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Abstract

Learning related tasks in various domains and transferring
exploited knowledge to new situations is a significant chal-
lenge in Reinforcement Learning (RL). However, most RL
algorithms are data inefficient and fail to generalize in com-
plex environments, limiting their adaptability and applicabil-
ity in multi-task scenarios. In this paper, we propose Self-
Supervised Mixture-of-Experts (SUM), an effective algo-
rithm driven by predictive uncertainty estimation for multi-
task RL. SUM utilizes a multi-head agent with shared pa-
rameters as experts to learn a series of related tasks simul-
taneously by Deep Deterministic Policy Gradient (DDPG).
Each expert is extended by predictive uncertainty estimation
on known and unknown states to enhance the Q-value eval-
uation capacity against overfitting and the overall generaliza-
tion ability. These enable the agent to capture and diffuse the
common knowledge across different tasks improving sam-
ple efficiency in each task and the effectiveness of expert
scheduling across multiple tasks. Instead of task-specific de-
sign as common MoEs, a self-supervised gating network is
adopted to determine a potential expert to handle each inter-
action from unseen environments and calibrated completely
by the uncertainty feedback from the experts without explicit
supervision. To alleviate the imbalanced expert utilization as
the crux of MoE, optimization is accomplished via decayed-
masked experience replay, which encourages both diversifi-
cation and specialization of experts during different periods.
We demonstrate that our approach learns faster and achieves
better performance by efficient transfer and robust general-
ization, outperforming several related methods on extended
OpenAI Gym’s MuJoCo multi-task environments.

1 Introduction
Reinforcement Learning (RL) (Sutton and Barto 1998)
trains an agent to solve sequential decision-making prob-
lems through trial and error interactions with the environ-
ment. With the significant advance of deep neural networks
as effective function approximators, Deep RL has been
scaled and demonstrated success in various complex do-
mains like Go game (Silver et al. 2017), video games (Mnih
et al. 2015) and robotic control tasks (Gu et al. 2017). How-
ever, most typical RL methods are sample inefficient requir-
ing substantial experiences and large computational cost be-
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fore obtaining acceptable behaviors, especially when solv-
ing multiple related problems.

One effective direction for improving data efficiency is
multi-task learning (Caruana 1997), which shares similar
characteristics and transfers reusable representations across
multiple tasks. Intuitively, by applying multi-task strategies,
algorithms can accelerate the convergence and improve the
performance of each task w.r.t. single-task learning, while
requiring less training data overall. This further renders
the agent applicable to complex real-world environments
with robust generalization in different situations (Finn et al.
2017). However, in practice when RL combines with multi-
task techniques such as shared structure, the learning process
tends to be unstable due to the different complexity and re-
ward schemes between tasks (Teh et al. 2017). We ascribe
this negative effect to the interference caused by noised gra-
dients from different domains, which misleads the training
of vanilla multi-task approaches.

Another issue is deep RL agent “robustly” suffers from
overfitting (Zhang et al. 2018), which negatively affects the
performance of transfer. As deep RL algorithms are increas-
ingly employed in critical problems such as autonomous
control, healthcare, finance, and safety (Amodei et al. 2016),
it is crucial to understand the generalization and adapta-
tion abilities of trained agents before real-world deployment.
Besides, the crux of multi-task RL is not only exploiting
reusable representations but furthermore transferring them
across domains effectively. Apart from techniques for mit-
igating overfitting, quantifying the uncertainty of specific
tasks brings a more intuitive understanding of generaliza-
tion capacity in deep models. In this case, multi-task RL
agents with well-calibrated predictive uncertainty estima-
tion can avert overconfident incorrect predictions (Lakshmi-
narayanan, Pritzel, and Blundell 2017) and accomplish mul-
tiple tasks by robust generalization and efficient transfer.

In this paper, we propose Self-Supervised Mixture-of-
Experts (SUM), an effective approach for multi-task RL
aiming to improve both data efficiency and generalization
capacity in multiple tasks by effective knowledge sharing
and expert scheduling. Based on multi-head DDPG (Zheng
et al. 2018), SUM extends the model to Mixture-of-Experts
(MoE) architecture consisting of an agent and a self-
supervised gating network, which is suitable for the multi-
task environment. The agent is constructed by experts in-
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cluding multiple actor heads for exploration and multiple
critic heads for evaluation. To counteract the adverse effects
of overfitting, experts are enhanced by uncertainty estima-
tion on known and unknown states to improve the Q-value
evaluation and generalize robustly across multiple tasks.
When interacting with tasks from an unknown distribution,
a gating network determines a potential expert according to
all uncertainty estimates of the state from experts. It lever-
ages these uncertainty feedback as self-supervision to opti-
mize without explicit supervision. Furthermore, we exploit
decayed-masked experience replay to improve both early di-
versification and late specialization of experts in different
stages. We present empirical experiments to analyze our al-
gorithm dealing with a series of continuous control tasks on
extended MuJoCo environments (Henderson et al. 2017).

The contributions of this work include:

• We introduce uncertainty estimation to the critic of DDPG
for enhancedQ-value evaluation, which alleviates overfit-
ting in an individual task and improves robust generaliza-
tion ability across multiple tasks.

• We extend multi-head DDPG as MoE architecture with a
gating network self-supervised completely by uncertainty
estimates from experts without extra supervision, which
improves data efficiency and performance substantially
by effective knowledge sharing and expert scheduling.

• To tackle the imbalanced expert utilization, we exploit
decayed-masked experience replay to motivate the experts
to concentrate on different objectives during training.

• We evaluate our approach via extensive experiments from
different perspectives, including uncertainty enhance-
ment, generalization ability, and multi-task performance.

2 Related Work
In recent years, most research has focused on de-
veloping multi-task RL algorithms by transfer learning
paradigm (Lazaric 2012). A primary series of approaches
are based on policy distillation, which usually constructed as
a student-teacher architecture, including (Rusu et al. 2015;
Parisotto, Ba, and Salakhutdinov 2015; Teh et al. 2017).
Some attempts focus on effective representation reuse in
different perspectives, such as shared abstractions of state-
action space (Borsa, Graepel, and Shawe-Taylor 2016), pro-
gressive network (Rusu et al. 2016), etc.

Uncertainty estimation has been increasingly prevalent as
an effective method to reduce the risk of overfitting (Zhang
et al. 2018) and understand the agent’s generalization abil-
ity. Furthermore, with the advance of reliable uncertainty
estimation, algorithms can tackle difficult specific issues
in RL, including balancing between exploration and ex-
ploitation (Dearden, Friedman, and Russell 1998), avoid-
ing collisions in unknown control tasks (Kahn et al. 2017),
etc. However, for uncertainty in multi-task RL, there are
relatively few methods available based on the Bayesian
approach (Lazaric and Ghavamzadeh 2010; Wilson et al.
2007). Unlike these work, we exploit an auxiliary extension
of the neural network (Nix and Weigend 1994) to quantify
the predictive uncertainty in the critic of DDPG.

Mixture-of-experts (MoE) (Jacobs et al. 1991; Jordan
and Jacobs 1994) is an effective ensemble learning ap-
proach that uses a gating function to specialize models to
alleviate overfitting and improve the performance of com-
plex tasks (Shazeer et al. 2017). This paper presents a
novel framework based on MoE architecture tackling multi-
task RL by two components, one based on the multi-head
DDPG (Zheng et al. 2018) as experts and one using a self-
supervised gating function for expert scheduling.

Self-supervised learning enables learning without explicit
supervision and exploits unlabeled data to provide intrinsic
representations as self-supervision. It has been prevalently
pursued in computer vision (Donahue, Krähenbühl, and Dar-
rell 2017; Doersch and Zisserman 2017) and RL (Shelhamer
et al. 2016; Pathak et al. 2017). In this work, we first inves-
tigate the effectiveness of optimizing a gating function via
uncertainty estimation in a completely self-supervised man-
ner, instead of common supervised approaches.

3 Background
3.1 Preliminary and Notation
In the reinforcement learning setup, tasks are modeled as a
Markov decision process (MDP) where an agent in a state
st interacts with an environment E by applying an action
at and receives a reward rt together with a new state st+1 at
each discrete time step t. MDP consists of a state space S, an
action space A, a state transition function P : S × A 7→ S ,
a reward functionR : S ×A 7→ R and a discount factor γ ∈
(0, 1], which can be formalized as 〈S,A,P,R, γ〉. We de-
fine the overall return from the state st as the discounted cu-
mulated rewardRt = rt+

∑T
i=t+1 γ

i−tR(si, ai). The agent
aims to find an optimal policy π : S 7→ A, which can be
stochastic or deterministic, to maximize the expected return
from the initial state, Rπ(s0) = Eri≥0,si≥0∼E,ai≥0∼π[R0].
Another key concept is the action value, also calledQ-value,
which is an estimate of the expected discounted return for
selecting action at in state st and following policy π:

Qπ(st, at) = Eri>t,si>t∼E,ai>t∼π[Rt|st, at]. (1)

3.2 Deep Deterministic Policy Gradient (DDPG)
This work builds upon DDPG (Lillicrap et al. 2016), a
model-free off-policy algorithm for high-dimensional con-
tinuous action domains. DDPG utilizes an actor-critic archi-
tecture including aQ-value function (the criticQ) optimized
by temporal difference (TD) in policy evaluation step,

L(θQ) = 1

n

∑
i

(ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ

′
)

−Q(si, ai|θQ))2,
(2)

and a policy function (the actor µ) updated by policy gradi-
ent (Silver et al. 2014) in policy improvement step,

∇θµ ←
1

n

∑
i

∇aQ(si, a|θQ)|a=µ(si|θµ)∇θµµ(si|θ
µ), (3)

where Q′, µ′ are target networks that slowly track Q,µ re-
spectively in each update step,

θQ
′
← (1− τ)θQ

′
+ τθQ, θµ

′
← (1− τ)θµ

′
+ τθµ, (4)
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Figure 1: Left: Structure of SUM. When the agent receives a state from an unknown environment, the gating network (red)
outputs a scheduling vector expecting a specific expert (actor head) with the highest activation to interact. Given the same state,
each actor head (blue) produces an action together with respective Q-value and Q-variance from the paired critic head (green).
Based on this information, a transformer (purple) generates a “ground truth” scheduling vector to select an expert to interact.
Besides, experiences with decayed masks are stored for training both the experts and the gating function. Right: Mechanism of
the multi-head critic evaluating during training and the multi-head actor activated by the gating network during testing.

with τ ∈ (0, 1]. Benefiting from experience replay and target
networks, DDPG is trainable on off-policy data with stabil-
ity, which significantly brings sample efficiency.

4 Self-Supervised Mixture-of-Experts
In this work, we develop Self-Supervised Mixture-of-
Experts (SUM) for multi-task RL (see Figure 1). For clar-
ity of explanation, we first describe Uncertainty-Enhanced
Multi-head DDPG as basic experts of MoE. Following that,
we show how Self-Supervised Gating Network trains and
works for expert specialization and scheduling.

4.1 Uncertainty-Enhanced Multi-head DDPG
Though vanilla DDPG (Lillicrap et al. 2016) shows impres-
sive performance in continuous control tasks, it is suscepti-
ble to the randomness of complex environments, which may
lead to data inefficiency and poor generalization. To coun-
teract the adverse effects of the above problems, we intro-
duce predictive uncertainty estimation into DDPG to capture
the uncertainty of states from known and unknown tasks.
Specifically, following (Nix and Weigend 1994) which is
demonstrated effective in quantifying uncertainty, we extend
the critic network to generate two values in the final layer,
corresponding to the predicted mean Q-value Q(si, ai) and
Q-variance σ2(si, ai) (shown in Figure 1). By treating the
observed Q-value as a sample from a Gaussian distribution
with the predicted mean and variance, the critic is optimized
by minimizing the negative log-likelihood (NLL) criterion,

L(θQ) = 1

n

∑
i

(
log σ2(si, ai)

2
+

(yi −Q(si, ai))
2

2σ2(si, ai)
), (5)

where yi is the target Q-value and n is the mini-batch size.
With this enhancement, the critic is supervised towards

producing not only accurate but reliable Q-value with well-

calibrated uncertainty estimation reduction, which is robust
to task shift. Besides, uncertainty-enhanced DDPG can de-
tect and avert overfitting in advance by techniques like early
stopping. In multi-task scenarios, utilizing only Q-value
from the critic trained on a specific task is not sufficient and
reliable for estimating Q-value in different or unseen tasks.
However, a critic with auxiliary uncertainty estimation can
improve understanding of the generalization and adaptation
abilities in unknown domains, which further benefits multi-
task performance. Notably, this is a general extension for
estimating the uncertainty in the environment requiring few
modifications to value-based RL algorithms.

Towards the goal of multi-task learning, we contribute
predictive uncertainty estimation to SOUP (Zheng et al.
2018), an algorithm that combines multi-head bootstrapped
DDPG with self-adaptive confidence to alleviate spotty Q-
value in single-task RL. However, this rough state-based
confidence strategy with the scarcity of crucial relevant in-
formation, such as actions selected by respective actors and
intermediate representations in the critics, hampers its ca-
pacity of accurate evaluation, especially in multi-task do-
mains with different complexity and reward schemes. In-
stead of crude external uncertainty approximator in SOUP,
we directly extend each critic of multi-head DDPG with an
auxiliary output unit as Q-variance. Since this unit is acces-
sible to exploit the entire crucial information, it yields higher
potentiality towards well-calibrated uncertainty estimation.
Note that, different from SOUP selecting an action simply
with the maximum Q-value, our approach takes not only Q-
value but mainlyQ-variance, into consideration for potential
action selection more effectively and reasonably.

Robust Generalization Well-calibrated predictive uncer-
tainty estimation assists the agent in robustly averting over-
confident incorrect predictions. Utilizing the multi-head ar-
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chitecture simulates Deep Ensembles technique (Lakshmi-
narayanan, Pritzel, and Blundell 2017), averaging predic-
tions over multiple models, which significantly improves un-
certainty quality and robustness by variance reduction. In
this case, critics can produce more accurate Q-value esti-
mates by “ensemble” improving the generalization ability
against overfitting. Furthermore, when applying to unknown
tasks, highly specialized experts with relatively lower un-
certainty shows reliably higher confidence to tackle specific
states, which benefits effective expert scheduling enhancing
the overall generalization capacity across multiple tasks.

4.2 Self-Supervised Gating Network
The core of MoE is an effective gating function which per-
forms expert specialization in training and expert scheduling
in testing. We propose a self-supervised gating network cal-
ibrated completely by uncertainty estimates from experts in
an end-to-end manner without explicit supervision.

Self-Supervised Training When the agent of MoE with
K heads {Q,µ}1,...,K interacts with the environment given
st, the gating network G, parameterized by θG, generates
a gating value as a scheduling vector G(st), which denotes
different degrees of expected preference for experts to inter-
act in the current state st. Note that each actor head in multi-
head DDPG is considered as an expert. Following that, each
actor head produces an action candidate akt while at the same
time its paired critic head produces respective Q-value Qk
and Q-variance σ2

k, which represents how uncertain the ex-
pert is about its evaluation of the action akt . Based on the un-
certainty estimates σ2, we construct the “ground truth” soft-
max gating g′(st) (Shazeer et al. 2017) as self-supervision:

g′(st) = Softmax(H(st)). (6)
Note thatH(st) is a one-hot vector only when an expert spe-
cializes and “masters” exploiting much more rewards in st
with discriminatively highest Q-value (i.e., twice of others)
and reliably lowest Q-variance concurrently, otherwise

H(st)k =

{
+1, σ2

k ∈ KeepTopX(σ2, x),
0, otherwise,

(7)

where KeepTopX(v, x) keeps only top x values in v (we
set x = 2). In this case, H(st) encourages the gating net-
work to alleviate overfitting by activating experts with rela-
tively high uncertainty which own more potential to explore
and exploit more rewards in the state st compared with the
lower ones, which may be stuck in local optima. In prac-
tice, H(st) usually results in a one-hot vector in most cases
(85%∼). The action at is chosen to interact with st, receiv-
ing a new state st+1 and a reward rt, according to

at = {akt |k = argmax
k
{g′(st)}}. (8)

A new transition (st, at, st+1, rt,mt) is stored in replay
buffer for experience play, wheremt = {mk

t |mk
t = g′k(st)}

represents the probabilities of this transition trained by the
experts. During training, a mini-batch of n samples are col-
lected to optimize both experts as vanilla DDPG and the gat-
ing function by Mean Squared Error (MSE) as follows:

L(θG) = 1

n

∑
i

(g
′
(si)−G(si))2, g

′
(si) =mi. (9)

Algorithm 1 Self-Supervised Mixture-of-Experts

Input: number of headsK, environmentsN . batch size n
Initialize: Initialize critic and actor networks with K
heads {θQk , θ

µ
k}Kk=1 and copy weights to target networks

{θQ
′

k , θµ
′

k }Kk=1. Initialize the gating network θG, the re-
play buffer R, and multi-task environments {E}Ni=1
for episode e = 1, Emax do

Initialize a Gaussian noise N for action exploration
Get state s0 from randomly selected environment Ei
for step t = 1, Tmax do

Generate a scheduling vector G(st)
K actor heads output actions
K critic heads output Q-values and Q-variances
Generate targeted scheduling vector g′(st) by (6)
Select action at according to (8) and apply N
Execute at then observe reward rt and state st+1

Assign mask mt = g′(st)
Store transition (st, at, st+1, rt,mt) in R
Randomly select k-th actor and critic heads
Randomly sample a batch of n transitions
Update paired heads µk, Qk according to (3) (5)
Update the k-th target networks according to (4)
Update the gating network according to (9)
Decay xtDM according to (10)

end for
end for

A more detailed procedure is in Figure 1 and Algorithm 1.

Why Uncertainty Estimation as Self-Supervision Dif-
ferent from common supervised based MoE demanding
large task-specific datasets with rich annotations (i.e., classi-
fication), utilizing self-supervision exploited from raw data
is significant to accomplish the supervision-starved tasks
without human intervention. Well-calibrated uncertainty es-
timation is demonstrated effective towards understanding
the generalization capacity when tasks shift and simple to
implement (Lakshminarayanan, Pritzel, and Blundell 2017).
It is intuitively suitable for MoE in multi-task RL domain,
where Q-value evaluation may be inaccurate and sufficient
for decision-making across MDPs. In this situation, uncer-
tainty estimation as a reliable criterion encourages expert
specialization and scheduling appropriately driven by their
“confidence” in a completely self-supervised manner.

Decayed Mask Experience Replay (DMER) The crux of
MoE is balancing expert utilization in both diversification
and specialization (Shazeer et al. 2017). We notice that the
gating network sometimes tends to converge to a situation
where it only produces large weights for the same few ex-
perts, which hampers the overall multi-task performance.
We exploit decayed mask experience replay designed for
training multiple RL experts diversely. Concretely, we re-
place x in Eq. (7) with xtDM , which is initialized as the num-
ber of heads K and decays throughout training:

xt+1
DM = dxtDM ∗ λne, λn =

t∏
i=1

λ, (10)
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where λ is the decay rate. In the early period, experts are
trained in the entire replay buffer for acquiring common
behaviors to tackle basic tasks, which leads to diversifica-
tion and alleviates the risk of imbalanced capacity and even
single-expert domination. As xtDM decreases, experts with
fundamental skills are provided different experiences ac-
cording to the diverse masks generated from their uncer-
tainty estimates and specialized in different directions.

Data Efficiency Bootstrap technique is demonstrated ef-
fective for deep exploration (Osband et al. 2016). DMER
applies a masking mechanism similar as bootstrap, which
induces diversity for efficient exploration, though in vary-
ing degrees during different stages from early diversifica-
tion to late specialization. This breaks the limitation of com-
mon task-specific design where experts are only trained on
assigned tasks with risk of overfitting. Besides, under the
architecture including multiple experts with shared param-
eters, common knowledge across related tasks can be dif-
fused and transferred quickly, which significantly improves
data efficiency and the overall multi-task performance.

5 Experiments
We evaluate our approach on continuous control environ-
ment MuJoCo (Todorov, Erez, and Tassa 2012) and its multi-
task extension (Henderson et al. 2017) (see Figure 2). In
most environments, a specific robot is rewarded by moving
forward as fast as possible. We demonstrate the effectiveness
and analyze the performance of SUM by experiments:

1. We compare the impacts benefiting from uncertainty en-
hancement in the single-task environment.

2. We further examine the generalization ability in tackling
multiple related tasks in difficult situations.

3. We evaluate data efficiency and expert utilization of our
model on learning multiple tasks simultaneously.

In all cases, we use fully-connected network (see Figure 1),
where hidden layer and head layer sizes are denoted by (N ,
M). Unless otherwise stated, we adopt the network structure

(e) (f) (g) (h)

(a) (b) (c) (d)

Figure 2: Illustrations of basic (top) and extended (bottom)
locomotion tasks on MuJoCo: (a) Hopper, (b) Walker2D,
(c) HalfCheetah, (d) Humanoid, (e) HopperWall, (f) Hop-
perStairs, (g) HumanoidWall and (h) HumanoidStandup.
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Figure 3: Performance of models with a different number
of heads. The shaded area denotes the mean ± the standard
deviation. SUM (K = 3, 5) with uncertainty enhancement
outperforms other models in both reward and learning speed
by reliably accurate Q-value evaluation.
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Figure 4: Generalization in different steps. DK and SK de-
note DDPG and SUM with K heads. The bar plots indicate
SUM achieve robust generalization with less gap between
the test and training performances, which demonstrates un-
certainty enhancement effective for alleviating overfitting.

and common hyperparameters same as (Zheng et al. 2018):
(256, 256, 128) for the critic and (256, 128) for the actor with
Leaky ReLU activation. The gating network is (256, 128)
with a softmax layer and updated by a learning rate 1e−4.
These networks are trained by Adam (Kingma and Ba 2015)
with a batch size n = 1024. Besides, we fix the decay rate
for DMER λ = 0.9997. Figure 3, 5, 6 depict the averaged
return by lines and standard deviation (std) return by shaded
areas over 10k episodes, while Table 1, 2 tabulate the mean
and std of the cumulative reward across 20 sample rollouts.

5.1 Uncertainty Enhancement
Accurate Q-value Evaluation in Individual Tasks Fig-
ure 3 shows that in both environments, equipped with the
same head K = 1, SUM achieves slightly better perfor-
mance faster than vanilla DDPG since SUM is optimized by
NLL, which captures uncertainty, instead of MSE. Namely,
training by the extra objective for uncertainty motivates the
critic to be optimized in the direction of producing not only
accurate but reliable Q-value with well-calibrated uncer-
tainty estimation reduction. The auxiliary supervision fur-
ther stabilizes the training with better performance and less
oscillations. This active impact is magnified obviously with
the increasing number of expert heads by comparison be-
tween multi-head DDPG and SUM with heads K = 3. In
this case, shared architecture mimics “ensemble combina-
tion”, which further achieves high-quality uncertainty esti-
mation and reduces variance for accurate Q-value.
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HalfCheetah TRPO - After Training TRPO - Fully Trained After Training Fully Trained Together
SmallFoot 898.51 ± 363.85 2003.46 ± 933.59 55% 1441 ± 597 3460 ± 460 58% 3748 ± 478
BigFoot 1997.73 ± 101.36 2211.92 ± 65.81 10% 1532 ± 580 2392 ± 421 36% 2754 ± 389
SmallLeg 1494.03 ± 310.11 2327.16 ± 702.69 36% 2243 ± 516 4233 ± 322 47% 4175 ± 357
BigLeg 2101.74 ± 95.98 2269.78 ± 95.57 7% 2234 ± 415 3147 ± 347 29% 3264 ± 303
SmallThigh 1672.22 ± 110.11 2555.16 ± 96.80 35% 2041 ± 538 3346 ± 382 39% 4143 ± 291
BigThigh 2345.88 ± 381.33 2424.95 ± 94.19 3% 1805 ± 586 2465 ± 475 27% 2218 ± 514
SmallTorso 1845.20 ± 86.03 2294.72 ± 109.20 20% 1816 ± 425 2870 ± 245 37% 2548 ± 387
BigTorso 2620.46 ± 297.88 2686.13 ± 97.96 2% 2809 ± 551 3478 ± 423 19% 3737 ± 375

Table 1: Average and standard deviation (µ ± σ) of reward across a set of 20 sample rollouts on modified HalfCheetah tasks.
The percentage represents the ratio of average changes between After Training and Fully Trained (in order). By comparison
to TRPO (Henderson et al. 2017), SUM (K = 3) achieves an overall improvement of performance attacking catastrophic
forgetting effectively. Together shows the reward obtained by SUM after training in all tasks simultaneously (without order).

Robust Generalization against Overfitting To demon-
strate the effectiveness of uncertainty enhancement for tack-
ling overfitting, we measure the generalization capacity in
individual tasks by the gap between the test and training per-
formances. Figure 4 represents the averaged loss evaluated
in the same environments with different random seeds af-
ter training. Though sometimes multi-head DDPG performs
better in training period, it suffers from overfitting during
testing with different randomness, since overconfident Q-
values mislead the agent into local optima. After training by
NLL with uncertainty estimation, SUM generalizes robustly
against overfitting tackling both tasks with less loss in per-
formance when tested. Concretely, DDPG generalizes with
a decreased performance of factor α ∈ [0.32, 0.51] while
SUM decreases by α ∈ [0.05, 0.28] throughout training.

5.2 Generalization in Difficult Situations
In this experiment, we focus on the generalization ability of
SUM attacking catastrophic forgetting and handling unseen
tasks. The environments are a series of HalfCheetah variant
tasks with modified body parts, which demands a common
and robust behavior adaptive to any variants.

Generalization against Catastrophic Forgetting Due to
the susceptibility of RL agents to different reward schemes
and catastrophic forgetting, it is difficult to achieve an over-
all satisfying performance across all tasks simultaneously.
We train SUM consecutively on each environment in the or-
der as listed in Table 1. After having trained on a specific
task, we evaluate SUM immediately on that environment
across 20 sample rollouts, denoted by After Training (hav-
ing seen all the previous environments). We repeat this pro-
cedure and finally evaluate the reward across 20 sample roll-
outs on each environment, denoted by Fully Trained (hav-
ing seen all the environments). We measure the generaliza-
tion capacity against catastrophic forgetting by the gap be-
tween After Training and Fully Trained in all tasks as (Hen-
derson et al. 2017). To ensure comparability, we adopt the
same network with hidden layers (100, 50, 25).

Table 1 shows the difference between TRPO and SUM
attacking catastrophic forgetting when learning in order. We
ascribe this to the difficulty of tackling task shift by only one

Env. Train (3M) Env. Test
SmallFoot 5628 ± 139 SmallLeg 5298 ± 288
BigFoot 4487 ± 289 BigLeg 5083 ± 134
SmallThigh 5025 ± 137 SmallTorso 5112 ± 207
BigThigh 5644 ± 171 BigTorso 5391 ± 167
SmallFoot 5058 ± 490 BigFoot 4326 ± 333
SmallLeg 5822 ± 367 BigLeg 5741 ± 132
SmallThigh 5346 ± 436 BigThigh 5681 ± 325
SmallTorso 5432 ± 258 BigTorso 5837 ± 360
Wall 4304 ± 521 Wall 4017 ± 501
All Envs 3525 ± 614 Wall 3955 ± 451

Table 2: Performance of SUM (K = 3) tested on unseen
tasks. The last row shows results on a different environment,
Wall-v0, after having trained on all modified body tasks is
competitive with that trained on the individual Wall-v0 task.

single policy with risk of overfitting, which may limit the
improvement of performance in multiple tasks. As an auxil-
iary criterion, uncertainty estimation works by understand-
ing the generalization of different experts for effective ex-
pert scheduling. With this enhancement, SUM outperforms
TRPO not only in substantially higher reward but robust
generalization against catastrophic forgetting. Moreover, it
is also feasible for SUM to learn concurrently without order
and achieve a satisfying performance, which means SUM
can be trained by samples from different tasks with vary-
ing reward schemes simultaneously (shown as Together). In
this situation, SUM can capture each expert’s uncertainty es-
timates of states from various domains. On the one hand, ex-
perts are trained with a shared structure for efficient knowl-
edge sharing. On the other hand, the gating network self-
supervised by uncertainty estimation can determine the most
reliably potential expert to tackle the task.

Generalization in Unseen Environments Table 2 shows
when tested on unseen environments, SUM can robustly
generalize based on the common knowledge learned be-
fore. In particular, HalfCheetahWall-v0 differently rewards
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Figure 5: Performance of models with heads K = 3 on learning multiple Hopper tasks without order and any prior knowledge
(i.e., the distribution of all tasks) simultaneously. SUM with DMER outperforms others in both reward and learning speed.
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Figure 6: Performance of models with heads K = 5 on learning multiple Humanoid tasks without order and any prior knowl-
edge (i.e., the distribution of all tasks) concurrently. SUM with DMER outperforms others in both reward and learning speed.
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Figure 7: Expert utilization of different models during test-
ing, shown by the use frequencies in 1K steps. DMER moti-
vates relatively evener utilization and better specialization.

an agent to step over a wall, where common multi-task
agents tested on this unseen environment are always stuck in
front of the wall. However, SUM trained on modified body
variant tasks achieves a competitive performance as single-
task learning. Utilizing self-supervised expert scheduling,
experts with different potential for tackling each state are
allocated more appropriately and effectively.

5.3 Multi-task Performance
We conduct two group of multi-task experiments including
Hopper that learns to hop on flat ground, walls, and stairs,
and Humanoid that learns to stand up, walk, and pass a wall
(see Figure 2). We compare SUM with SOUP (Zheng et al.
2018), an approach based on multi-head DDPG with a con-
fidence strategy, to emphasize clearly the strengths of self-
supervised expert scheduling and DMER. Figure 5, 6 shows
that SUM not only accelerates the training, but achieves
more cumulative rewards by data efficiency. Under multi-
head MoE architecture, common representations and knowl-

edge are shared and diffused quickly, which boosts the learn-
ing with fewer experiences. Furthermore, experts are well-
generalized for scheduling, which improves performance.

Expert Utilization and Specialization Note that,
StandupRunWall is an extremely challenging task since one
of the component environment, HumanoidStandup, pro-
vides denser rewards via a different reward scheme making
a robot stand up as fast as possible. Though we apply reward
scale techniques, SUM and SOUP suffer from imbalanced
expert utilization dominated by the expert which is always
trained by rewards from HumanoidStandup.

To counteract the adverse effects, SUM solves the prob-
lem on the strength of decayed mask experience replay
(DMER). In the early period, DMER encourages experts to
acquire basic behaviors with equal access to the overall ex-
periences towards exploration in various directions. In this
case, different from ensemble evaluation in SOUP with risk
of single-head and individual-task domination, no experts
can dominate the training in SUM with DMER. While in the
late period, samples are masked according to uncertainty es-
timates from experts, which works similar as bootstrap tech-
nique limiting the experts to only adapt to fewer and diverse
environments. It further leads to expert specialization for ef-
ficient expert scheduling tackling multiple tasks. Figure 7
illustrates that SOUP suffers from single-head domination.
Though SUM avoids this issue, imbalanced expert utiliza-
tion still hampers its performance. Taking full advantage of
DMER, SUM can motivate an expert to specialize in one
or two tasks averting domination. Figure 7 represents that
SUM learns to accomplish each task by activating several
heads more frequently and tackle StandupRunWall task by
balanced utilization and robust generalization.
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6 Conclusion
In this paper, we propose SUM, an effective algorithm for
multi-task reinforcement learning, improving both data effi-
ciency in each task and generalization ability across multiple
tasks. SUM utilizes multi-head DDPG as experts enhanced
by predictive uncertainty estimation, which improves gener-
alization capacity against overfitting. A self-supervised gat-
ing network trained by uncertainty feedback from experts
is exploited to achieve efficient expert scheduling, which
improves data efficiency and performance across multiple
tasks. Moreover, to alleviate the imbalanced expert utiliza-
tion, we adopt decayed mask experience replay to motivate
early diversification and late specialization.

To the best of our knowledge, our approach is the first
work to investigate the effectiveness of exploiting predictive
uncertainty estimation in multi-task reinforcement learn-
ing in an end-to-end self-supervised manner. We demon-
strate the effectiveness, performance and robust generaliza-
tion ability of our algorithm on extended MuJoCo multi-task
environments, especially in difficult situations.
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