
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

IPOMDP-Net: A Deep Neural Network for Partially
Observable Multi-Agent Planning Using Interactive POMDPs

Yanlin Han, Piotr Gmytrasiewicz
Department of Computer Science
University of Illinois at Chicago

Chicago, IL 60607

Abstract

This paper introduces the IPOMDP-net, a neural network
architecture for multi-agent planning under partial observ-
ability. It embeds an interactive partially observable Markov
decision process (I-POMDP) model and a QMDP planning
algorithm that solves the model in a neural network archi-
tecture. The IPOMDP-net is fully differentiable and allows
for end-to-end training. In the learning phase, we train an
IPOMDP-net on various fixed and randomly generated en-
vironments in a reinforcement learning setting, assuming ob-
servable reinforcements and unknown (randomly initialized)
model functions. In the planning phase, we test the trained
network on new, unseen variants of the environments under
the planning setting, using the trained model to plan without
reinforcements. Empirical results show that our model-based
IPOMDP-net outperforms the other state-of-the-art model-
free network and generalizes better to larger, unseen environ-
ments. Our approach provides a general neural computing ar-
chitecture for multi-agent planning using I-POMDPs. It sug-
gests that, in a multi-agent setting, having a model of other
agents benefits our decision-making, resulting in a policy of
higher quality and better generalizability.

Introduction
Decision-making under partial observability is fundamen-
tally important but computationally hard, especially in
multi-agent settings. In partially observable multi-agent en-
vironments, an agent needs to deal with uncertainties from
its own models as well as impacts from other agents ac-
tions caused by their models. To learn policies in such
settings, one approach is to learn models and solve them
through planning. If the models are known, it reduces to a
planning problem and can be formulated as an interactive
partially observable Markov decision process (I-POMDP)
(Gmytrasiewicz and Doshi 2005). Although approximate al-
gorithms have made progress on mitigating the computing
complexity (Doshi and Gmytrasiewicz 2009; Han and Gmy-
trasiewicz 2018), solving I-POMDPs exactly is still com-
putationally intractable for the worst case. Moreover, con-
structing I-POMDP models manually or learning them from
observations remains difficult. An alternative approach is to
learn policies directly, such as using model-free reinforce-

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ment learning methods, in which the rewards are usually as-
sumed obtainable. While the model-free policy learning can
be end-to-end, it lacks the model information for effective
generalization (Karkus, Hsu, and Lee 2017). Particularly, in
the multi-agent domain, other agents’ actions impact the en-
vironment, which indirectly impact our policies. Therefore,
we prefer a model-based approach, since having a model of
other agents helps our reasoning about their actions and con-
sequently benefits our decision making.

The unprecedented success of deep neural networks
(DNNs) in supervised learning (Ciregan, Meier, and
Schmidhuber ; Farabet et al. 2013; Krizhevsky, Sutskever,
and Hinton 2012) provides new approaches to decision
making under uncertainty. Convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) have been
applied to tasks like Atari games (Mnih et al. 2015), robotics
(Levine et al. 2016), and 2D path planning (Karkus, Hsu, and
Lee 2017). In these tasks, a DNN is trained to approximate
a policy function that maps an agent’s observations to opti-
mal actions. The deep Q-network (DQN), which consists of
convolutional layers for feature extraction and a fully con-
nected layer for mapping features to actions, tackles many
Atari games with the same network architecture (Mnih et al.
2015). DQN is inherently reactive and lacks explicit plan-
ning computation (Tamar et al. 2016). The deep recurrent
Q-network (DRQN) extends DQN to the partially observ-
able domain by replacing the fully connected layer with a
recurrent long short-term memory (LSTM) (Hochreiter and
Schmidhuber 1997) layer to integrate temporal information
(Hausknecht and Stone 2015). Furthermore, the value iter-
ation network (VIN) started to embed specific computation
structures (Tamar et al. 2016), particularly the value iteration
algorithm, in the network architecture and solves fully ob-
servable Markov decision processes (MDPs). The QMDP-
net further embeds a POMDP model and a QMDP planning
algorithm that solves the model in a RNN (Karkus, Hsu,
and Lee 2017). However, all the discussed neural networks
are either model-free or for single-agent settings. Unless we
model other agents’ impact as noise and embed it into the
world dynamic, which often leads to inferior solution qual-
ity, it is not feasible to directly apply these networks into a
multi-agent partially observable domain.

In this work, we propose a neural network architec-
ture, the IPOMDP-net, for multi-agent planning under par-

6062

tial observability. We extends the QMDP-net to a multi-
agent domain by combining an interactive POMDP (I-
POMDP)(Gmytrasiewicz and Doshi 2005) model with a
QMDP planning algorithm and embedding both in a re-
current neural network. We implement the IPOMDP-net on
GPU-based computing devices and train it on problems of
various sizes and dimensions. The training starts from ran-
domly initialized weights, and is performed in a reinforce-
ment learning fashion assuming the reward is obtainable.
We then evaluate the trained IPOMDP-net by comparing its
performance with another state-of-the-art model-free neural
network. During the testing, we remove the obtainable re-
ward assumption of all trained neural networks and test them
on new unseen settings of the same problems. Therefore,
they are using learned policies and acting based on observa-
tion and action sequences in the same way as the symbolic
I-POMDP does. We show empirical results that our model-
based IPOMDP-net outperforms the state-of-the-art model-
free network in different tasks.

Our approach provides a general neural computing ar-
chitecture for multi-agent planning using I-POMDPs. It
combines the benefits of model-free learning and model-
based planning. Compared with model-free networks, the
IPOMDP-net trained on small problem sizes generalizes
more effectively to larger difficult settings. It suggests that,
in a multi-agent setting, having a model of other agents ben-
efits our decision-making, resulting in a policy of higher
quality and better generalizability.

Background
In this section, we will briefly introduce the underlying
multi-agent planning model, the interactive POMDP (Gmy-
trasiewicz and Doshi 2005), that is encoded in our neural
network architecture.

I-POMDP Framework
I-POMDPs generalize POMDPs (Kaelbling, Littman, and
Cassandra 1998) to multi-agent settings by including mod-
els of other agents in the belief state space (Gmytrasiewicz
and Doshi 2005). The resulting hierarchical belief structure
represents an agent’s belief about the physical state, belief
about the other agents and their beliefs about others’ be-
liefs, and can be nested infinitely in this recursive manner.
For simplicity, we consider two interacting agents i and j.
This formalism generalizes to more number of agents in a
straightforward manner.

A computable finitely nested interactive POMDP of agent
i , I-POMDPi,l, is defined as:

I-POMDPi,l = 〈ISi,l, A,Ωi, Ti, Oi, Ri〉 (1)

where ISi,l is a set of interactive states, defined as ISi,l =
S ×Mj,l−1, l ≥ 1, S is the set of physical states, Mj,l−1

is the set of possible models of agent j, and l is the strategy
(nesting) level.

In this paper, we focus on a specific subset of model
classes, the intentional models, which ascribe beliefs,
preferences, and rationality in action selection to other
agents. The intentional models, usually denoted as Θj,l−1,

of agent j at level l − 1 is defined as θj,l−1 =
〈bj,l−1, A,Ωj , Tj , Oj , Rj , OCj〉, where bj,l−1 is agent j’s
belief nested to the level (l − 1), bj,l−1 ∈ ∆(ISj,l−1),
and OCj is j’s optimality criterion. It can be rewritten as
θj,l−1 = 〈bj,l−1, θ̂j〉, where θ̂j includes all elements of the
intentional model other than the belief.

The ISi,l can be defined in an inductive manner:

ISi,0 = S, θj,0 = {〈bj,0, θ̂j〉 : bj,0 ∈ ∆(S)}

ISi,1 = S × θj,0, θj,1 = {〈bj,1, θ̂j〉 : bj,1 ∈ ∆(ISj,1)}
...... (2)
ISi,l = S × θj,l−1, θj,l = {〈bj,l, θ̂j〉 : bj,l ∈ ∆(ISj,l)}

All remaining components in an I-POMDP are similar to
those in a POMDP. A = Ai × Aj is the set of joint actions
of all agents. Ωi is the set of agent i’s possible observations.
Ti : S ×A× S → [0, 1] is the transition function. Oi : S ×
A×Ωi → [0, 1] is the observation function.Ri : ISi×A→
R is the reward function.

Interactive Belief Update
Given the definitions above, the interactive belief update can
be performed as follows, by considering others’ actions and
anticipated observations:

bti,l(is
t) = Pr(ist|bt−1

i,l , at−1
i , oti) (3)

= α
∑
ist−1

bi,l(is
t−1)

∑
at−1
j

Pr(at−1
j |θt−1

j,l−1)T (st−1, at−1, st)×

Oi(s
t, at−1, oti)

∑
otj

Oj(st, at−1, otj)τ(bt−1
j,l−1, a

t−1
j , otj , b

t
,l−1)

Conveniently, the equation above can be summarized as
bti,l = SE(bt−1

i,l , a
t−1
i , oti).

Compared with POMDP, there are two major differences.
First, the probability of other’s actions given his models
needs to be computed since the state now depends on both
agents’ actions (the second summation). Second, the model-
ing agent needs to update his beliefs based on the anticipa-
tion of what observations the other agent might get and how
it updates (the third summation).

While exact interactive belief update is intractable, there
are sampling-based approximations using customized inter-
active version of particle filters (Doshi and Gmytrasiewicz
2009; ?), which will be embedded in the IPOMDP-net in a
neural analogy.

The value iteration for I-POMDP is performed on interac-
tive belief states in the following way:

V (θi,l) = max
ai∈Ai

Q(θi,l, ai) (4)

= max
ai∈Ai

{ ∑
is∈IS

bi,l(is)ERi(is, ai)+

γ
∑
oi∈Ωi

P (oi|ai, bi,l)V (〈SE(bi,l, ai, oi), θ̂i〉)
}

where ERi(is, ai) =
∑
aj
Ri(is, ai, aj)Pr(aj |θj,l−1).

6063

Then the optimal action, a∗i , for an infinite horizon crite-
rion with discounting, is part of the set of optimal actions,
OPT (θi), for the belief state:

OPT (θi,l) = arg max
ai∈Ai

Q(θi,l, ai) (5)

IPOMDP-Net
Overview
The IPOMDP-net is a neural analogy of the I-POMDP
framework. As a recurrent neural network, it approximates
the belief update as well as the policy function that maps the
belief states to optimal actions. Similarly to the QMDP-net
(Karkus, Hsu, and Lee 2017), it combines a parameterized
model with an approximate algorithm that solves the model
in a single, differentiable neural network. But we extend it to
the multi-agent setting by embedding the I-POMDP model
and the QMDP algorithm into the network architecture. This
extension is non-trivial, as will be shown in the following
section, because embedding an I-POMDP in the network re-
quires encoding the sampling-based belief update algorithm
and using sub-network modules to represent the hierarchical
interactive belief structure.

Formally, let I − POMDPi,l(w) = 〈ISi,l(·|w), A,Ωi,
Ti(·|w), Oi(·|w), Ri(·|w)〉 be the embedded I-POMDP
model, where each element is defined the same as in
Equation 1. Notice that the I − POMDPi,l(w) is now
parametrized by w, which are the parameters of the other
agent j’s model in i’s interactive state, ISi,l(·|w), i’s own
transition function, Ti(·|w), observation function, Oi(·|w),
and reward function, Ri(·|w). In the IPOMDP-net approxi-
mation, w are also the weights of the neural network. In the
case that both agents’ models are known, model parameters
are preassigned as weights and this task reduces to a multi-
agent planning problem.

Figure 1: IPOMDP-net architecture overview. It embeds an
interactive belief update algorithm and the QMDP planner,
the hidden state encodes the interactive belief of agent i.

An IPOMDP-net consists of three main network modules
as shown in Figure 1. The first two modules (blue boxes)
perform interactive belief update using a customized particle
filter for intentional models (Han and Gmytrasiewicz 2018).
The interactive belief update module uses the level-0 belief
update as a sub-module when the nesting level l bottoms out
at 0. The third module (red box) represents the QMDP algo-
rithm, which chooses the action given the current belief. Be-
sides being a planning network, all modules of IPOMDP-net
are differentiable, allowing the entire network to be trained
end-to-end.

Network Architecture

The intuition behind embedding the I-POMDP model and
the QMDP algorithm in a single, differentiable neural net-
work is the neural analogy of linear and maximum oper-
ations used in the related computations. Namely, the ma-
trix multiplications and summations can be represented by
convolutional layers and maximum operations can be repre-
sented by max-pooling layers.

Below we will give some details on the individual mod-
ules. For simplicity, assume there are two agent i and j in
the game and the strategy level is 1. Consider the two-agent
tiger game (Gmytrasiewicz and Doshi 2005), which general-
izes the classic single agent tiger game (Kaelbling, Littman,
and Cassandra 1998) to multi-agent settings. Two agents are
standing in front of two doors. There are a tiger and a pile of
gold behind each door. The agents take turns to open doors,
they get rewards for getting the gold or penalties for fac-
ing the tiger. They can choose to hear for further informa-
tion about the tiger’s location, but their hearing is imperfect
and they can not directly observe each other’s actions. In the
I-POMDP formation, it is defined as: ISi,1 = S × Θj,0,
where S = {tiger on the left (TL), tiger on the right (TR)}
and Θj,0 = {< bj(s), Aj ,Ωj , Tj , Oj , Rj , OCj >}; A =
Ai×Aj is the set of joint actions, {listen (L), open left door
(OL) and open right door(OR)} × {L, OL, OR}; Ωi: {growl
from left (GL) or right (GR)} × {creak from left (CL), right
(CR) or silence (S)}; Ti = Tj : S × Ai × Aj × S → [0, 1];
Oi : S ×Ai ×Aj ×Ωi → [0, 1]; Ri : IS ×Ai ×Aj → R.

The IPOMDP-net works on a sampling-based repre-
sentation of interactive belief state ISi,1 = S × Θj,0.
For the tiger game, a sample of physical state can
be simply denoted using one-hot vectors, for example
[1,0] represents s=TL. A sample of j’s model can be
represented as a vector of length eight, for example
θj = 〈0.5, 0.67, 0.5, 0.85, 0.5,−1,−100, 10〉, by param-
eterizing j’s belief (0.5), and transition (0.67, 0.5), ob-
servation (0.85, 0.5), and reward functions (−1,−100, 10)
(see (Han and Gmytrasiewicz 2018) for details). Thus,
an example of initial ISi,1 samples can be a 2D vector[
[1, 0], [0.5, 1.0, 0.5, 0.85, 0.5,−1,−100, 10]

]
.

Interactive belief update module. The core structure of
the IPOMDP-net is the interactive belief update module,
which is a neural implementation of the sampling based
Interactive Belief Update algorithm described in (Han and
Gmytrasiewicz 2018). It consists belief propagation, weight-
ing according to both agents’ observations, reweighing and
re-sampling. This module embeds both agent i and j’s mod-
els as network weights w. The output of this module will be
the input of QMDP planner module.

The interactive belief update module maps agent i’s in-
teractive belief, action, and observation to a next belief,
bti,l = SE(bt−1

i,l , a
t−1
i , oti) (Equation 3). It can be decom-

posed into two major steps: when agent i performs an action
at−1
i , and given j performs at−1

j , it predicts the belief state
(Equation 6); then when i perceives an observation oti, it cor-

6064

(a) Interactive belief update module

(b) Level-0 belief update module

(c) QMDP planner module

Figure 2: IPOMDP-net consists of three modules

rects and normalizes the prediction (Equation 7).

b̂ti,l(is
t) =

∑
ist−1

bi,l(is
t−1)

∑
at−1
j

Pr(at−1
j |θ

t−1
j,l−1)

× T (st−1, at−1, st)
∑
otj

Oj(s
t, at−1, otj) (6)

× τ(bt−1
j,l−1, a

t−1
j , otj , b

t
,l−1)

bti,l(is
t) = α

∑
at−1
j

Oi(s
t, at−1, oti)b̂

t
i,l(is

t) (7)

Equation 6 is implemented using convolutional layers and
sub-modules. Firstly, agent i’s belief, b(ist−1

i,1) = p(s, θt−1
j,0),

will be divided into s and θt−1
j,0 . The first dimension s is con-

voluted with transition function Ti(·|w) with |A| convolu-
tional filters. The kernel weights are parameters of the tran-
sition function Ti(·|w). The output of the convolutional layer
is a D1 × D2 × n × |A| tensor, where D1 and D2 are the

sizes of the state space, n is the total number of belief sam-
ples, and |A| = |Aj × Aj | is the number of unique joint
actions of i and j. We stack different input samples together
as channels of the convolutional layer. For instance, for the
two-agent tiger game, the predicted physical state after con-
volution is a 1× 2× 100× 9 tensor, where the state samples
are 1 × 2 (either [1, 0] or [0, 1]), and there are 9 total joint
actions (|L,OL,OR| × |L,OL,OR|) and we assume 100
samples are used.

Elements of the second dimension of ist−1
i,1 , the sam-

ples of the other agent j’s model θt−1
j,0 , are the in-

puts into the level-0 belief update module (btj,0 =

SE(bt−1
j,0 , a

t−1
j , otj) in Figure 2(b)). They will be up-

dated to a new belief according to the particular
model parameters of j. For example, j’s model sam-
ple [0.5, 1.0, 0.5, 0.85, 0.5,−1,−100, 10] in tiger game will
be updated to [0.85, 1.0, 0.5, 0.85, 0.5,−1,−100, 10]. Es-
sentially, only the first parameter will be updated

(
from

bj(s=TL)=0.5 to bj(s=TL)=0.85
)

as it represents j’s be-
lief about tiger being on the left, which corresponds to the
τ(bt−1

j,l−1, a
t−1
j , otj , b

t
,l−1) function in Equation 6. The belief

update of j is for any possible action aj and anticipated ob-
servations oj , so there are totally n×|oj |×|aj | sub-modules
being used.

Since b̂ti,1(st, a) after convolution encodes predicted
physical belief after taking each of the joint actions, a ∈
A = Ai × Aj , we need to select the belief correspond-
ing to the last joint action. In Figure 1(a), notice that the
wi and wj contain all the parameters of both i and j’s
models, thus we compute j’s optimal actions according to
j’s model, P (atj |θ

t−1
j). P (atj |θ

t−1
j) can be any single-agent

POMDP solver, in this case we plug in a pretrained QMDP-
net (Karkus, Hsu, and Lee 2017) to make the entire network
end-to-end. Then we use the soft indexing similar to the
one used in QMDP-net (Karkus, Hsu, and Lee 2017), where
wat−1 is the indexing vector, a distribution over A. Then we
weight b̂ti,1(st, a) by wat−1:

b̂ti,l(s
t) =

∑
a∈A

b̂ti,l(s
t, a)wat−1 (8)

Similarly, b̂ti,1(θtj,0, a) after level-0 belief update encodes
predicted models of j after taking each of j’s actions, a ∈
Aj , we select the belief corresponding to j’s last action us-
ing soft indexing again. Now w

aj
t−1 is the indexing vector, a

distribution over Aj , and b̂ti,1(θtj,0, aj) is weighted by wajt−1:

b̂ti,l(θ
t
j,l−1) =

∑
aj∈Aj

b̂ti,l(θ
t
j,l−1, aj)w

aj
t−1 (9)

After updating j’s model samples, we join b̂ti,1(st) and
b̂ti,1(θtj,0) together to get the propagated b̂ti,1(ist). Namely,
the physical state samples b̂ti,1(st) are duplicated by the
number of anticipated observations of j and attached with
corresponding b̂ti,1(θtj,0). Thus, the number of initial belief
samples of i has increased from n to n× |oj |. The next step

6065

is to correct this predicted belief with both agents’ observa-
tions.
Oj(s, oj) encodes observation probabilities for each of

j’s observations, it is a D1 × D2 × |Oj | tensor. Similarly,
Oi(s, oi) encodes observation probabilities for each of i’s
observations, it is aD1×D2×|Oi| tensor. The initial weights
of belief samples w(b0i) is uniformly initialized as 1/|n| and
then weighted by anticipated observations of j and actual
observation of i. We select the observation function corre-
sponding to i’s last observation using soft indexing again:

Oi(s) =
∑
a∈A

Oi(s, oi)w
o
t−1 (10)

The remaining step is a simple down-sampling according to
the updated weights. After the resampling step, the number
of predicted samples of i has reduced from n× |oj | back to
n.

Level-0 belief update module. When the nesting level
bottoms out, i.e. l = 0, this module updates the belief of
the agent at level 0, and is used by interactive belief update
module at a higher level. For example, in the tiger game, if
agent i is at level 1, i models j as a level-0 POMDP and
uses this module to compute bi,1(θj,0) = bi,1(bj,0(s), θ̂j,0).
Thus, j’s belief bj,0(s) will be updated in the same way as
that in a single-agent POMDP. As shown in Equation 11 and
12, the two classic steps are the prediction through transition
and the correction using observation.

b̂tj(s
t) =

∑
st−1∈S

T (st−1, at−1
j , s)bt−1

j (st−1) (11)

btj(s
t) = αO(st, at−1

j , otj)b̂
t
j(s

t) (12)

This module is implemented almost identically to the belief
update (filter) module in the QMDP-net (Karkus, Hsu, and
Lee 2017), except that the transition function Tj and obser-
vation function Oj are also input arguments from bi,1(θj,0).
Here we refrain from repeating the explanation, but the basic
idea is to represent the matrix multiplication in Equation 11
as a convolutional layer, use soft indexing to select aj and
oj , and make element-wise multiplication in Equation 12.

QMDP planner module. The QMDP planner approxi-
mates the I-POMDP value iteration by solving the under-
lying MDP model, assuming the state is fully observable,
and making one-step look-ahead search on the MDP values
weighted by i’s beliefs. Actions are then chosen according to
the weighted Q values. It is similar to QMDP planner in the
QMDP-net, except that i’s interactive belief (i.e. output of
the interactive belief update module) needs to be marginal-
ized over all possible models of j.

Qi,k+1(s, ai) = Ri(s, ai) + γ
∑
s′

Ti(s, a, s
′)Vi,k(s′) (13)

Vi,k(s) = max
ai

Qi,k(s, ai) (14)

The value iteration in Equation 13 and 14 is implemented
using convolutional and max pooling layers(Tamar et al.
2016; ?). The Qi(s, ai) is a D1 × D2 × |Ai| tensor. Equa-
tion 13 is implemented as a convolutional layer followed by

an addition with Ri(s, ai), the kernel weights encode the
transition function Ti. Equation 14 is implemented as a max-
pooling layer withQi,k(s, ai) as input and Vi,k(s) as output.
K iterations of value updates are implemented as recur-

rent layers representing Equation 13 and 14 K times with
tied weights. After K iterations, the approximate Q values
for each state-action pair are weighted by i’s belief about
the physical state (Equation 16). But before that, since i’s
interactive belief contains j’s models as well, we need to
marginalize over models of j (Equation 15). Finally, we se-
lect the action that has the highest q-values.

bi,t(s) =
∑
θj

bi,t(is) (15)

Qi(bi, ai) =
∑
s

Qi,K(s, ai)bi,t(s) (16)

Training Algorithm
We train the IPOMDP-net in a reinforcement learning set-
ting following the similar way in DQN (Mnih et al. 2015)
(Algorithm 1). Due to partial observability, we use belief
state instead of physical state in the experience replay mem-
ory [bi,t, ai,t, ri,t+1, bi,t+1]. To update the network param-
eters w and back propagate the errors, we define the loss
function as the mean squared error between the Q-value of
the target and the IPOMDP-net. Immediate rewards are as-
sumed obtainable and agent i’s belief is computed in the be-
lief update module. We have also used the ε-greedy strategy
to ensure adequate explorations of the belief space, espe-
cially when the underlying planner is QMDP.

Algorithm 1: IPOMDP-net Training

1 Initialize belief state, replay memory, nesting level l
2 Initialize the networks with random weights w
3 for episode= 1 to M :
4 Initialize ai,0 and get oi,1
5 for t = 1 to T :
6 sample atj ∼ P (Aj |θj,l−1)
7 select a random action ai,t with probability ε
8 otherwise select ai,t = arg maxaQ(bi,t, ai;w)
9 execute action ai,t, obtain reward ri,t, observa-
tion oi,t+1, and updated belief bi,t+1

10 store [bi,t, ai,t, ri,t+1, bi,t+1] in replay memory
11 randomly sample a minibatch in replay mem-
ory [bi,m, ai,m, ri,m+1, bi,m+1]
12 compute the target Q-value ym ={
ri,m if i+1 is terminal step
ri,m + βmaxai Q̂(bi,m+1, ai

′;w−) otherwise
13 perform gradient descent on: (ym −
Q(bi,m, ai,m;w))2

Model-Free Networks for Comparison
To compare the model-based IPOMDP-net with other
model-free networks, we also modify and implement a
model-free network that acts similarly to the action-specific

6066

Figure 3: One time slice of ADRQN. Inputs are ai,t−1 and
oi,t, outputs are ai,t and oi,t+1. FC stands for fully con-
nected layer. Conv stands for convolutional layers. Output
of LSTM layer ht will be input into LSTM in the next time
slice. Actual hyper parameters vary on different problems.

deep recurrent Q-network (ADRQN) for single-agent do-
main (Zhu et al. 2018).

As shown in Figure 3, this network is a dual-modal hy-
brid architecture that learns from the action and observa-
tion histories, i.e. [ai,0, oi,1], [ai,1, oi,2], ..., [ai,t−1, oi,t]. The
time series of action-observation pairs are integrated by an
LSTM layer that extracts features (from these pairs) and
learns the latent states. Then a fully connected layer com-
putes Q-values based on the learned latent states. These la-
tent states integrate the information contained in action and
observation histories. It has been shown that the ADRQN
outperforms the ARQN (Zhu et al. 2018), which outper-
forms the DQN (Mnih et al. 2015). Thus, it is one of the
state-of-the-art model-free networks for sequential decision
making problems.

Training the ADRQN is similar to training the DQN
except the experience replay memory now changes from
[st, ai,t, ri,t, si,t+1] to

[
{ai,t−1, oi,t}, ai,t, ri,t, oi,t+1

]
due

to partially observability. Training ADRQN also converts a
learning problem to a high-dimensional non-convex func-
tion optimization (on the network weight w space). How-
ever, besides model-embedding and network architecture,
the major difference between IPOMDP-net and ADRQN is
that weights in the IPOMDP-net encode both agents’ model
parameters, but in ADRQN the weights are from another pa-
rameter space.

Experiments
Experimental setup
The goal of the experiments is to verify that embedding
models of other agents in the planning network benefits
our decision-making. We want to understand the benefits
in terms of the policy quality and generalizability. Since
IPOMDP-net is a neural approximation to the symbolic I-
POMDP, we also want to know how close this approxima-
tion is in terms of planning performance.

We firstly test the planning performance of IPOMDP-net
by comparing it with its symbolic counterpart. We initialize
weights of the IPOMDP-net using true parameters of model
functions and test it in various but fixed environments. In
this planning setting, the reinforcements are unobservable
and model functions are known. We show related results in

Table 1.
Then we apply the same IPOMDP-net architecture in

model-based reinforcement learning (RL) problems, where
there are two phases of experiments: training and test-
ing. The training phase is for different neural networks
(IPOMDP-net and ADRQN) to be trained, starting from ran-
domly initialized weights and observable reinforcements, so
that the converged networks are approximations to true pol-
icy functions. The testing phase is to evaluate the trained
networks in a planning setting where the rewards are unob-
servable. We show related results in Table 2.

Therefore, we designed experiments of five problems in
two categories. In the first category, we use the two-agent
tiger game (Gmytrasiewicz and Doshi 2005) and UAV prob-
lem (Doshi and Gmytrasiewicz 2009), in which the prob-
lem environments are small and fixed. The neural networks
are trained on the same, fixed environment, and then applied
back to it for testing. In the second category, we use three
variations of the Maze problem (Russell and Norvig 2016)
with size 4× 4, 10× 10, and 16× 16, in which the agent j
tries to reach the goal while i tries to reach the goal and / or
catch j. We want to evaluate if the model-free networks can
keep up with model-based IPOMDP-net and the IPOMDP-
net learned in smaller environments (10×10) can generalize
to larger ones (16× 16). In these Maze variations, the loca-
tions of the start, goal and obstacles are random in each of
the training and testing maps.

Results and Discussions

Table 1: Average results for planning tasks. The IPOMDP-
net with preassigned weight performs almost the same as
it symbolic I-POMDP counterpart. The results are averaged
over 50 random runs.

IPOMDP-net I-POMDP I-POMDP SARSOP
Tiger 2.25 ± 0.11 2.26 ± 0.09 2.32 ± 0.15
UAV 9.10 ± 0.39 9.09 ± 0.45 9.27 ± 0.52
Maze 4×4 0.17 ± 0.05 0.16 ± 0.06 0.19 ± 0.04
Maze 10×10 -0.53 ± 0.09 -0.56 ± 0.08 -0.49 ± 0.07
Maze 16×16 -0.99 ± 0.10 -0.96 ± 0.09 -0.81 ± 0.10

In Table 1, we use known model parameters to preas-
sign IPOMDP-net weights, the corresponding symbolic I-
POMDP (with QMDP planner) is shown in the second col-
umn. In the last column, we also report additional results
on the symbolic I-POMDP using SARSOP planner (Kur-
niawati, Hsu, and Lee 2008) instead of QMDP, which rep-
resents the best performance that a symbolic approach can
achieve now. We will look into ways of implementing SAR-
SOP or other planners in IPOMDP-net, which generally re-
quires more sophisticated network design.

We see that in all problems, the performance of pre-
initialized IPOMDP-net is almost identical to the symbolic
I-POMDP, which is to be expected as they are the neural and
symbolic implementations of the same I-POMDP frame-
work.

In Table 2, we report the average rewards in Tiger, UAV,
and three Maze variations. Wee see that the performance

6067

Table 2: Average rewards for different RL problems. The
networks start from random weights. The results are aver-
aged over 50 random runs.

(a) The learning and testing environments are fixed for Tiger and
UAV. The performance difference is small.

Fixed environments
Tiger UAV

ADRQN 1.29 ± 0.35 8.98 ± 0.97
IPOMDP-net w/ trained weights 1.32 ± 0.29 9.19 ± 0.72

(b) In three maze tasks, the learning maps are randomly generated
and testing maps are new, unseen ones. The performance of the
model-free ADRQN degrades faster as maps size increases.

Random environments - Maze
4×4 10×10 16×16

ADRQN 0.12 ± 0.08 -0.73 ± 0.17 -1.58 ± 0.39
IPOMDP-net trained 0.18 ± 0.05 -0.52 ± 0.10 -0.88 ± 0.21

of the model-free ADRQN degrades faster as maps size in-
creases from 4×4 to 16×16.

IPOMDP-net learns policies that generalize to new en-
vironments. In the fixed Tiger and UAV environments (Ta-
ble 2(a)), the model-free ADRQNs have comparable perfor-
mance to the IPOMDP-net. The reason is that in a fixed en-
vironment, a network may directly learn the mapping from
features to policy. In contrast, the IPOMDP-net learns a
model for planning, i.e. generating a near-optimal policy for
arbitrary environments. For the 4×4 Maze problem, we ran-
domly generate 1100 maps and divide them into training and
testing sets of size 1000 and 100. For the 10×10 Maze, there
are 5000 maps for training and 200 for testing. We see that
in the first and second columns of Table 2(b), the average
rewards of IPOMDP-net are higher than the ADRQN.

IPOMDP-net policies learned in small environments
transfers directly to larger ones. For the 16 × 16 Maze
problem, we directly apply the IPOMDP-net trained in 10×
10 mazes and increase the value iteration recurrenceK to 40
and keeping all other parameters unchanged. For the trained
ADRQNs in 10×10 mazes, we also increased the recurrence
of LSTM layers to 20. Although the map size is larger, the
underlying planning nature is the same as in smaller mazes.
We see that the IPOMDP-net is significantly better than the
model-free ADRQN, the performance of ADRQN degrades
fast when the maze size increases.

IPOMDP-net learns an overall better policy instead
of a “true” model. It makes sense that the learned model
should be the ground truth if the embedded I-POPMDP al-
gorithm is exact. Since our planning algorithm is QMDP, the
learned T (·|θ), O(·|θ), and R(·|θ) does not necessarily rep-
resent the true transition, observation, and reward functions.
The reason is that the end-to-end training gives IPOMDP-net
the opportunity to learn an “incorrect” but useful model that
compensates the limitation of the approximation algorithm,
the QMDP.

Visualization

We visualize the learned value function of agent i for the
16×16 Maze problem. In Figure 4(b), we see i assigns high
values over the target and j’s locations, but the target loca-
tion is “hotter” than j’s location. This is because that j tends
to move a lot, and therefore, its location is not as valuable
as the goal (catching j or reaching target location gives the
same +1 reward). In Figure 4(c), since j is modeled as a
level-0 POMDP agent, he has no clue about i’s existence.
Thus, in j’s reward function, states close to the goal have
high values.

(a) (b) (c)

Figure 4: Visualization of both agents’ value functions on
Maze 16 × 16 problem: (a) a particular game map, (b)
learned value function of i on one sample state (when j
at the orange square position), (c) learned value function of
j. Black squares are obstacles, red is i’s location, orange is
j’s location, and blue is the target location.

Figure 5: The learned transitions in belief update module
and QMDP module are different. The first row is the ground
truth. The second row is the transition in belief update mod-
ule. The third row is the transition in QMDP module.

As an example of learned “incorrect” models, we also vi-
sualize the learned transition functions in interactive belief
update and QMDP planning modules. We see that in Fig-
ure 5, the transition learned in the interactive belief update
module is close to the truth, while the transition in QMDP
is quite different. The different weights learned from train-
ing allow each module to choose its own approximation to
mitigate limitations of the QMDP approximation.

6068

Conclusion
We have described the IPOMDP-net, a neural network archi-
tecture for multi-agent planning under partial observability.
It combines model-free learning and model-based planning
by embedding an I-POMDP model and a QMDP planning
algorithm in a network learning architecture. We show its
effectiveness, performance, and generalizability on various
problems. Our approach provides a general, model-based
neural computing architecture for multi-agent planning.

One future research direction is to implement the exact
I-POMDP value iteration instead of the QMDP approxima-
tion. The first step shall be an implementation of single-
agent POMDP value iteration, which is straightforward as
it only involves linear matrix operations and maximum op-
erations. The real challenge is to find the most appropriate
way to represent the value function on the nested interactive
belief structures. Currently one major constraint of our work
is the scalability when there are multiple agents or the input
size / problem state is huge. This may lead to another direc-
tion, which is an attention mechanism (Tamar et al. 2016) to
reduce the effective number of network parameters, because
in many problems, the importance and effects of neighbor-
ing states might be contextually dependent on what is the
current state.

References
Ciregan, D.; Meier, U.; and Schmidhuber, J. Multi-column
deep neural networks for image classification. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition.
Doshi, P., and Gmytrasiewicz, P. J. 2009. Monte Carlo
sampling methods for approximating interactive POMDPs.
Journal of Artificial Intelligence Research 34:297–337.
Farabet, C.; Couprie, C.; Najman, L.; and LeCun, Y. 2013.
Learning hierarchical features for scene labeling. IEEE
transactions on pattern analysis and machine intelligence
35(8):1915–1929.
Gmytrasiewicz, P. J., and Doshi, P. 2005. A framework for
sequential planning in multi-agent settings. J. Artif. Intell.
Res.(JAIR) 24:49–79.
Han, Y., and Gmytrasiewicz, P. J. 2018. Learning others’
intentional models in multi-agent settings using interactive
POMDPs. In The Workshops of the The Thirty-Second AAAI
Conference on Artificial Intelligence., 666–673.
Hausknecht, M., and Stone, P. 2015. Deep recurrent Q-
learning for partially observable MDPs. In AAAI 2015 Fall
Symposium.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence 101(1):99–134.
Karkus, P.; Hsu, D.; and Lee, W. S. 2017. QMDP-Net:
deep learning for planning under partial observability. In
Advances in Neural Information Processing Systems, 4697–
4707.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.
Kurniawati, H.; Hsu, D.; and Lee, W. S. 2008. SARSOP: ef-
ficient point-based POMDP planning by approximating op-
timally reachable belief spaces. In Robotics: Science and
systems, volume 2008. Zurich, Switzerland.
Levine, S.; Finn, C.; Darrell, T.; and Abbeel, P. 2016. End-
to-end training of deep visuomotor policies. The Journal of
Machine Learning Research 17(1):1334–1373.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529.
Russell, S. J., and Norvig, P. 2016. Artificial intelligence: a
modern approach. Malaysia; Pearson Education Limited,.
Tamar, A.; Wu, Y.; Thomas, G.; Levine, S.; and Abbeel, P.
2016. Value iteration networks. In Advances in Neural In-
formation Processing Systems, 2154–2162.
Zhu, P.; Li, X.; Poupart, P.; and Miao, G. 2018. On im-
proving deep reinforcement learning for POMDPs. arXiv
preprint arXiv:1804.06309.

6069

