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Abstract

Distinguishing antonyms from synonyms is a key challenge
for many NLP applications focused on the lexical-semantic
relation extraction. Existing solutions relying on large-scale
corpora yield low performance because of huge contextual
overlap of antonym and synonym pairs. We propose a novel
approach entirely based on pre-trained embeddings. We hy-
pothesize that the pre-trained embeddings comprehend a
blend of lexical-semantic information and we may distill the
task-specific information using Distiller, a model proposed in
this paper. Later, a classifier is trained based on features con-
structed from the distilled sub-spaces along with some word
level features to distinguish antonyms from synonyms. Exper-
imental results show that the proposed model outperforms ex-
isting research on antonym synonym distinction in both speed
and performance.

1 Introduction

Distinguishing between antonymy and synonymy is one
of the crucial problems for NLP applications, especially
those focused on lexical-semantic relation extraction, such
as sentiment analysis, semantic relatedness, opinion mining
and machine translation. We define synonyms as semanti-
cally similar words (e.g., disperse and scatter) and
antonyms as highly contrasting words (e.g., disperse and
garner) (Ono, Miwa, and Sasaki 2015). Existing manually
curated lexical resources (e.g., WordNet (Fellbaum 1998))
are unable to address this problem, due to the limited cover-
age. This calls the need for a machine learning model to clas-
sify a given pair of words as either synonyms or antonyms.
Traditional research on antonym/synonym distinction
makes use of word embeddings to capture the seman-
tic relatedness among antonym/synonym pairs based on
co-occurrence statistics (Scheible, Schulte im Walde, and
Springorum 2013; Ono, Miwa, and Sasaki 2015; Nguyen,
Schulte im Walde, and Vu 2016; Vulic 2018). However, the
embedding models have a tendency to mix different lexico-
semantic relations, so the performance cannot be guaranteed
when they are applied on specific lexical-semantic analy-
sis tasks (Glavas and Vulic 2018). This situation worsens in
the case of antonym and synonym distinction, because these
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words can be used interchangeably and are considered indis-
tinguishable (Mohammad et al. 2013). This is verified in this
paper by the poor performance of a baseline classifier, i.e.,
Direct, that is purely designed based on pre-trained word
embeddings.

Recently, pattern based approaches have gained consider-
able research attention for lexical-semantic relation extrac-
tion (Roth and Schulte im Walde 2014; Schwartz, Reichart,
and Rappoport 2015). Nguyen, Schulte im Walde, and Vu
(2017) formulated special lexico-syntactic pattern features
that concatenate the lemma, POS-tag and dependency la-
bel along the dependency path. Their model achieved the
state-of-the-art result on antonym/synonym distinction task.
Pattern based methods yield a low recall owing to the lexi-
cal variations and the sparsity of lexico-syntactic patterns,
which limits the information sharing among semantically
similar patterns. Existing attempts to resolve the sparsity via
generalization cause the resultant patterns to be highly over-
lapping across different classes, which has a detrimental ef-
fect on the classification accuracy. Moreover, they have to
use a large-scale text corpus to combat sparsity, which dras-
tically increases the computational overhead.

In this paper, we propose a novel two-phase ap-
proach to address the above-mentioned challenges for
antonym/synonym distinction by eliminating the need for a
large text corpus. Firstly, we use a new model named: Dis-
tiller, which is a set of non-linear encoders, to distill task-
specific information from pre-trained word embeddings to
dense sub-spaces. For this, we design two new loss functions
to capture unique relation-specific properties for antonyms
and synonyms, i.e., symmetry, transitivity and the special
trans-transitivity (explained in section 3.3), in two differ-
ent sub-spaces namely: SYN for synonyms and ANT for
antonyms. Finally, a classifier is trained using features con-
structed from the distilled information, in addition to other
word-level features, to distinguish antonym and synonym
pairs.

Note that our problem formulation is same as that of ex-
isting works with the distinction that we replace the require-
ment of a large-scale corpus by the availability of pre-trained
word embeddings. This makes our setting more appealing
and flexible, as pre-trained embeddings are widely avail-
able (e.g., word2vec, Glove, and ELMo), and they have ar-
guably high coverage and quality due to the gigantic train-



ing corpus. In addition, they are available for many lan-
guages (Joulin et al. 2016), and are easily adaptable as one
can customize the pre-trained embeddings by further train-
ing with domain-specific corpus (Rothe and Schiitze 2016;
Lampinen and McClelland 2017; Vulic and Mrksic 2018).
We summarize the major contributions of this paper as fol-
lows:

e We propose a novel model for the antonym/synonym
distinction. Compared with existing research, our model
makes less stringent data requirements (only requiring
pre-trained embeddings), hence it is more practical and

efficient.

We introduce Distiller: a set of non-linear encoders to
distill task-specific information from pre-trained embed-
dings in a performance-enhanced fashion. In addition, we
propose new loss functions to enforce the distilled repre-
sentations to capture relation-specific properties.

We demonstrate the effectiveness of the proposed model
by comprehensive experimentation. Our model outper-
forms the existing research on antonym/synonym distinc-
tion by a large margin.

We construct a new dataset for antonym/synonym distinc-
tion task in Urdu language to demonstrate the language-
agnostic properties of the proposed model.

2 Related Work

Existing research on antonym/synonym distinction can be
classified as (i) embeddings based and (ii) pattern based ap-
proaches.

Embeddings Based Approaches The embeddings based
approaches rely on the distributional hypothesis, i.e., the
words with similar (or opposite) meanings appear in a
similar context (Turney and Pantel 2010). These models
are trained using neural networks (Mikolov et al. 2013a;
2013b) or matrix factorization (Pennington, Socher, and
Manning 2014). Dominant embeddings based approaches
rely on training embedding vectors using different fea-
tures extracted from large scale text corpora. For example,
Scheible, Schulte im Walde, and Springorum (2013) ex-
plained the distributional differences between antonyms and
synonyms. Adel and Schiitze (2014) employed co-reference
chains to train skip-gram model to distinguish antonyms.
Nguyen, Schulte im Walde, and Vu (2016) integrated distri-
butional lexical contrast information in the skip-gram model
for antonym and synonym distinction.

The supervised variants of the embeddings based mod-
els employ existing resources, i.e., thesaurus in combina-
tion with the distributional information for the distinction
task. Pham, Lazaridou, and Baroni (2015) introduced multi-
task lexical contrast by augmenting the skip-gram model
with supervised information from WordNet. Ono, Miwa, and
Sasaki (2015) proposed a model that uses distributional in-
formation alongside thesaurus to detect probable antonyms.
The major limitation of the embeddings based methods
is their inability to discriminate between different lexico-
semantic relations; e.g., in Glove the top similar words for
the word small yield a combination of synonyms (e.g.,
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tiny, little), antonyms (e.g., large, big), and irrele-
vant terms (e.g., very, some).

Pattern Based Approaches The pattern based approaches
rely on capturing lexico-syntactic patterns from large scale
text corpora. For example, Lin et al. (2003) proposed two
patterns, i.e., either X or Y and from X to Y particu-
larly indicative of antonym pairs. Roth and Schulte im
Walde (2014) used discourse markers in combination with
the lexico-syntactic patterns to distinguish antonyms from
synonyms. Schwartz, Reichart, and Rappoport (2015) used
symmetric patterns to assign different vector representations
to the synonym and antonym pairs. Nguyen, Schulte im
Walde, and Vu (2017) integrated the lexico-syntactic pattern
features with the distributional information.

A major limitation of the pattern based methods is the
huge overlap in feature space (i.e., lexico-syntactic pat-
terns) across different classes, which hinders improve-
ment in performance. For example, a commonly con-
fused pattern is the noun-compound, which can be used
to represent both the synonym pairs (government
administration; card board) and the antonym
pairs (graduate student;client server).

3 The Proposed Model
3.1 Problem Definition

In this paper, we aim to build a model that can classify
a given pair of words as either synonyms or antonyms.
We consider synonyms as semantically similar words (hav-
ing similar meanings), and antonyms as highly contrasting
words (having opposite meanings). Similar to the previous
works (Roth and Schulte im Walde 2014; Schwartz, Re-
ichart, and Rappoport 2015; Nguyen, Schulte im Walde, and
Vu 2017), we assume the availability of training dataset, i.e.,
pairs of words with class labels indicating the pair satisfies
either synonym or antonym relation. In contrast to the exist-
ing research, the proposed model no longer relies on a text
corpus. We replace it with the available pre-trained word em-
beddings.

3.2 Overview

Our proposed model consists of two phases: in Phase I, we
train the Distiller to distill task-specific representations of all
words in the pre-trained embeddings via non-linear projec-
tions; in Phase 11, we train a classifier that exploits features
constructed from the distilled representations together with
other word-level features to classify a given pair of words
into either synonyms or antonyms. Both phases are trained
in a supervised fashion using the same set of training in-
stances.

We argue that the proposed two-phase design has the fol-
lowing advantages: (i) it allows us to answer the question,
whether we can collect enough information from pre-trained
embeddings for synonym/antonym classification, and (ii) it
provides us with the maximal flexibility to accommodate
many other types of features, including corpus-level fea-
tures, in our future work.



3.3 PhaseI (Distiller)

Distiller uses two different neural-network encoders to
project pre-trained embeddings to two new sub-spaces in a
non-linear fashion. Each encoder is a feed-forward neural
network with two hidden layers using sigmoid as the acti-
vation function. Mathematically, we model them as encoder
functions; we use encg(v) and enca(v) for projections of
word v’s pre-trained embedding vector to the synonym and
antonym sub-spaces, respectively.

We observe that antonyms and synonyms are special kind
of relations (denoted as r 4 and rg, respectively), that exhibit
some unique properties. Synonyms possess symmetry and
transitivity, whereas, antonyms possess symmetry and trans-
transitivity.

Symmetry implies that r(a, b) if and only if (b, a), where
r(a,b) means a and b participate in the relation r. For syn-
onyms, the transitivity implies that if rs(a,b) and rs(b, c)
then rs(a, c) also holds. For antonyms, the trans-transitivity
implies that if 74(a,b) and rs(b,c) then r4(a,c) — as
shown by the inferred antonym relation between good and
evil in Figure 1(a). Trans-transitivity is a unique property
that helps to infer probable antonym pairs.
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Figure 1: (a) Illustrating the trans-transitivity of antonym
and synonym relations, (b) Limitation of the translational
embeddings to capture symmetric relations

We note that the existing translational entity embedding
models (Bordes et al. 2013; Yoon et al. 2016) are not an
appropriate choice for this problem. In translational embed-
ding models, a relation r is modeled as a translation vector
r, and r(a, b) implies the Ly or Lo-norm of (a+r — b) is
small. As shown in Figure 1(b), it is not possible for the
translational embeddings to preserve symmetry by accom-
modating both vector operationsa +r =bandb +r = a
at the same time.

Formally, if we try to model a symmetric relation (i.e.,
synonyms or antonyms) via the translational model, we have

b=

It means r must be small to be able to model both r(a, b)
and 7(b, a). This leads to huge challenge in distinguishing
different rs, or has the risk of modeling one of the two pairs
badly. A similar explanation suffices to expose the limitation
of translational embeddings to preserve transitivity.

While the translational embeddings fail to capture the
antonym and synonym relation pairs, we propose a model
that:

at+tr—b=¢

2 =
b+r—a=e r=eate
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for each word vector, creates two distilled embeddings in
two sub-spaces (i.e., SYN and ANT).

models the symmetry and transitivity preserving synonym
relation in SYN.

models the symmetry and trans-transitivity preserving
antonym relation using both ANT and SYN.

Loss Function for Synonyms In order to capture syn-
onym relations in SYN, we use a margin based loss to em-
bed the vectors corresponding to synonym pairs (positive
examples) close to each other, while at the same time push-
ing apart the vectors for irrelevant pairs (negative examples).
This formulation preserves the symmetry and the transitivity
of synonym pairs in the SYN sub-space. While the symme-
try is enforced by the commutative nature of the inner prod-
uct of real vectors!, the transitivity is preserved by following
justification: if a is embedded close to b and b is embedded
close to c, then a has a high chance of being embedded close
to c. It, moreover, ensures that we can distinguish between
the synonym pairs and the irrelevant pairs within the SYN
sub-space.

The loss function for modeling the synonyms is shown in
Equation (1). Note that only the embeddings corresponding
to the SYN sub-space are involved.

Ls= Y ReLU(1- f(a,b))

(a,b)€Ts

+ > RelU(1+ f(d',1))
(a’,b")ET

where f(a,b) = tanh({encg(a), encg(b))), Ts is the set of
synonym training instances, T is the set of negative pairs,
and encg(v) is the non-linear mapping for the words in the
vocabulary V to distilled embedding in the SYN sub-space.

T% is generated from Ts by repeating the following cor-
ruption process k = 5 times: randomly pick a or b from T,
and replace it with another randomly sampled word from
training vocabulary.

)

Loss Function for Antonyms In order to capture the sym-
metry and trans-transitivity for antonym pairs, our idea is to
correlate the ANT and SYN sub-spaces.

For illustration, consider an antonym pair 4 (a,b), and
let b; be any synonym of b. When the fact that b; and b are
synonyms is sufficiently learned in SYN, we expect b; to be
close to b, later, we encourage the embedding vector a €
ANT to be close to b € SYN. As a result, it is highly likely
that a € ANT will also be close to b; € SYN.

In order to capture the trans-transitivity using the Distiller,
for a given antonym relation pair r 4 (a, b), we bring the vec-
tor a € ANT close to the vector b € SYN. For symmetry,
we augment the training data by swapping the relation pairs
r4(a,b)to getra(b,a), and correspondingly update the em-
beddings for the vectors b € ANT and a € SYN. This de-
sign preserves the symmetry and the trans-transitivity prop-
erty for the antonym pairs using both SYN and ANT sub-
spaces. The loss function for modeling antonyms is illus-
trated in Equation (2). Note that unlike Equation (1), for this

"Inner product can be regarded as some notion of similarity.



loss function, the embeddings for both the sub-spaces are
involved.

La= Y RelU(l-g(a,b))
(ll,b)ETA

+ > ReLU(1+g(a’,b))
(a’,b")ETY

@

where g(a,b) = tanh({enca(a),encg(b))), T4 is the set
of the antonym training instances, 77 is the set of negative
pairs, encg(v) is defined as in Equation (1) and enca(v) is
the non-linear mapping for the words in the vocabulary V' to
distilled embedding in the ANT sub-space.

T", is generated from T4 by repeating the following cor-
ruption process k = 5 times: randomly pick a or b from T4,
and replace it with another randomly sampled word from the
training vocabulary.

Synonymy and Antonymy Scores For a given word
pair (a,b), we use our distilled embeddings to com-
pute its synonymy score as cos(encg(a),encg(b)) and
the antonymy score as max(cos(enca(a),encs(d)),
cos(enca(b), encs(a))).

Loss Function for Distiller The loss function of the Dis-
tilleris Lg + L o + Ly, where Lg and L 4 have been de-
fined in Equations (1) and (2) respectively. L,y is the cross-
entropy loss defined in Equation (3).

N
1 R
Lu=-% ; log(p(yslas, bi) 3)

For L, we concatenate the synonymy score x; and the
antonymy score Xo from the distilled embeddings to form
the feature vector x = [x1,X2|, and use softmax function
(Equation (4)) to predict the class label.

p(y | (a,b)) = softmar(Wx + 15)

§ = argmax p(yla, b) “)
y
where W is the weight matrix and b is the bias. We opti-
mize the loss of the Distiller, in an end-to-end fashion.

3.4 Phase II (Classifier)

In Phase II, we train a classifier to distinguish the synonym
and antonym pairs. We use the XGBoost classifier (Chen and
Guestrin 2016), and employ following features.

New Features from Distiller For a given test pair (a, b),
we compute two new features exploiting our distilled em-
beddings (1) synonymy score and (2) antonymy score.

Features from Pre-trained Embeddings Similar to the
best performing solutions for antonym and synonym dis-
tinction that consider a combination of lexico-syntactic pat-
terns and the distributional embeddings, we use distribu-
tional similarity score, i.e., cos(a, b) as a classification fea-
ture, where a and b correspond to the pre-trained word
embedding vectors. It helps in capturing highly confident
antonym and/or synonym pairs trained using distributional
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information. In Table 3, this feature is labeled as: distribu-
tional.

Features from Negation Prefix Words that differ only
by one of the known negation prefixes are highly un-
likely to be synonym pairs, e.g., (able,unable),
(relevant, irrelevant) etc. Similar to Rajana et al.
(2017), we use the following set of negation prefixes: {de,
a, un, non, in, i, anti, il, dis, counter, im, an, sub, ab}. We
use a binary feature for the candidate pairs, where the fea-
ture value is 1 only if the two words in the candidate pair
differ by one of the negation prefix. In Table 3, this feature
is labeled as: prefix.

4 Experiments
4.1 Dataset

For model training, we use an existing dataset previously
used by (Schwartz, Reichart, and Rappoport 2015; Roth and
Schulte im Walde 2014; Nguyen, Schulte im Walde, and Vu
2016; 2017). It has been accumulated from different sources
encompassing WordNet (Fellbaum 1998) and WordNik?.
The details of the dataset are given in Table 1, it contains
antonym and synonym pairs for three categories (i.e., verbs,
adjectives and nouns) in the ratio (1:1). In order to come up
with a unanimous platform for comparative evaluation, we
use the priorly defined data splits by the existing models to
training, test and dev sets. The training data is used to train
the Distiller in Phase-I and the classifier in Phase-II. The de-
velopment data is used for Distiller’s parameter tuning. The
model performance is reported on the test set.

Category | Train Dev Test Total
Verb 2534 182 908 3624
Noun 2836 206 1020 4062
Adjective | 5562 398 1986 7946

Table 1: Antonym/Synonym distinction dataset

4.2 Experimental Settings

One advantage of our model is its ability to work with any
set of word embeddings. For experimentation, we use fol-
lowing set of pre-trained embeddings:

1.
2.

Random Vectors We use 300d random vectors.

Glove (Pennington, Socher, and Manning 2014), purely
unsupervised word embeddings. We use 300d pre-trained
Glove embeddings.

dLCE (Nguyen, Schulte im Walde, and Vu 2016), cus-
tomized embeddings for antonym synonym distinction
task. Its dimensionality is 100d.

ELMO (Peters et al. 2018), deep contextualized embed-
dings based on character sequences. Its dimensionality is
1024d.

*https://www.wordnik.com/



Note that our model does not rely on a text corpus, so
for the ELMO, we only consider the character sequence of
the words in our dataset to acquire the embedding vectors.
For Glove and dLCE, the vectors corresponding to the out-
of-vocabulary tokens were randomly initialized. We use a
smaller and compact representation for the sub-spaces, as
they are supposed to preserve only the task-specific infor-
mation. The dimensionality of each sub-space, (i.e., ANT
and SYN) is set to 60d. The neural network encoders used
in the Distiller employ 80 units in the first layer and 60 units
in the second layer. We use the Adam-Optimizer (Kingma
and Ba 2014) to train the Distiller. All the experiments are
performed on Intel Xenon Xeon(R) CPU E5-2640 (v4) with
256 GB main memory and Nvidia 1080Ti GPU.

4.3 Baseline Models / Model Comparison

We compare our work against the following models.

Direct Baseline. The Direct baseline is used to show
the performance of using only the pre-trained embeddings
to distinguish the antonym and synonym pairs. For Direct
baseline, we cluster the vector difference for antonym and
synonym pairs using k-means clustering to get k-pivot vec-
tors as representatives of synonym and/or antonym candi-
date pairs. For classification, we use an XGBoost classifier
with (i) cosine similarity, (ii) distance to the pivot vectors
and (iii) vector difference as features.

Discourse Markers. Roth and Schulte im Walde (2014)
used discourse markers (indicators of relations) alongside
lexico-syntactic patterns to design vector space models. For
the given data set, Michel Roth has already computed the
performance of his methods (Nguyen, Schulte im Walde,
and Vu 2017), we use the same scores for comparison.

Symmetric Patterns. Schwartz, Reichart, and Rappoport
(2015) used automated techniques to extract symmetric pat-
terns (sequence of 3-5 tokens encompassing two wild-cards
and 1-3 tokens) from plain text. We use 500d embeddings
(from author’s web-page *). Similar to (Nguyen, Schulte im
Walde, and Vu 2017), we calculate cosine similarity between
the test pair and use an SVM classifier to categorize them.

AntSynNET. Nguyen, Schulte im Walde, and Vu (2017)
proposed two different architectures: (i) AntSynNET: a
pattern-based model and (ii) Combined AntSynNET, i.e.,
combining the pattern-based model with the distributional
embeddings. The Combined AntSynNET comprises two
models namely: (1) AntSynNET + Glove and (2) AntSyn-
NET + dLCE, acquired by using Glove/dLCE embeddings.
We use the scores reported in the published paper.

4.4 Main Results

The results for the proposed model are shown in Table 2.
Here, we use two different sets of pre-trained embeddings
for Distiller, i.e., Glove and dLCE. The results are accord-
ingly compared with the corresponding baseline models us-
ing the same settings.

3https://homes.cs.washington.edu/~roysch/papers/
sp-embeddings/sp_embeddings.html
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Comparing the results for the Glove embeddings, our
model outperforms the Direct baseline and previously best
performing models for all three classes by a significant mar-
gin. We observe that for nouns the improvement in perfor-
mance is relatively lower as compared with the verbs and
adjectives. It is due to the effect of polysemy, which is more
dominant among nouns. The unsupervised embeddings are
unable to handle polysemous words and mostly the embed-
ding vectors are oriented in the direction of most common
sense (as explained in detail in the section 4.8). This finding
is also aligned with that of (Scheible, Schulte im Walde, and
Springorum 2013), which states that synonym and antonym
pairs conforming to verbs and adjectives have relatively high
contextual clues compared with that of nouns. Overall re-
sults for our model with Glove embeddings show that even
getting started with entirely unsupervised embeddings hav-
ing a mixture of different lexical-semantic relations, the Dis-
tiller is able to distill the task-specific information and out-
perform the previous state-of-the-art models by a large mar-
gin.

Especially noteworthy is the performance of our model
with Distiller trained on dLCE. It simply outperforms the
best performing model trained using dLCE, yielding a much
higher value of F1 across all three word classes. Compared
with the previous state-of-the-art, it improves the F1 score
by 18%, 17% and 6% for adjectives, verbs and nouns re-
spectively. This drastic improvement in performance ex-
plains that in contrary to the Glove embeddings that con-
tains a blend of lexical-semantic information, the dLCE em-
beddings are enriched with more distinguishing information
and the Distiller helps to effectively distill the most relevant
task-specific information for antonym/synonym distinction.

Such promising results strengthen our claim that the pre-
trained embeddings contain a blend of lexico-semantic in-
formation and we can acquire task-specific information by
projecting them to low-dimensional subspaces.

4.5 Detailed Performance of Our Model

Table 3 shows the result of our model with different set of
features and pre-trained embeddings. We also report the per-
formance of our model with random vectors in order to ana-
lyze the performance gained by the unsupervised contextual
embeddings.

While the Distiller contributes the most distinction power
to our model, we also analyze the results of applying ei-
ther the distributional feature or the prefix feature, as well
as both of them. It can be seen that the prefix feature slightly
improved the performance for nouns, yielding a higher F1
score, whereas, for adjectives and verbs, the increase in per-
formance was not so significant. It confirms that the dis-
tilled embeddings have a strong distinction power and even
the best known features for antonymy detection, i.e., prefix,
had a very little impact on overall performance. The distri-
butional feature slightly improved the performance of the
nouns, however, it deteriorated the performance of the verbs
and the adjectives. For most cases, using all the features at
the same time (i.e., Distiller + distributional + prefix) had a
complementary effect on the model performance, it helped
the model to reinforce the decision for confident candidate



. Adjective Verb Noun

Embeddings Model P ] T P ] T P N BT
Discourse Markers | 0.717 0.717 0.717 | 0.789 0.787 0.788 | 0.833 0.831 0.832
None Symmetric Patterns | 0.730 0.706 0.718 | 0.560 0.609 0.584 | 0.625 0.393 0.482
AntSynNET 0.764 0.788 0.776 | 0.741 0.833 0.784 | 0.804 0.851 0.827
Direct Baseline 0.700 0.619 0.657 | 0.634 0.630 0.632 | 0.682 0.647 0.664
Glove AntSynNET 0.750 0.798 0.773 | 0.717 0.826 0.768 | 0.807 0.827 0.817
Our-Model 0.854 0917 0.884 | 0.871 0912 0.891 | 0.823 0.866 0.844
Direct Baseline 0.897 0.897 0.897 | 0.857 0.833 0.845 | 0.890 0.859 0.874
dLCE AntSynNET 0.763 0.807 0.784 | 0.743 0.815 0.777 | 0.816 0.898 0.855
Our-Model 0912 0944 0.928 | 0.899 0944 0.921 | 0.905 0918 0.911

Table 2: Antonym/Synonym distinction performance comparison against baseline models

pairs.

Note that the Distiller trained using random vectors re-
sults in a significant reduction in performance (first row
in Table 3). It shows that the Distiller is not governed by
input bias, rather it distills information contained in unsu-
pervised contextual embeddings. Overall results in Table 3
show that our model outperforms the Direct baseline and
the previous state-of-the-art model (AntSynNET) for all sets
of pre-trained embeddings. These results, moreover, con-
firm that the dLCE embeddings are indeed customized for
antonym/synonym distinction task and on contrary to the
AntSynNET, the proposed framework along with the Dis-
tiller is able to use this information more effectively.

Recognizing Irrelevant Pairs Although, our current
problem setting is not explicitly designed for multi-class
classification, our model has an implicit ability to recognize
irrelevant pairs. For irrelevant pairs, the resultant projections
of words in SYN and ANT sub-spaces end up in a narrow
region far from their synonyms and antonyms. For analysis,
we augmented the dataset by adding an equal proportion of
randomly selected words as “irrelevant” pairs and retrained
the classifier in phase II for multi-class classification. With
Glove embeddings, our model can distinguish three classes
(antonyms, synonyms and irrelevant pairs) with F1 = 0.813,
0.775, and 0.818 for adjectives, verbs, and nouns respec-
tively. These scores are better than the binary classification
in previous state-of-the-art (i.e. F1=0.773, 0.768 and 0.817
for AntSynNET), shown in Table 2.

4.6 Training Time

We analyzed the pre-processing and running time of our
model in comparison with the previous best performing
pattern-based approach, i.e., AntSynNET.

Our model doesn’t require any pre-processing, whereas,
on our machine (explained in section 4.2) the AntSynNET
takes more than 1 week to parse each sentence in the wiki
dump. Moreover, our model is more than 100 times faster to
train (e.g., AntSynNET takes more than 50 hours for model
training, whereas, our model takes less than half an hour).

4.7 Language-Agnostic Model

We verify the language agnostic property of our model by
testing its performance for antonym/synonym distinction
task on another language. We manually curated a dataset
for the Urdu language using linguistic resource and expert
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verification. It consists of 750 instances with an equal pro-
portion of antonyms and synonyms. We split the dataset into
70% train, 25% test and 5% validation set. We use fasttext
for Urdu language (Joulin et al. 2016) as the pre-trained em-
beddings. The performance of our model for the Urdu lan-
guage is shown in Table 4. Huge improvement in the per-
formance compared with the Direct baseline shows that the
proposed model is language-agnostic and has potential to
work for other languages provided with the availability of
pre-trained embeddings and a minimal set of training seeds.

4.8 Analyses of Errors and Distilled Embeddings

In this section, we perform a detailed error analysis, fol-
lowed by analyzing the probable antonyms/synonyms cap-
tured via distilled embeddings. We also list the key advan-
tages of the Distiller.

Error Cases We randomly selected 50 error cases from
our model with Glove embeddings for analysis. We catego-
rized these errors into three distinct categories: (i) 76% er-
rors are caused by the polysemous words (ii) 8% errors are
caused by the rarely used words (iii) 16% other errors.

A major portion of these errors are caused by the inherent
limitation of the unsupervised embeddings, i.e., its inability
to deal with multiple senses and rare tokens. For case (i), we
analysed synonym pairs, e.g., (author, generator),
and antonym pairs, e.g., (frog, english). Here, at
least one word is polysemous with embeddings oriented in
direction of common sense, which is different from the sense
required in antonym/synonym relation. This phenomenon is
more dominant for the nouns. For example, generator’s
vector is close to electrical device; frog is commonly used
for reptile, however, in the given pair it represents a French
person. For case (ii), the embeddings corresponding to the
rarely used tokens are not adequately trained, e.g., natal
is a rarely used word for native. This results the rela-
tion pair to have very low embeddings’ similarity (orthogo-
nal vectors), which limits the Distiller to capture meaningful
projections to low-dimensional sub-spaces.

We also observe that increase in word frequency has a
deteriorating effect on model performance. This is because
most of the high frequency words are polysemous. For anal-
ysis, we evenly partitioned the test data (word pairs (a, b))
based on the minimum frequency of two words in a large-
scale text corpus. For the least frequent 10% adjective word
pairs, the F1 is 0.914, and for the most frequent 10% word



. \ Adjective Verb Noun
Embeddings Model P ] FT | P ] FT | P R F

Random Vectors [ Distiller + distributional + prefix | 0.639 0.769 0.698 [ 0.719 0.833 0.771 [ 0.672 0.736  0.702

Direct Baseline 0.700 0.619 0.657 | 0.634  0.630 0.632 | 0.682 0.647 0.664

AntSynNET 0.750 0.798 0.773 | 0.717 0.826 0.768 | 0.807 0.827 0.817

Distiller 0.859 0.912 0.885 | 0.866 0.914 0.889 | 0.823 0.848 0.835

Glove Distiller + distributional 0.852 0914 0.884 | 0.873 0910 0.891 | 0.821 0.853 0.837

Distiller + prefix 0.855 0.916 0.884 | 0.862 0.913 0.887 | 0.822 0.868 0.844

Distiller + distributional + prefix | 0.854 0.917 0.884 | 0.871 0912 0.891 | 0.823 0.866 0.844

Direct Baseline 0.897 0.897 0.897 | 0.857 0.833 0.845 | 0.890 0.859 0.874

AntSynNET 0.763 0.807 0.784 | 0.743 0.815 0.777 | 0.816 0.898 0.855

Distiller 0.920 0.938 0.929 | 0.904 0.930 0917 | 0.902 0.909 0.906

dLCE Distiller + distributional 0.905 0.945 0.924 | 0.886 0.938 00911 | 0.893 0918 0.905

Distiller + prefix 0914 0.947 0.930 | 0.893 0.944 0918 | 0.894 0.925 0.909

Distiller + distributional + prefix | 0.912 0.944 0.928 | 0.899 0.944 0.921 | 0.905 0918 0911

Direct Baseline 0.676 0.589 0.63 | 0.661 0.665 0.663 | 0.673 0.633 0.653

Distiller 0.839 0.896 0.866 | 0.871 0.926 0.898 | 0.833 0.869 0.850

ELMO Distiller + distributional 0.835 0.898 0.866 | 0.870 0.929 0.899 | 0.831 0.875 0.853

Distiller + prefix 0.835 0.909 0.871 | 0.868 0.930 0.898 | 0.831 0.876 0.852

Distiller + distributional + prefix | 0.839 0.905 0.871 | 0.869 0.933 0.900 | 0.832 0.884 0.857

Table 3: Performance of proposed model under different settings

_Model P R F1 e Distiller is not constrained by naive assumptions. For ex-
Direct baseline | 0.623 0.533 0.575 ample, the pattern based methods work only if a depen-
Our Model 0.897 0.867 0.881 dency path exists between candidate antonym/synonym

Table 4: Antonym/Synonym distinction for Urdu language

pairs, the F1 drops down to 0.820. A similar trend is ob-
served for nouns and verbs.

Effectiveness of Distiller Pre-trained word embeddings
yield a blend of lexical-semantic relations as nearest neigh-
bor of an input word. On contrary, the Distiller provides us
the provision to separately analyze just the antonyms and/or
synonyms of a given word. We analyzed the nearest neigh-
bors of large using Glove and the distilled embeddings.
Results corresponding to Glove embeddings (first column in
Table 5) show that it makes no distinction among lexico-
semantic relations, e.g., the antonym small is ranked high-
est in the list. The results corresponding to the distilled em-
beddings (column-2) show that the top ranked terms (e.g.,
immense, gigantic) are indeed the synonyms. Like-
wise, the results in column-3 show that the top ranked terms
by the Distiller (e.g., slender, thin) are indeed the
antonyms.

Glove

Distiller(Synonyms)

Distiller(Antonyms)

small (antonym)
larger (synonym)
smaller (antonym)
huge (synonym)
sized (other)

immense
gigantic
influential
full
enormous

slender
thin
lightweight
small
inconspicuous

Table 5: Top-5 nearest neighbors of the word: 1arge using
Glove embeddings vs synonyms and antonyms captured by
the distilled embeddings

Key Advantages of Distiller The key advantages of Dis-
tiller compared with the previous state-of-the-art pattern
based methods are listed below:
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pair, and it is impossible for every feasible synonym
and/or antonym pair to co-occur within a sentence. Like-
wise, the Distiller is not limited by the challenges posed
by the overlapping nature of lexico-syntactic patterns,
which hinder the performance of pattern based methods.

Distiller allows explicitly constraining the sub-spaces.
This formulation is best suited for lexico-semantic analy-
sis, as it allows appropriate re-ordering of the sub-spaces
to capture relation-specific characteristics.

Thanks to the wide availability of pre-trained embeddings
with various improvements and for most languages, Dis-
tiller is a flexible and efficient choice for lexical-semantic
analysis requiring no pre-processing and little linguistic
knowledge.

5 Conclusions and Future Work

In this paper, we proposed a novel framework, Distiller,
for antonym and synonym distinction. It employs carefully
crafted loss functions to project the pre-trained embeddings
to low-dimensional task-specific sub-spaces in a perfor-
mance enhanced fashion. Results show that the Distiller out-
performs previous methods on the antonym and synonym
distinction task. In the future, we will extend the proposed
framework to other lexical-semantic relations (e.g., hyper-
nymy detection) and to other embedding models such as the
hyperbolic embeddings (Nickel and Kiela 2017).
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