FEN) that
maps each image patch to a low-dimensional feature de-
scriptor; (2) a clustering-based algorithm for selecting repre-
sentatives from training data; (3) an FCN for segmentation.

Feature Extraction Networks (FENs)
Clustering methods group similar data into a cluster and can
be used to reduce intra-cluster redundancy (Aljalbout et al.
2018). In our problem, to map input data to a clustering-
friendly feature space, data representation learning is vital.
Many unsupervised methods have been proposed for repre-
sentation learning. We explore the predominant models (i.e.,
AE, GAN, and VAE) to design our FEN so that it has good
ability for generalization and is fast and stable to train.
Autoencoder (AE). AE can be used to learn efficient data

encoding in an unsupervised manner (Rumelhart, Hinton,
and Williams 1986). It consists of two networks that encode
an input sample x to a latent representation z and decode
the latent representation back to reconstruct the sample in
the original space, as follows:

z ∼ Enc(x) = qφ(z|x), x̃ ∼ Dec(z) = pθ(x|z). (1)

Training an AE involves finding parameters {θ, φ} that
minimize the reconstruction loss, LAE , on the given dataset
X; the objective is given as:

θ∗, φ∗ = argmin
θ,φ

LAE(X, (φ ◦ θ)X). (2)

Generative Adversarial Networks (GANs). GANs (Good-
fellow et al. 2014) are explicitly set up to optimize for gener-
ative tasks. A GAN consists of a generator G and a discrim-
inator D (similar structures as a decoder and an encoder of
AE, respectively). In training, the generatorG = G(z) ∼ pg
takes a random noise z ∼ pz as input and generates an
image. The discriminator D takes an image as input and
outputs the probability that the image comes from real data
rather than from G. Ideally, at the end of training, pg can be
shown to match pdata (i.e., G converges to a good estima-
tor of pdata). The objective function of the min-max game
between G and D can be formulated as:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] +

Ez∼pz(z)[log(1−D(G(z)))].
(3)

Variational Autoencoder (VAE). Although VAE consists
of an encoder and a decoder network, it is quite different
from other types of AE models. It makes a strong assump-
tion concerning the distribution of latent neurons and tries
to minimize the difference between a posterior distribution
and the distribution of latent neurons with the difference
measured by the Kullback-Leibler divergence (Kingma and
Welling 2013). Typically, the latent distribution p(z) is a
predefined Gaussian distribution, such as z ∼ N (0, I). The
VAE loss is minus the sum of the expected log likelihood
(the reconstruction error) and a prior regularization term:

LV AE = −Eq(z|x)
[
log

p(x|z)p(z)
q(z|x)

]
= Lpixelllike + Lprior

(4)
with

Lpixelllike = −Eq(z|x)[log p(x|z)] (5)
and

Lprior = DKL(q(z|x)||p(z)), (6)
where DKL is the Kullback-Leibler divergence.

All these three models are predominant unsupervised
representation learning methods and have been utilized in
many applications. One common technique for evaluating
the quality of these methods is to use the feature descrip-
tors extracted by them on supervised datasets and evalu-
ate the performance on top of these features. In our sce-
nario, the extracted features reflect how well we capture the
characteristics of image data and directly decide how repre-
sentative our selected images are with respect to the whole
dataset, thus affecting the final segmentation performance.

5903



Hence, we evaluate these methods by the segmentation per-
formance. To our best knowledge, we are the first to ex-
plore in this direction. We use all these methods as backbone
for feature extractors and conduct extensive experiments to
compare their potentials (denoted by AE-/GAN-/VAE-FEN
below). Our VAE-FEN largely follows the structures in deep
convolutional GAN (DCGAN) (Radford, Metz, and Chin-
tala 2015). We re-use the encoder and decoder in the AE-
/GAN-based FENs for fair comparison. Experimental results
are shown in Table 1.

Representative Selection for 2D Images
Our goal is to select a representative set, Sr, from the whole
input unannotated image set, Su, as suggested samples for
human annotation. We call this selection process represen-
tative selection (RS). Below we will first analyze two intu-
itive methods, clustering based RS (denoted by Cls-RS) and
max-cover based RS (denoted by MC-RS), and then explain
why we propose our geometry based selection approach (de-
noted by ClsMC-RS) that combines the benefits of Cls-RS
and MC-RS and addresses their drawbacks.

Cls-RS is a straightforward strategy that utilizes cluster-
ing to reduce intra-cluster redundancy. It first conducts clus-
tering of the input images and then selects one representa-
tive image from each cluster to form Sr. A main drawback
of this method is that we may need to know the number of
clusters, K, beforehand, which is usually unavailable. K di-
rectly decides how many images to annotate; thus we should
not choose K arbitrarily. As a result, we may run the risk
of over-clustering or under-clustering, and need to deal with
unbalanced data. For example, in the gland dataset, normal
glands are the majority, and are mainly of a roughly round
shape and similar to one another; but, abnormal glands are
quite different. Even if we use a large number of clusters,
normal glands are still in one cluster while different abnor-
mal glands are distinctly separated. Consequently, in the fi-
nal candidate set, normal glands become a minority.

MC-RS is another intuitive strategy, inspired by sugges-
tive annotation (SA) (Yang et al. 2017). Each image in Su
has a representativeness score, and SA aims to find a sub-
set Sr ⊆ Su such that, for a given budget |Sr| 6 B, the
total coverage score |F (Sr, Su)| is maximized. The active
learning based SA (Yang et al. 2017) uses uncertainty esti-
mation to select a subset Sa ⊂ Su as an intermediate step. In
our scenario, since we decouple the feature extraction pro-
cess from the supervised FCN model, no such uncertainty
estimation could be used. Thus, SA degenerates to MC-RS:
Each time, among all the unannotated images of Su, we se-
lect the most representative one to add to Sr such that the
coverage score is maximized over the whole set Su. One
advantage of this one-by-one selection is that it inherently
gives an order list of all unannotated images in which better
representative images have higher priorities for manual an-
notation. But, MC-RS has two obvious disadvantages. First,
the maximum set cover problem is NP-hard and cannot be
approximated within 1− 1

e ≈ 0.632 under standard assump-
tions (Hochbaum 1997). Our experiments show that, without
using uncertainty measures, the performance of the greedy
max-cover algorithm is largely jeopardized. Second, MC-RS

Algorithm 1: The Representative Selection Algorithm
Input: C = {Ci|i = 1, . . . ,M}, Ci = {Iij |j =

1, . . . , Ni}, δ, r, Sc = ∅, Sr = ∅;
1 for Ci in C do
2 Si1 = ∅, Si2 = Ci;
3 while |F (Si1, Ci)| < δ · |Ci| do
4 s∗ = argmaxs∈Si2

(F (Si1 ∪ {s}, Ci)−
F (Si1, Ci));

5 Si1 = Si1 ∪ {s∗}, Si2 = Si2 \ {s∗};
6 Sc = Sc ∪ Si1;
7 Sa = ∅, S′c = Sc, Numc = |Sc|;
8 for i = 1, . . . , Numc do
9 s∗ = argmaxs∈S′

c
(F (Sa ∪ {s}, Sc)− F (Sa, Sc));

10 Sa = Sa ∪ {s∗}, S′c = S′c \ {s∗};
11 L[i][1] = s∗;
12 L[i][2] = PixelRatio(Sa);
13 for i = 1, . . . , Numc do
14 if L[i][2] < r ≤ L[i+ 1][2] then
15 Sr = Sr ∪ L[i][1];
16 return Sr

is applied to the whole dataset at once; so it still runs the risk
of selecting redundant images from certain groups of large
sizes due to unbalanced image patterns.

Hence, based on the above observations and analysis, we
propose our two-stage ClsMC-RS that combines clustering
based and max-cover based methods. In the first stage, we
first conduct agglomerative clustering and use the resulted
dendrogram to determine a proper number of clusters, K.
Second, we apply the greedy max-cover strategy to select a
certain number of images from each cluster to form a tem-
poral candidate set, Sc. In this way, (1) we need not knowK
beforehand (K directly decides the final Sr), (2) the whole
dataset is divided into multiple clusters of smaller sizes, and
max-cover selection works better on smaller sets so that it
reduces intra-cluster redundancy while maintaining inter-
cluster diversity, and (3) we maintain a balance among dif-
ferent clusters, so that scarce samples from small-size clus-
ters would not be neglected in the greedy selection. In the
second stage, we apply max-cover selection on Sc. We select
a most representative image from Sc one by one to form the
final Sr (Sr essentially forms an order list). Consequently,
(a) since |Sc| < |Su|, the max-cover algorithm works on
a smaller set; (b) many images share similar patterns (e.g.,
nearly round shape glands are common) but could still be
divided into several clusters, and this stage helps further re-
duce inter-cluster redundancy; (c) since considerable intra-
cluster redundancy is reduced in the first stage, the data un-
balanced issue is alleviated for the second stage.
Our ClsMC-RS: Clustering + Max-cover. After training
FEN, we can make use of it by feeding an image patch I
to the encoder model; the output feature vector, If , of the
last fully-connected layer (fc) can be viewed as a high-level
representation of I . In Algorithm 1, we can measure the sim-
ilarity between two images Ii and Ij as:

sim(Ii, Ij) = Cosine similarity(Ifi , I
f
j ) (7)
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To measure the representativeness of a set Sx of image
patches for a patch I of another set Sy , we define:

f(Sx, I) = max
Ii∈Sx

sim(Ii, I) (8)

It means I is represented by its most similar patch Ii in Sx.
After patch clustering, each cluster Ci (i = 1, . . . ,M)

contains some number of image patches, Ci = {Iij | j =
1, . . . , Ni}. First, we choose a subset, Si1 ⊂ Ci, which is the
most representative for Ci. To measure how representative
Si1 is for Ci, we define the coverage score of Si1 for Ci as:

F (Si1, Ci) =
∑
Ij∈Ci

f(Si1, Ij) (9)

When forming a candidate set Sc, it is desired that its over-
all coverage score approximates a fraction δ of each clus-
ter, i.e., Si1 ⊂ Ci, Si1 ⊂ Sc, and |F (Si1, Ci)| ≈ δ · |Ci|,
where δ controls the size of Sc and the reduced redundancy
in the clusters. Empirically, δ is above the “elbow” point in
the coverage score curve (i.e., the coverage score increases
fast at the beginning and is much flatter at the end).

Having obtained the candidate set Sc, we find a subset
Sr ⊆ Sc = S′c that has the highest coverage score. Itera-
tively, we choose one image patch from S′c and put it in Sr:

I∗ = argmax
I∈S′

c

(F (Sr ∪ {I}, Sc)− F (Sr, Sc)) (10)

The selection of the patches I∗ essentially sorts the patches
in Sc based on their representativeness. With more patches
selected, the pixel ratio for annotation increases monotoni-
cally. We use an array L to record the order of the selected
patches for annotation and the corresponding pixel ratio.

Finally, experts can label image patches according to the
order of L, until a certain pixel ratio r is reached. In our
comparative experiments of RA, r = 30% or 50%.

Representative Selection for 3D Images
Comparing to 2D image annotation, annotating 3D images
is more challenging, partially due to a exponential increase
in data volume. Yet, neighboring 2D slices in 3D biomedi-
cal image stacks are often quite similar (e.g., see Fig. 1(c));
thus one can potentially exploit this to reduce annotation ef-
forts. Intuitively, there are two kinds of selection methods
for 3D images: sub-volume based selection and slice based
selection. The former method directly extends our 2D patch-
based selection method to 3D datasets. However, this is im-
practical due to two issues: (1) 3D FEN is very costly, thus
making the size of sub-volumes selected quite small (Wu et
al. 2016); (2) human can only label 2D images well. Even
if a sub-volume is selected, experts would have to choose a
certain plane (e.g., xy, xz, or yz plane) and label a set of
consecutive 2D slices (possibly similar to their neighbors).
The latter method, proposed in (Çiçek et al. 2016), trains a
sparse 3D FCN model with some annotated 2D slices. But,
a key issue to this method is where to annotate. Besides the
redundancy among consecutive slices, we also observe that
some neighboring slices can vary a lot. Our RA can address
these issues. Hence, we propose to directly extend our RA

framework to 3D datasets and select some 2D slices from
each orthogonal plane for manual annotation.

Specifically, a 3D image can be analyzed from three or-
thogonal directions. By splitting each volume along the xy,
xz, and yz directions, we obtain three sets of 2D slices. We
train three FENs simultaneously on these three sets of 2D
slices. For example, given an annotation ratio, ra, our budget
of annotating slices in the z-axis is k = bD/rac, where D
is the number of voxels along the z-axis. We can use our 2D
RA approach to select the top k representative slices along
the z-axis. After obtaining annotation from human experts,
we then train a sparse 3D FCN for segmentation.

FCN Models for Supervised Segmentation
2D FCN Model. Since 2D FCNs for biomedical image seg-
mentation are well studied, we focus on developing our RA
framework for annotation in this paper. To validate the ef-
fectiveness of our framework, we adopt the FCN network
architecture as in SA (Yang et al. 2017) for fair comparison.
Our baseline performance using full annotation matches the
corresponding performance given in SA (see Table 1).
3D FCN Model. 3D FCN structure design is more chal-
lenging, due to the limits of computing resources that are
still not well addressed. Inspired by recent advances on net-
work architectures, clique block was proposed in CliqueNet
(Yang et al. 2018b). We propose a new 3D FCN model,
CliqueVoxNet, for segmentation. First, it uses the stan-
dard encoding-decoding FCN diagram to fully incorporate
3D image cues and geometric cues for effective volume-
to-volume prediction. Second, it utilizes the state-of-the-art
clique block to improve information flow and parameter ef-
ficiency, and maintain abundant (both low- and high-level)
features for segmenting complicated biomedical structures.
Third, it takes advantage of auxiliary side paths for deep
supervision (Dou et al. 2016) to improve the gradient flow
within the network and stabilize the learning process.

Experiments
To show the effectiveness and efficiency of our RA frame-
work, we evaluate RA on two 2D datasets and one 3D
dataset: the MICCAI 2015 Gland Segmentation Challenge
(GlaS) dataset (Sirinukunwattana et al. 2017), a fungus
dataset (Zhang et al. 2017), and the HVSMR 2016 Chal-
lenge dataset (Pace et al. 2015). For our representative se-
lection (RS), we only need a training set to train our feature
extraction network (FEN). Then we train our FCN with an-
notated images and evaluate its segmentation on a test set.
2D GlaS Dataset. The GlaS dataset contains 85 training im-
ages (37 benign (BN), 48 malignant (MT)) and 80 test im-
ages (33 BN and 27 MT in Part A, 4 BN and 16 MT in Part
B). Each image is of size 775 × 522 with pixel-wise anno-
tation. To train our FEN, we randomly crop patches of size
384× 384 from the given training set and downsample into
64 × 64 patches, as training data for FEN. Having trained
FEN, we crop patches from each training image with a 75%
ratio of overlapping with neighboring patches, and form a
set of 1,530 patches for representative selection. The results
are evaluated with three criteria, F1 score, object Dice index,
and Hausdorff distance (Sirinukunwattana et al. 2017).
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Table 1: Segmentation results on the GlaS dataset. X-RA
stands for usingX-based FEN and RS in our RA framework.
1(Chen et al. 2016a); 2(Xu et al. 2017); 3(Yang et al. 2017).

Anno. Method F1 Score Object Dice Object Hausdorff
Part A Part B Part A Part B Part A Part B

Full
CUMedVision1 0.912 0.716 0.897 0.781 45.418 160.347
Multichannel2 0.893 0.843 0.908 0.833 44.129 116.821

SA3 0.921 0.855 0.904 0.858 44.736 96.976

30%

SA3 0.901 0.827 0.894 0.835 – –
AE-RA 0.903 0.810 0.892 0.823 48.7781 111.5563

DCGAN-RA 0.900 0.828 0.883 0.837 56.833 117.088
VAE-RA 0.909 0.843 0.890 0.855 48.611 91.486

50%

SA3 0.917 0.828 0.906 0.837 – –
AE-RA 0.911 0.831 0.899 0.826 48.170 120.234

DCGAN-RA 0.914 0.848 0.903 0.852 44.912 99.093
VAE-RA 0.916 0.862 0.897 0.856 45.859 91.922

2D Fungus Dataset. The fungus dataset has 84 fully anno-
tated images of size 1658× 1658. As in (Zhang et al. 2017),
we use 4 images as the training set and 80 images as the test
set. We randomly crop patches of size 450 × 450 from the
training set and downsample into 64 × 64 patches to train
FEN. We crop patches from each training image with a step
size of 100 pixels and form a set of 784 patches for repre-
sentative selection. Results are evaluated using F1 score.
3D HVSMR Dataset. The HVSMR 2016 dataset aims to
segment myocardium and great vessel (blood pool) in car-
diovascular MR images. 10 3D MR images and their ground
truth annotation are provided as training data. The test data,
containing another 10 3D MR images, are publicly avail-
able; yet their ground truth is kept secret for fair compari-
son. The results are evaluated using three criteria: Dice co-
efficient, average surface distance (ADB), and symmetric
Hausdorff distance. Finally, a score S, computed as S =∑
class(

1
2Dice − 1

4ADB − 1
30Hausdorff ), is used to reflect

the overall accuracy of the results and for ranking.
Implementation Details. Our FENs and 2D FCN are imple-
mented with PyTorch (Paszke et al. 2017) and Torch7 (Col-
lobert, Kavukcuoglu, and Farabet 2011), respectively. An
NVIDIA Tesla P100 GPU with 16GB GPU memory is used
for both training and testing. The training of FENs and FCN
uses similar setups as in (Radford, Metz, and Chintala 2015)
and (Yang et al. 2017), respectively. Our 3D CliqueVoxNet
is implemented with TensorFlow (Abadi et al. 2016). All the
models are initialized using a Gaussian distribution (µ = 0,
σ = 0.01) and trained with the Adam optimization (Kingma
and Ba 2015) (β1 = 0.9, β2 = 0.999, ε = 1e-10). We also
adopt the “poly” learning rate policy with the power variable
equal to 0.9 and the max iteration number equal to 50k. To
leverage the limited training data, we perform data augmen-
tation (i.e., random rotation with 90, 180, and 270 degrees,
as well as image flipping along the axial planes) to reduce
overfitting.

Main Experimental Results
We first show the state-of-the-art segmentation performance
on all the three datasets with full annotation, and then
show the effectiveness of our representative annotation (RA)
on two aspects: the saved human annotation and the cor-
responding segmentation performance compared with the
state-of-the-art active learning based method, suggestive an-

Table 2: Segmentation results on the fungus data. VAE∗ =
VAE-FEN + Cls-RS; VAE-RA = VAE-FEN + ClsMC-RS.

Anno. Method Recall Precision F1 Score

Full DAN (Zhang et al. 2017) 0.9020 0.9287 0.9152
Ours (baseline) 0.9118 0.9379 0.9247

30% VAE∗ 0.9254 0.9211 0.9232
VAE-RA 0.9285 0.9219 0.9252

50% VAE∗ 0.9268 0.9220 0.9244
VAE-RA 0.9288 0.9226 0.9257

notation (SA) (Yang et al. 2017). Specifically, we measure
annotation effort using the number of pixels selected as rep-
resentatives by our representative selection (RS) method.

Table 1 gives the segmentation results on the GlaS dataset.
First, for fairness of comparison, we use the same FCN
model as that in SA and achieve comparable performance as
SA with full annotation. One can see that it attains state-of-
the-art performance. Second, using the same FCN structure,
we train FCNs with partial annotation with different pixel ra-
tios (30% and 50%). Table 1 shows that our approach (VAE-
RA) achieves competitive or much better results comparing
to SA. It is worth noting that, compared to SA with 50% of
annotated data, our segmentation results are better than SA
(∼ 2.5%) on Part B (which contains more malignant sam-
ples) while retaining nearly the same performance on Part
A. More importantly, our 50% VAE-RA closely approaches
the performance of full SA on all the three metrics (while
there are still some gaps between 50% SA and full SA).

Table 2 gives the segmentation results on the fungus
dataset. First, our FCN can achieve slightly better perfor-
mance than the state-of-the-art methods using full annota-
tion. Second, our framework (VAE-RA) can achieve state-
of-the-art performance using only 30% of the training data,
which implies that the fungus dataset is probably less chal-
lenging than the gland dataset. Indeed, the fungus dataset
contains fewer variations, and its F1 scores on average are
higher than those of the GlaS dataset.

Table 3 gives the segmentation results on the 3D heart
dataset. First, compared to the state-of-the-art DenseVoxNet,
our CliqueVoxNet achieves considerable improvement on all
the metrics. Then, we implement sparse 3D FCN models
based on CliqueVoxNet. We use uniform annotation (UA)
as baseline. Let sk denote the setting of labeling one slice
out of every k slices (i.e., the annotation ratio is ∼ 1/k).
In this dataset, a heart almost occupies the entire stack (see
Fig. 1(c)); thus UA is a fairly strong baseline. From Table
3, one can see: (1) With a lower annotation ratio, the overall
segmentation performance decreases accordingly (the lower,
the faster); (2) the results are not very stable. For example,
s10 of UA is slightly better than s2. The reason is that UA
cannot ensure that all the slices selected in the setting s10
also belong to s2 (due to the b·c operation for computing
slice indices). On the contrary, our RA does not suffer this
issue, because inherently it gives an order of slices for an-
notation and the slices annotated in sj always belong to si
(i < j). As shown in Table 3, overall, our RA achieves much
better performance than UA on the same sampling ratios.

In summary, the segmentation results on all the three
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Table 3: Segmentation results on the HVSMR 2016 dataset using uniform annotation and representative annotation.

Model
Sample

Rate
Myocardium Blood Pool Overall

ScoreDice ADB[mm] Hausdorff[mm] Dice ADB[mm] Hausdorff[mm]
DenseVoxNet Full 0.821 0.964 7.294 0.931 0.938 9.533 -0.161
CliqueVoxNet 0.827 0.924 6.679 0.935 0.797 5.032 0.06

Sparse-
CliqueVoxNet

+
Uniform

Annotation (UA)

s2 0.792 0.877 5.050 0.926 0.946 7.601 -0.019
s10 0.814 0.826 4.608 0.931 0.961 7.997 0.005
s20 0.791 0.988 6.470 0.934 0.900 6.437 -0.04
s40 0.780 1.334 11.365 0.930 0.942 8.435 -0.374
s80 0.739 1.472 10.227 0.917 1.082 8.932 -0.449

Sparse-
CliqueVoxNet

+
Representative

Annotation (RA)

s2 0.806 0.928 5.710 0.930 0.871 6.276 0.019
s10 0.812 0.895 5.820 0.928 0.896 6.360 0.016
s20 0.809 0.984 6.874 0.924 0.933 6.470 -0.057
s40 0.786 0.908 4.711 0.916 1.057 8.365 -0.076
s80 0.733 1.250 7.447 0.923 1.010 8.715 -0.276

Table 4: Segmentation results on the GlaS dataset using dif-
ferent selection schemes.

Anno. Method F1 Score Object Dice Object Hausdorff
Part A Part B Part A Part B Part A Part B

30%

SA 0.901 0.827 0.894 0.835 – –
Cls-RS 0.908 0.838 0.894 0.846 50.207 101.547
MC-RS 0.906 0.833 0.891 0.834 49.773 106.990

ClsMC-RS 0.909 0.843 0.890 0.855 48.611 91.486

50%

SA 0.917 0.828 0.906 0.837 – –
Cls-RS 0.912 0.855 0.893 0.852 47.565 96.644
MC-RS 0.912 0.850 0.900 0.848 45.628 100.706

ClsMC-RS 0.916 0.862 0.897 0.856 45.859 91.922

datasets demonstrate the effectiveness of our representa-
tive annotation framework (X-FEN + ClsMC-RS), which
achieves state-of-the-art segmentation performance and
saves annotation efforts considerably.

Discussions
On FEN Structures. As shown in Table 1, using features
extracted by VAE-based FEN is more beneficial for the sub-
sequent representation selection, leading to better segmen-
tation results. We think the reasons are: (1) Compared with
AE, VAE is a generative model that was originally designed
to learn the underlying data distribution and generate new
data, while AE learns how to compress data into a con-
densed vector with only reconstruction loss; (2) compared
with GAN, the output of the encoder in VAE is used to gen-
erate a new vector for the decoder to generate a new image,
while the output of the discriminator in GAN is fed to a
classifier to differentiate real and fake data. Thus more in-
formation could be kept in VAE-extracted features.
On RS Strategies. As shown in Table 4, our ClsMC-RS is
better than the other two baselines. First, clustering of image
patches reduces intra-cluster redundancy. Inside each clus-
ter, we select abundant representatives and the number of
patches is controlled by the coverage score (i.e., δ · |Ci|)
rather than the size of the cluster. Thus, much redundancy
is eliminated. Second, the “max-cover selection” incremen-
tally chooses the most representative patches, one by one,
which further reduces inter-cluster redundancy without sac-
rificing inter-cluster diversity. Hence, the final representative

set for annotation is both influential and diverse. Besides,
our ClsMC-RS has two more benefits. (1) Inherently, in the
second step, our ClsMC-RS outputs an ordered list, thus en-
abling experts to label “better” samples incrementally. (2)
After the first step, the size of the candidate set Sc is largely
reduced compared to the whole input set Su (i.e., |Sc| <
|Su|), which could help save more time in the second step.
On Time Efficiency. Compared with the state-of-the-art
suggestive annotation (SA) (Yang et al. 2017), our RA has
better time efficiency. Suppose we need to make annotation
suggestion for 50% of data. The iterative SA training takes
16 rounds, but our training finishes in one-shot. Each SA
round takes ∼ 10 minutes to train FCNs; between every two
rounds, experts annotate more data based on SA suggestion.
More importantly, if we directly apply SA to 3D datasets,
the waiting time between two consecutive rounds would in-
crease dramatically. With our method, experts do not start
annotation until FEN and RS complete, and need not wait for
FCN training round after round as in SA. Thus, our training
scheme is much more expert-friendly.

Conclusions

In this paper, we presented a new deep learning framework,
representative annotation (RA), for reducing annotation ef-
fort in biomedical image segmentation. RA combines unsu-
pervised feature extraction for representative selection and
supervised FCNs for image segmentation. Extensive experi-
mental results on three datasets (two 2D and one 3D) show
that RA achieves competitive performance as the state-of-
the-art suggestive annotation (SA) method (Yang et al. 2017)
while using one-shot selection of representatives for annota-
tion. Further, RA can be easily extended to 3D datasets and
experimental results show great potentials of our method.
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