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Abstract

Machine Reading Comprehension (MRC) with multiple-
choice questions requires the machine to read given passage
and select the correct answer among several candidates. In
this paper, we propose a novel approach called Convolutional
Spatial Attention (CSA) model which can better handle the
MRC with multiple-choice questions. The proposed model
could fully extract the mutual information among the passage,
question, and the candidates, to form the enriched representa-
tions. Furthermore, to merge various attention results, we pro-
pose to use convolutional operation to dynamically summa-
rize the attention values within the different size of regions.
Experimental results show that the proposed model could
give substantial improvements over various state-of- the-art
systems on both RACE and SemEval-2018 Task11 datasets.

Introduction
Owing to the rapid release of various large-scale datasets,
Machine Reading Comprehension (MRC) has become enor-
mously popular in Natural Language Processing. For ex-
ample, cloze-style MRC (such as CNN/DailyMail (Her-
mann et al. 2015), Children’s Book Test (CBT) (Hill et al.
2015)), span-extraction MRC (such as SQuAD (Rajpurkar
et al. 2016)), and multiple-choice MRC (such as MCTest
(Richardson, Burges, and Renshaw 2013), RACE (Lai et al.
2017), SemEval-2018 Task11 (Ostermann et al. 2018)).

In this paper, we mainly focus on solving the reading
comprehension with multiple-choice questions. At the be-
ginning of the reading comprehension study, this type of
reading comprehension task was not that popular because
there is no large-scale dataset available and thus we cannot
apply neural network approaches to solve them. To bring
more challenges to reading comprehension task and miti-
gate the absence of large-scale multi-choice reading com-
prehension dataset, Lai et al.(2017) propose a new dataset
called RACE. Compared to the earlier MCTest (Richard-
son, Burges, and Renshaw 2013), the RACE dataset is made
from the English examinations for Chinese middle and high
school students, consisting near 100,000 questions gener-
ated by human experts, and is far more challenging than the
MCTest.
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In this paper, we propose a novel model called Convo-
lutional Spatial Attention (CSA) to fully utilize the hierar-
chical attention information for reading comprehension with
multiple-choice questions. The proposed model first encode
the passage, question, and candidates into word represen-
tations which are enhanced by the additional POS-tag and
matching features. Then we concentrate on enriching the
representation of the candidates by incorporating the pas-
sage, question information, and further calculate the atten-
tions between the passage, question, and candidates, form-
ing the spatial attentions. To further extract the represen-
tative features in the spatial attentions, we propose to use
convolutional neural network to dynamically conclude adja-
cent regions with different window size. We mainly test our
CSA model on two multiple-choice reading comprehension
datasets: RACE and SemEval-2018 Task11, and our model
achieves state-of-the-art performances on both of them. The
examples of each dataset are given in Figure 1. The main
contributions of our paper can be summarized as follows.
• We focus on modeling different semantic aspects of the

candidates, by integrating the passage and question infor-
mation, forming the 3D spatial attention among the pas-
sage, question, and candidates.

• We propose a Convolutional Spatial Attention (CSA)
mechanism to dynamically extract representative features
from the spatial attentions.

• The proposed model gives substantial improvements
over various state-of-the-art systems on both RACE and
SemEval-2018 Task11 datasets, showing its generaliza-
tion and extensibility to other NLP tasks.

Related Works
Massive progress has been made on machine reading com-
prehension field in recent years. The booming of the MRC
can trace back to the release of the large-scale datasets, such
as CNN/DailyMail (Hermann et al. 2015) and CBT (Hill et
al. 2015)). After the release of these datasets, various neu-
ral network approaches (Chen, Bolton, and Manning 2016;
Kadlec et al. 2016; Cui et al. 2017; Dhingra et al. 2017)
have been proposed and become fundamental components in
the future studies. Another representative dataset is SQuAD
(Rajpurkar et al. 2016), which was difficult than the cloze-
style reading comprehension and requires the machine to
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RACE SemEval-2018 Task11
Passage Passage
Is it important to have breakfast every day? A short time
ago, a test was given in the United States. People of differ-
ent ages, from 12 to 83, were asked to have a test. During
the test, these people were given all kinds of breakfast, and
sometimes they got no breakfast at all. ...

I was thirsty so I decided to make a cup of tea. I looked
through my box of teas and rifled through the assorted fla-
vors. I settled on Earl Gray, which is a black tea flavored with
bergamot orange. I filled the kettle with water and placed it
on the stove, turning on the burner so that it would heat up
and begin boiling. ...

Question Question
What do the results show? Why did they use a kettle?

Candidates Candidates
A They show that breakfast has affected on work and study. A to drink from
B Breakfast has little to do with a person’s work. B to boil water
C A person will work better if he only has fruit and milk.
D They show that girl students should have less for break-
fast.

Figure 1: Example of RACE and SemEval-2018 Task11 dataset. The correct answer is depicted in bold face.

generate a span in the passage to answer the questions.
With rapid progress on designing effective neural network
models (Xiong, Zhong, and Socher 2016; Seo et al. 2016;
Wang et al. 2017; Hu, Peng, and Qiu 2017), recent works
on this datasets have surpassed the average human perfor-
mance, such as QANet (Yu et al. 2018) etc.

However, current machine reading comprehension mod-
els are still struggling with solving the questions that need
reasoning over multiple sentences or even passage. To solve
the reading comprehension with multiple-choice questions,
various approaches have been proposed, and most of them
are focusing on designing effective attentions or persuing
enriched representations for prediction. When releasing the
RACE dataset, Lai et al.(2017) also adopted and modified
two models of the cloze-style reading comprehension: Gated
Attention Reader (Dhingra et al. 2017) and Stanford Atten-
tive Reader (Chen, Bolton, and Manning 2016). However,
experimental results show that these models are not capable
of this task. Parikh et al.(2018) introduced ElimiNet which
use a combination of elimination and selection to get refined
representation of the candidates. Xu et al.(2017) proposed
the Dynamic Fusion Networks (DFN), which uses multi-
hop reasoning mechanism for this task. Zhu et al.(2018) pro-
posed the Hierarchical Attention Flow model, which lever-
age candidate options to model the interactions among pas-
sage, questions, and candidates.

Though various efforts have been made, we believe there
is still a large room for designing effective neural networks
for better characterizing the relations between the passage,
questions, and candidates. To this end, we summarize the
main differences between our model and existing models
for this task into three aspects. First, we calculate various
representations of the candidate to better characterize it for
prediction. Second, when calculating attention, we apply ad-
ditional trainable weights to dynamically adjust the atten-
tion values, which is more flexible. Third, unlike the previ-
ous works only utilize the final-level hierarchical attentions,

we propose to use every attention in each hierarchy, and use
convolutional neural network to capture features for predict-
ing the answer.

Convolutional Spatial Attention Model
Task Definition
The RACE dataset (Lai et al. 2017) for reading comprehen-
sion with multiple-choice questions was proposed, which
consists of 28,000+ passages and near 100,000 questions
generated by human experts for the English examinations
of Chinese middle and high school students. Different from
the earlier MCTest dataset (Richardson, Burges, and Ren-
shaw 2013), the RACE dataset is significantly larger, and
thus we can apply deep learning approaches for this task.
As all the questions and choices are generated by human ex-
perts, RACE dataset provides more comprehensive and re-
alistic evaluation on machine reading comprehension than
the other popular datasets such as CNN/DailyMail, SQuAD
datasets, whose answer should appear in context. Also ac-
cording to the analysis by Lai et al.(2017), a large portion of
the questions in RACE need reasoning over various clues,
which makes it more challenging and suitable to evaluate
the ability of the reading comprehension systems. SemEval-
2018 Task11 is closely the same with the RACE dataset but
with two candidates and small size. The examples of each
dataset are given in Figure 1.

The Model
In this section, we will give a detailed description on the pro-
posed model. The main neural architecture of our model is
depicted in Figure 2. Throughout this section, we will use P
for representing the passage, Q for the question, C for the
candidates. Note that, as the operations on each candidate
are the same, for simplicity, we only take one of the candi-
dates for illustration.
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Figure 2: Main neural architecture of the Convolutional Spatial Attention (CSA) model.

Word Representation
We transform each word in the passage, question, and can-
didates into continuous representations. In this paper, there
are three components in the embedding layer, which can be
listed as follows.
• Word Embedding Eword: We use traditional pre-trained

GloVe embedding for initialization (Pennington, Socher,
and Manning 2014) and keep fixed during the training
process.

• ELMo Embedding Eelmo: For this part, we use pre-
trained ELMo (Peters et al. 2018) embedding.

• Feature Embedding Efeat: We also utilize three addi-
tional features to enhance the word representations.

1. POS-tag Embedding Epos: We use NLTK (Bird and
Loper 2004) for part-of-speech tagging for each word.
Similar to traditional word embeddings, we assign dif-
ferent trainable vectors for each part-of-speech tag.

2. Word Matching Fmatch: Take the text as an example,
if the word in text also appears in question or candidate,
we set the value as one, otherwise set it as zero. In this
way, we can also add this feature to the question and
candidate.

3. Fuzzy Word Matching Ffuzzy: Similar to the word
matching feature, but we loosen the matching criteria as
partial matching. For example, we regard ‘teacher’ and
‘teach’ as fuzzy matching, because the string ‘teacher’
is partially matched by ‘teach’.

We concatenate three embedding components to form the
final word representations for the text EP ∈ R|P |×e, ques-
tion EQ ∈ R|Q|×e, and candidates EC ∈ R|C|×e, where

|P |, |Q|, |C| are the length of the passage, question, and can-
didates, e is the final embedding size (including all three
components).

E = [Eword;Eelmo;Efeat] (1)
Efeat = [Epos;Fmatch;Ffuzzy] (2)

After obtaining embedding representations, we further
feed each word embedding into a shared highway network
(Srivastava, Greff, and Schmidhuber 2015) with tanh output
activation (denoted as σ). In this paper, we apply two con-
secutive highway networks with shared weights. Then we
use Bi-Directional LSTM (Graves and Schmidhuber 2005)
to model the contextual information, formingHP ∈ R|P |×h,
HQ ∈ R|Q|×h, and HC ∈ R|C|×h (h is hidden size of Bi-
LSTM). Note that, we use different Bi-LSTMs for the pas-
sage, question, and candidates.

H̃ = σ(2-Highway(E)) (3)

H = Bi-LSTM(H̃) (4)

Enriched Representation
Calculating attention and generating enriched representation
play very important roles in machine reading comprehen-
sion. In our model, we will calculate various types of en-
riched representations for better characterizing the candidate
and question, which are the essential components in this
task. The procedure for generating enriched representation
is illustrated in Algorithm 1.

For example, we wish to embed the passage information
into the candidate representation to better aware the relevant
part in the passage and obtain the passage-aware candidate

6278



Algorithm 1 Enriched Representation.
Input:

Time-Distributed representation X1

Time-Distributed representation X2

Initialize:
Random weight matrix W1 ∈ Rh×hatt

Random weight matrix W2 ∈ Rh×hatt

Diagonal weight matrix D ∈ Rhatt×hatt

All-one weight matrix W ∈ R|X1|×|X2|

Output: X2-aware X1 representation Y
1: Calculate attention matrix M ′ ∈ R|X1|×|X2|:
M ′ = f(W1X

1)T ·D · f(W2X
2)

2: Apply element-wise weight: M =M ′ �W
3: Apply softmax function to the last dimension of M :
Matt = softmax(M)

4: Calculate raw representation Y ′ ∈ R|X2|×h:
Y ′ =Matt

T ·X1

5: Concatenate raw representation Y ′ and raw input X1,
then apply Bi-LSTM:
Y = Bi-LSTM([X1;Y

′])
6: return Y

representationRCP . According to Algorithm 1,RCP can be
generated as follows.

• [Line 1] Given the Bi-LSTM representations of passage
HP and candidateHC , we first calculate the attention ma-
trix where each element indicate the matching informa-
tion between them. In this paper, we adopt the attention
mechanism used in FusionNet (Huang et al. 2017). where
two representations are transformed by individual fully-
connected layer with an output activation f . Also, a train-
able diagonal weight matrix D is applied. The activation
function f is defined as RELU throughout this paper.

• [Line 2] Then we apply an element-wise weight matrix
W to the attention matrix M ′. This is designed to let the
model flexibly adjust the attention values.

• [Line 3] We apply softmax to the weighted attention ma-
trix M to the last dimension of it, which calculates the
passage-level attention vector w.r.t. each candidate word.

• [Line 4] After obtaining the normalized attention matrix
Matt, we make a dot product between the Matt and the
passage HP to extract candidate-related passage.

• [Line 5] Finally, we concatenate candidate-related pas-
sage Y ′CP and Bi-LSTM candidate representation HC ,
and feed them to a Bi-LSTM to fully integrate passage
information into the candidate representations.

By applying the proposed algorithm g(X1, X2), we can
calculate the passage-aware and question-aware candidate
representation RCP and RCQ. Besides, as the question in-
formation is also important, we also calculate passage-aware
question representationRQP and self-attended question rep-
resentation Rself -Q. Note that, we use Bi-LSTM output BQ

and passage-aware question representation RQP to obtain
the (almost-)self-attended question representation, which

combines different levels of representations.

RCQ = g(BC , BQ) (5)
RCP = g(BC , BP ) (6)
RQP = g(BQ, BP ) (7)

Rself -Q = g(BQ, RQP ) (8)

Convolutional Spatial Attention
With previously generated representations, we can calcu-
late the matching matrix to measure the similarity between
them. In this paper, we adopt simple dot product to obtain
the matching matrix. As the candidate information is impor-
tant to answer the question, firstly we calculate the matching
matrix using various candidate representations to the self-
attended question representation Rself -Q. The motivation
is to use the question information as the key to extracting
candidate information in different levels. We use question-
aware candidate representation RCQ, passage-aware candi-
date representation RCP , and candidate Bi-LSTM represen-
tation HC , as shown below.

M11 = RCQ ·Rself -Q (9)
M12 = RCP ·Rself -Q (10)
M13 = HC ·Rself -Q (11)

In a similar way, we can also replace the self-attended
question representation Rself -Q with passage-aware ques-
tion representation RQP in Equation 9, 10, 11, to obtain
M21,M22,M23. Then we concatenate all matrices on the
channel dimension to form a Spatial Attention Cube M ∈
R6×|C|×|Q|, which is similar to an ‘image’ with 6 channels.

M = [M11;M12;M13;M21;M22;M23] (12)

In order to extract high-level features inside the spatial at-
tention cube, we use CNN-MaxPooling operation to dynam-
ically conclude adjacent attention information, which is sim-
ilar to the traditional operation on the image. Formally, we
first apply convolutional operation on the M to summarize
different length of adjacent elements We adopt three convo-
lutional kernels: 5, 10, and 15, along with the dimension of
the question length.

After convolution operation, we could get three features
maps w.r.t. different convolutional kernels. The procedure
can be illustrated as the following equations.

O1 = Max-Pooling1×3{CNN1×5(M)} (13)

O2 = Max-Pooling1×2{CNN1×10(M)} (14)

O3 = Max-Pooling1×1{CNN1×15(M)} (15)

In this way, we used CNN-MaxPooling operation to ob-
tain three feature vectors O1, O2, O3 by using different con-
volutional kernels and max-pooling intervals.

Final Prediction
After obtaining three feature vectors, we flatten, concate-
nate, and feed them into a fully-connected layer to get a
scalar value denoting the possibility of being the correct an-
swer. Recall that, we have several candidates for a given
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Model RACE-M RACE-H RACE
Sliding Window (Lai et al. 2017) 37.3 30.4 32.2
Stanford AR (Lai et al. 2017) 44.2 43.0 43.3
GA Reader (Lai et al. 2017) 43.7 44.2 44.1
ElimiNet (Parikh et al. 2018) N/A N/A 44.5
Hierarchical Attention Flow (Zhu et al. 2018) 45.0 46.4 46.0
Dynamic Fusion Network (Xu et al. 2017) 51.5 45.7 47.4

CSA Model (single model) 51.0 47.3 48.4
CSA Model + ELMo (single model) 52.2 50.3 50.9

GA Reader (6-ensemble) - - 45.9
ElimiNet (6-ensemble) - - 46.5
GA + ElimiNet (12-ensemble) - - 47.2
Dynamic Fusion Network (9-ensemble) 55.6 49.4 51.2

CSA Model (7-ensemble) 55.2 52.4 53.2
CSA Model + ELMo (9-ensemble) 56.8 54.8 55.0

Table 1: Experimental results on RACE. The best previous results are in italics, and overall best results are in bold face.

question, so we will get N candidate scores in this stage.
We apply softmax function to these scores to obtain the final
probability distributions over the candidates.

si = wT · [O1;O2;O3] (16)
Pr(A|P,Q,C) = softmax([s1; ...; sN ]) (17)

To train our model, we use traditional cross entropy loss
to minimize the gap between the prediction and the ground
truth.

Experiments
Experimental Setups
To evaluate our system, we carried out experiments on the
following two public datasets.

• RACE: English examinations for Chinese middle and
high school students. The questions are generated by hu-
man experts, which has four candidates for each question.
The test set consists of 4,934 instances, where RACE-M
(middle school) has 1,436 instances, and RACE-H (high
school) for 3,498 instances.

• SemEval-2018 Task11: The dataset provided by the
SemEval-2018 Task11 organizer, which mainly focus
on solving commonsense reading comprehension. Each
question has two candidates to choose from.

The data are tokenized and lower-cased by using Natu-
ral Language Toolkit (NLTK) (Bird and Loper 2004), and
all punctuations are removed. The main hyper-parameters
of our model are listed in Table 2. Note that, except for
the candidate numbers, all hyper-parameters are identical
among two datasets. The word embeddings are initialized
by the pre-trained GloVe word vectors (Common Crawl, 6B
tokens, 100-dimension) (Pennington, Socher, and Manning
2014), and keep fixed during training. The words that do not
appear in the pre-trained word vectors are set to the unk
token and initialized accordingly. We use Adam (Kingma

Symbol Descriptions Size
|P | Passage max length 300
|Q| Question max length 20
|C| Candidate max length 10
e Word embedding 200
h Bi-LSTM hidden size 250
hatt Attention hidden size 80
es ELMo embedding size 1024
p POS-tag embedding 16

Table 2: Hyper-parameter settings.

and Ba 2014) for weight optimizations with an initial learn-
ing rate of 0.001. In order to prevent overfitting, we apply
dropout of 0.35 to all the representation layers. The models
are built on Keras platform (Chollet and others 2015) with
Tensorflow backend (Abadi et al. 2016).

Overall Results
RACE. The experimental results are shown in Table 1. As
we can see that, our CSA model shows significant improve-
ments over various state-of-the-art systems by a large mar-
gin. We also compared our model to the recent unpublished
work DFN, while our model gives an absolute gain of 1.0%
in the overall test set, and further gains can be obtained by
incorporating ELMo, demonstrating the effectiveness of our
proposed model. Also, when compared to the Hierarchical
Attention Flow model (Zhu et al. 2018), our CSA model
show substantial improvements, indicating that utilizing the
attentions in each hierarchy and using convolutional neural
network to extract the most representative features from the
spatial attentions are useful in this task.

When it comes to the ensemble results, though we only
use 7 models in ensemble with majority voting approach,
the overall results show an absolute gain of 2% over the pre-
vious state-of-the-art result by DFN. Also we observed that
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Model Dev Test
HMA (Chen et al. 2018) 84.48 80.94
TriAN (Wang 2018) 83.84 81.94

CSA Model (single model) 83.63 82.20
CSA Model + ELMo (single model) 83.84 83.27

TriAN (ensemble) 85.27 83.95
HMA (ensemble) 86.46 84.13

CSA Model (ensemble) 84.05 84.34
CSA Model + ELMo (ensemble) 85.05 85.23

Table 3: Experimental results on SemEval-2018 Task11. The
two top-ranked systems are listed as baselines.

our model shows slightly worse result in RACE-M but sig-
nificantly better in RACE-H regardless of single model or
ensemble. These results indicate that our model is more ca-
pable of solving difficult question (high school). While on
the contrary, it may hurt the performance on the relatively
easier question (middle school). We will give a detailed anal-
ysis for illustrating this phenomenon in the next section.
SemEval-2018 Task11. The distributions of question type
is quite different between the RACE and SemEval-2018
Task11 datasets. To test if our model could generalize to
other reading comprehension dataset, we also carried out ex-
periments on the very recent SemEval-2018 Task11 dataset.
The results are shown in Table 3. As we can see that, our
CSA model could give moderate improvements over the
top-ranked SemEval systems in both single model and en-
semble, and set up new state-of-the-art performance on this
task, demonstrating the proposed model is powerful and
showing its potential possibility to generalize to other NLP
tasks. Note that, we directly train the model using the hyper-
parameter settings of the RACE experiments without finding
other hyper-parameter combinations, indicating further im-
provements may be obtained through fine-tuning.

Ablation Study
We also carried out model ablations to further demonstrate
the effectiveness of the proposed approaches. The results are
shown in Table 4.

Model RACE
CSA Model 48.52
w/o attention weight 48.18
w/o enriched representation 47.52
w/o convolutional spatial attention 47.30

CSA Model + ELMo 50.89
w/o attention weight 49.49
w/o enriched representation 49.78
w/o convolutional spatial attention 48.47

Table 4: Ablations on several model components.

As shown in the model description, we adopt the atten-
tion mechanism used in FusionNet (Huang et al. 2017), and

applied an element-wise weight to the attention matrix. By
applying additional trainable weights to the attention ma-
trix could give moderate improvements suggesting that these
weights are useful in dynamically adjusting the attention val-
ues. When we remove all the enriched candidate representa-
tions, there is an absolute drop of 1.0%. This suggests that
it is necessary to incorporate various information (such as
the passage and question) into the candidate representation.
We also removed our convolutional spatial attention mech-
anism in the model. The results show a significant drop in
performance by 1.22%, indicating that the proposed convo-
lutional spatial attention is effective in extracting most rep-
resentative values among the various attention matrices. The
same results drop is shown by incorporating ELMo. Further
more, whether we use ELMo or not, our convolutional spa-
tial attention has improved significantly. That also proved
that our model can get father improvement after some big
data trained toolkit like ELMo or some other transformer.

The detailed settings of the ablation experiments are
shown below.

• w/o attention weight: We change M =M ′ �W ( in Alg
1 line 2) to M =M ′, where W is the attention weight.

• w/o enriched representation: We remove interaction of
candidate-to-question (RCQ in Figure 2 ) and candidate-
to-passage (RCP in Figure 2) and only use candidate’s
LSTM output RC .

• w/o convolutional spatial attention: We use two fully-
connected layer to transform the matching matrix to a
score. The first fully-connected layer squeeze the match-
ing matrix to a vector along the question length dimen-
sion. The second fully-connected layer squeeze the vec-
tor to a scalar score. As every candidate has six matching
matrices, so we can get six scores. Finally, we add the six
scores as the final prediction.

Analysis and Discussion
Quantitative Analysis
In our CSA model, we adopt various enriched representa-
tions for better characterizing candidate information in dif-
ferent semantic aspects. To better understand our model, we
compare the performance between the original CSA model
and without enriched candidate representations, as shown in
Figure 3.

As we can see that our model yields significant improve-
ments on the question type ‘how’ and ‘why’, which are rel-
atively difficult than the other type of questions requiring
high-level reasoning within the context, demonstrating that
our CSA model performs better on the relatively sophisti-
cated questions. However, on the contrary, we find that our
CSA model shows relatively inferior performance on the
question type ‘who’, ‘where’, and ‘when’, which are often
answered by a single word or entity name. This phenomenon
suggests that further efforts should be made on balancing the
word-level attention and highly abstracted attention to better
solving both easy and hard questions in reading comprehen-
sion.
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Figure 3: Quantitative analysis on different type of questions
in RACE development and test set.

These results also explain why our CSA model shows
significant improvements on RACE-H (high school) subset
while giving a relatively inferior performance on RACE-M
(middle school) subset. As the sample number of RACE-H
subset is three times the size of RACE-M, the overall per-
formance of our model still shows significant improvements
over various state-of-the-art systems.

Case Study
We also randomly sampled one hundred question from
RACE test set, and classified them into three categories ac-
cording to its difficulty. The results are shown in Table 5.
• The first level is the question that can be answered by

matching a few words in the passage. If the model finds
the right place in the text, the answer is easy to find. With
the attention mechanism, the neural model is especially
good at solving this kind of question.

• The second level is the question that can be answered by
using a few sentences without reasoning, which is rela-
tively difficult than the first level.

• The third level is the question that needed to comprehen-
sive reasoning via multiple clues in the passage. This kind
of question is more complicated. To answer this question,
the intention of the questioner must be captured.
As we can see that the current model shows relatively

good performance on the first and second level questions
than the third one, indicating that more investigation should
be made on solving those questions that need reasoning.

An interesting example is shown in Figure 4, where our
model chooses the right answer “C”. The reason why our
model could pick out the right answer is that the candidate

State Total # Right # Accuracy
All 100 56 56.0%

First level 30 18 60%
Second level 30 20 66.7%
Third level 40 18 45.0%

Table 5: Case analysis on RACE dataset.

RACE Dataset
Passage
As is known to all, in daily conversation people often use
simple words and simple sentences, especially elliptical
sentences. Here is an interesting conversation between Mr
Green and his good friend Mr Smith, a fisherman. Do you
know what they are talking about?

Question
The text is mainly about .

Candidates
A how to catch fish. B how to spend a Sunday
C ellipsis in conversations D joy in fishing

Figure 4: An example of RACE dataset. The correct answer
is depicted in bold face.

“C” has the biggest semantic overlap with passage. If we
change the candidate “C” to “ellipsis in talking” or change
the question to “The conversation is mainly about .”, the
model could still pick out the candidate “C” with a high
probability as the correct answer. Through this experiment,
we can see that our model could handle part of the high level
semantic matching which suggest that the proposed CSA
model is effective and robust on modeling text with similar
meanings.

Conclusion
We propose the Convolutional Spatial Attention (CSA)
model to tackle the machine reading comprehension with
multiple-choice questions. The proposed model could fully
extract the mutual information among the passage, question,
and candidates, to form the enriched representations using
the modified attention mechanism that has trainable weights.
To summarize attention matrices from various sources, we
propose to use convolutional operation to dynamically sum-
marize the attention values within the different size of re-
gions, which is beneficial to capture diverse features. Ex-
perimental results show that the proposed CSA model could
give substantial improvements over various state-of-the-art
systems on both RACE and SemEval 2018 Task11 datasets.
Also, the ablation studies verify the effectiveness of several
proposed components in our model, and case analysis also
shows that the CSA model is superior in solving relatively
sophisticated questions (such as ‘why’ or ‘how’ questions).

In the future, we would like to investigate how to make
a good balance between the word-level attention and highly
abstracted attention information to better solving both easy
and hard questions.
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