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Abstract

Understanding narrative content has become an increasingly
popular topic. Nonetheless, research on identifying common
types of narrative characters, or personae, is impeded by the
lack of automatic and broad-coverage evaluation methods.
We argue that computationally modeling actors provides ben-
efits, including novel evaluation mechanisms for personae.
Specifically, we propose two actor-modeling tasks, cast pre-
diction and versatility ranking, which can capture comple-
mentary aspects of the relation between actors and the charac-
ters they portray. For an actor model, we present a technique
for embedding actors, movies, character roles, genres, and de-
scriptive keywords as Gaussian distributions and translation
vectors, where the Gaussian variance corresponds to actors’
versatility. Empirical results indicate that (1) the technique
considerably outperforms TransE (Bordes et al. 2013) and
ablation baselines and (2) automatically identified persona
topics (Bamman, O’Connor, and Smith 2013) yield statisti-
cally significant improvements in both tasks, whereas sim-
plistic persona descriptors including age and gender perform
inconsistently, validating prior research.

Introduction
Despite renewed interest in narrative text understand-
ing (Ouyang and McKeown 2015; Chaturvedi, Iyyer, and
Daume III 2017), the extraction of high-level narrative se-
mantics, such as persona, remains a formidable challenge.
A persona (Bamman, O’Connor, and Smith 2013; Bam-
man, Underwood, and Smith 2014) refers to a class of story
characters that share traits, behaviors, and motivation. For
example, the narratologist Campbell (1949) identified the
hero persona, whose typical journey includes entering an un-
known world, overcoming many difficulties, and receiving a
reward in the end. Bamman et al’s work (2013; 2014) pi-
oneer computational persona discovery from narrative text.
Since then, however, progress on this topic has been limited.

A major obstacle in this line of research is the lack of
automatic and broad-coverage evaluation methods. Existing
work mostly relied on human evaluation, which is expen-
sive and time-consuming to perform. Crowd workers may

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

* The main technique was conceived when Hannah Kim,
Denys Katerenchuk, and Boyang Li worked at Disney Research.

not possess sufficient literary understanding to provide reli-
able persona annotation. In comparison, literary scholars are
authoritative sources of annotation, but their limited avail-
ability often results in low annotation coverage.

Actors in movies and TV shows are an integral part of
narratives, but have been largely ignored by the literature on
narrative understanding. Computational modeling of actors
may benefit downstream applications like movie recommen-
dation based on actor similarity. More importantly, actors
and the characters they portray are correlated. By modeling
actors, we create two complimentary evaluation metrics for
automatically discovered personae: cast prediction and ver-
satility ranking.

The cast prediction task aims to predict which actors
played for a particular role in a given movie. Through the
controversial but “inescapable” (Wojcik 2003) practice of
typecasting, many actors repeatedly play similar roles. An
accurate understanding of the character roles could filter ac-
tors who never played similar characters (thereby improving
precision) but keep those who did (thereby improving re-
call). Thus, cast prediction may be utilized as an evaluation
for persona descriptors.

However, skilled actors are not limited to playing one
type of characters. Versatility is defined as an actor’s ability
to successfully “disappearing” into widely divergent roles
and is widely recognized as the hallmark of acting skill. We
reckon that persona may not be effective at predicting what
roles that versatile actors could play. As a remedy, we intro-
duce a second task, versatility ranking, which aims to order
actors by their versatility. Recognizing different personae
played by actors should help in quantifying their versatility.

As a computational model for actors and an evaluation
algorithm for a given set of personae, we present a joint rep-
resentation learning technique that embeds actors, movies,
genres, and keywords that describe movies as Gaussian dis-
tributions (Vilnis and McCallum 2015) and the personae as
translation vectors on the Gaussian means. The Gaussian
representation offers two advantages. First, it models the in-
herent uncertainty that exists in the meanings of entities and
occurrence of relations in-between. For example, the mean-
ing of user-supplied keywords is subject to users’ interpreta-
tion. Casting decisions may be influenced by random events
such as schedule conflicts and actor injuries. Second, there
is a natural correspondence between the Gaussian variance
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and the actors’ versatility.
Our algorithm improves the mean rank of ground-truth

answers by 332 positions over a TransE baseline (Bordes
et al. 2013), which does not explicitly represent the uncer-
tainty, underscoring the Gaussian formulation’s advantage.
The algorithm also achieves the accuracy of 59.72% in ver-
satility ranking. The difficulty of the task is noteworthy, as
humans typically require professional training to accurately
recognize acting skill. We experiment with a few possible
persona descriptors on the two tasks. Persona topics ex-
tracted using Persona Regression (Bamman, O’Connor, and
Smith 2013) improve performance on both tasks, but sim-
plistic persona descriptors including age and gender perform
inconsistently, suggesting the proposed metrics can distin-
guish different persona descriptors.

This paper makes the following contributions:

• We propose an actor model that embeds movies, actors,
genres, keywords, and story characters with Gaussian em-
beddings and translation vectors. The model outperforms
baselines in cast prediction and is the first successful at-
tempt to capture actors’ versatility.

• We contend that cast prediction and versatility ranking
can serve as novel evaluation mechanisms for automat-
ically recognized personae. Despite significant level of
noise in text preprocessing, persona topics identified from
text attain statistically significant improvements on cast
prediction and versatility modeling, validating prior re-
search.

• We create a set of versatility rankings by four domain ex-
perts. The data and the model will be released.

Background and Related Work
We briefly review work on narrative understanding and un-
supervised representation learning for words and concepts.

Narratives and Story Characters
As a complex artifact, a narrative can be analyzed and
computationally modeled as multiple layers that are de-
pendent on each other, including the surface text (Rea-
gan et al. 2016), event semantics, and script-like patterns
(Li et al. 2013; Pichotta and Mooney 2016; Ferraro and
Van Durme 2016; Hu, Rahimtoroghi, and Walker 2017;
Martin et al. 2018), macro-structures (Ouyang and McKe-
own 2015; Finlayson 2016; Li et al. 2018), story characters
and their relations (Bamman, O’Connor, and Smith 2013;
Bamman, Underwood, and Smith 2014; Valls-Vargas, Zhu,
and Ontañón 2015; Chaturvedi, Iyyer, and Daume III 2017)
as well as narrative quality (Wang, Chen, and Li 2017;
Sagarkar et al. 2018).

Among various facets of a narrative, many novelists con-
sider story characters to be the most crucial for a good story
(Woolf 1924). A common class of characters (sometimes re-
ferred to as a persona) share motivation, traits and behav-
iors and are often recast under different disguise. A classic
example is Campbell’s hero, who receives a call for adven-
ture, takes on many challenges before a final, most difficult

challenge, and gains a boon for completing the quest (Camp-
bell 1949). Many story protagonists, especially in the adven-
ture genre, follow this pattern. We are not aware of a defini-
tive list of personae; theories range from Carl Jung’s twelve
and Schmidt’s forty-five (2011) to the ninety-nine listed on
tvtropes.org1

Computational techniques that model story characters are
the most relevant to this work. Bamman et al. (2013; 2014)
extract persona as a group of topics, which are multinomial
distributions over action verbs, possessives, and modifiers
respectively. The rationale is that similar characters would
perform/receive similar actions and have similar descrip-
tions. For example, a hero often rescues, a sidekick would
banter, and a villain tends to be angry. Bamman, O’Connor,
and Smith (2013) adopt a logistic prior uses the actor’s age,
gender, and movie genre to aid the assignment of movie
characters to personae. Bamman, Underwood, and Smith
(2014) further incorporate the influence of the author and
the background topic frequency into a log-linear topic model
(Eisenstein et al. 2011). Valls-Vargas, Zhu, and Ontañón
(2015) propose a system architecture with feedback loops
for identifying personae from Russian folklore. Chaturvedi,
Iyyer, and Daume III (2017) employ hidden Markov models
to learn how relationships evolve between characters.

This paper does not attempt to recognize personae di-
rectly. Instead, we take a list of recognized personae as in-
put. Since many actors play similar characters in their ca-
reer, a good list of personae should facilitate the modeling
of actors. The two tasks we propose can serve as evaluation
metrics for personae recognized unsupervisedly.

Different evaluation methods have been employed for
story characters and their relations. Bamman, O’Connor, and
Smith (2013) use gold clusters containing the same charac-
ter in sequels or remakes and crowd-supplied examples for
TV tropes. Bamman, Underwood, and Smith (2014) employ
29 hypotheses created by a literary scholar regarding char-
acter similarity. Chaturvedi, Iyyer, and Daume III (2017) use
about 400 sentences from story summaries as their test for
binary relation classification, as well as a relation analogy
task. The cast prediction task is similar to the same-character
clusters in its objectivity but arguably has better coverage as
it is not limited to movies that share characters.

Unsupervised Lexical and Conceptual
Representations
Distributed word representations are usually learned based
on word co-occurrence statistics (Mikolov et al. 2013; Pen-
nington, Socher, and Manning 2014; Ling et al. 2015). Vilnis
and McCallum (2015) generalize word vectors to Gaussian
distributions that occupy a volume in space. Athiwaratkun
and Wilson (2017) propose mixtures of Gaussian embed-
dings to account for multiple word senses.

Despite broad adoption, word embeddings acquired from
text do not capture all types of semantic information. Ru-
binstein et al. (2015) find them particularly deficient in tax-
onomic and attributive information (e.g., a lemon is a fruit

1http://tvtropes.org/pmwiki/pmwiki.php/Main/
ArchetypalCharacter
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and typically green or yellow). In comparison, such informa-
tion is well captured by ontologies and knowledge graphs,
where a relation r between entities h and t is represented as
〈h, r, t〉. For example, one fact above can be represented as
the tuple 〈lemon, IsA, fruit〉.

Various techniques (Bordes et al. 2013; He et al. 2015;
Nickel et al. 2015) learn embeddings from ontologies and
knowledge graphs. The embeddings are evaluated by fill-
ing in missing items in relation tuples such as 〈lemon, IsA,
〉. In particular, the TransE formulation (Bordes et al.

2013) assigns embeddings vh, vr, and vt respectively to the
entities h, t and the relation r. For every ground-truth tuple
〈h, r, t〉, the optimization attempts to achieve vh + vr = vt.
He et al. (2015) apply Gaussian embeddings to knowledge
graphs and represent both entities and relations as Gaussian
distributions. In this work, relations are represented as trans-
lation vectors on the Gaussian means and are not associated
with covariance matrices.

Different from existing work that take the knowledge
graph as given, we investigate what kind of role descrip-
tors that can best describe the interaction between actors and
movies, as measured by cast prediction accuracy. Moreover,
we identify actor versatility as a natural grounding for the
learned variance of actors, whereas in most previous work
the learned embeddings lack practical interpretation.

Learning Joint Gaussian Embeddings
We aim to build a model that connects movies with actors
and the types of roles that they played. To help anchor the
movies relative to each other, we also consider descriptors of
movies including genres and keywords that can be acquired
from many websites or crowd annotation.

More formally, the data contain the set of movie-persona-
actor triples Dmpa = {〈mi, pi, ai〉} and the set of movie-
keyword pairs Dmk = {〈mi, ki〉}.

Genres and keywords may have varying degrees of speci-
ficity. For instance, the genre drama is generic, whereas the
keyword younger-women-older-man-relationship is more
specific. Netflix is known to use a large genre hierarchy2

ranging from broad genres to highly specific ones such as
African-American-showbiz-dramas. Thus, explicitly repre-
senting the uncertainty of a keyword’s meaning could be
advantageous. For simplicity, we henceforth do not distin-
guish between genres and keywords and call both keywords.
For persona information, we adopt the persona topics identi-
fied by Persona Regression (Bamman, O’Connor, and Smith
2013) and the age/gender of the actors at the time of movie
release.

The central feature of our model is that every movie, actor,
and keyword (but not persona) is represented as a Gaussian
distribution instead of a single vector. The Gaussians are in
D-dimensional space, with mean µ and covariance matrix
Σ. We use superscript for further differentiation: µm

i ∈ RD

and Σm
i ∈ RD×D denote the parameters for movies. µa

j ∈
RD and Σa

j ∈ RD×D denote those for actors, and µk
r ∈ RD

2http://ogres-crypt.com/public/NetFlix-Streaming-Genres2.
html

Table 1: Key mathematical notations used in this paper.

D The embedding space’s dimension
mi,µ

m
i ,Σ

m
i The ith movie, its mean vector µm

i
and covariance matrix Σm

i

aj ,µ
a
j ,Σ

a
j The jth actor, its mean vector µa

i and
covariance matrix Σa

i

kr,µ
k
r ,Σ

k
r The rth keyword, its mean vector, and

covariance matrix.
ps,ν

p
s The sth persona, represented by a

translation vector νp
s

〈mi, pi, ai〉 A real movie-persona-actor triple,
i.e., the actor ai played the role of pi
in the movie mi.

〈mi, pi, a
−〉 A negative triple, i.e., the actor a−

did not play the role of pi in movie
mi.

〈mi, ki〉 A real movie-keyword pair, i.e., the
movie mi is labeled with the key-
word ki.

〈mi, k
−〉 A negative pair, i.e., the movie mi is

not labeled with the keyword k−.
N (x;µ,Σ) Gaussian pdf for x under the mean µ

and the covariance Σ.
diag(v) A diagonal matrix with v on its diag-

onal and zero everywhere else.

and Σk
r ∈ RD×D denote those for keywords. Every persona,

in contrast, is represented as a single vector νp
s . See Table 1

for a summary of key notations.
For simplicity, we use only the diagonal entries of

the covariance matrices. We assign a vector σ2
i =

(σ2
i1, σ

2
i2, . . . , σ

2
iD) to each entity and let its covariance ma-

trix Σi = diag(σ2
i ). Preliminary experiments indicate a

spherical setup, where all variances σid are the same, yields
the best performance.

Model
Following Vilnis and McCallum (2015), we define the sym-
metric similarity between a movie mi and a keyword kr as
an integral over the product of two Gaussian pdfs:

S(mi, kr) = log

∫
N (x;µm

i ,Σ
m
i )N (x;µk

r ,Σ
k
r ) dx

= logN (µk
r ;µ

m
i ,Σ

m
i +Σk

r )

= logN (0;µm
i − µk

r ,Σ
m
i +Σk

r )

= −1

2
log det(Σm

i +Σk
r )+

− 1

2
(µm

i − µk
r )
>(Σm

i +Σk
r )
−1(µm

i − µk
r ) + c

(1)

where c is a constant that does not matter for the optimiza-
tion. The similarity function has an intuitive geometric inter-
pretation: to maximize the similarity, we can reduce the dis-
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Figure 1: The intuition underlying the persona translation
vectors. The shaded circles represent Gaussian distributions
for two actors playing the hero and the villain respectively
in a movie. The dashed circles represent the movie Gaus-
sian after the translation vectors in opposite directions are
applied to its mean. Comparing (b) with (a), the actors are
further separated after the translation vectors are applied.

tance between the two means, or increase the diagonal vari-
ance to make the Gaussian less concentrated. At the same
time, the determinant term works like a regularizer that pre-
vents the diagonal variances from exploding. For the diag-
onal covariance matrix Σ, − log detΣ = − log

∏D
d=1 σ

2
d.

Maximizing this term pushes the individual variance terms
σ2
d closer to zero.
The similarity between an actor and a movie has two pos-

sible definitions, depending on if we incorporate persona in-
formation. Similar to Eq. 1, we can define a persona-free
similarity between movie mi and actor aj as

Spf(mi, aj) = logN(µm
i ;µa

j ,Σ
m
i +Σa

j ) (2)

In the second definition, we further introduce a translation
vector νp

s ∈ RD for every persona ps. The similarity for
movie mi, persona ps, and actor aj becomes

Sp(mi, ps, aj) = logN(µa
j ;µ

m
i + νp

s ,Σ
a
j +Σm

i ) (3)

Figure 1 illustrates this intuition behind this use of transla-
tion vectors: actors playing different character roles in the
same movie should be separated from each other while re-
maining close to the movie. For example, a hero in a science
fiction movie should be separated from a villain from the
same movie, but they should stay in the proximity of the
movie, which in turn is close to the science fiction genre.

For the complex concept of persona, we allow multiple
descriptors, each with one vector. We denote the zth de-
scriptor of the sth persona as νs,z . The final persona vec-
tor νp

s is computed as the sum
∑

z νs,z or the concatenation
[νs,1, . . . ,νs,Z ]. In experiments, we adopt the sum of three
descriptors: age, gender, and persona topics.

Loss Functions
For movies and keywords, we define the margin loss Lmk

as,

Lmk =
∑

〈mi,ki〉∈Dmk

E
k− 6=ki

Jg(S(mi, ki), S(mi, k
−))K (4)

g(s1, s2) = max(0, φ− s1 + s2) (5)

where φ denotes the margin of separation and k− is a ran-
domly sampled negative keyword that does not co-occur
with mi. For a real pair 〈mi, ki〉 ∈ Dmk and a nega-
tive pair 〈mi, k

−〉, the loss is minimized when S(mi, ki) −
S(mi, k

−) ≥ φ, so that the similarities of real and negative
data are separated by the margin. The expectation over k−
is approximated by random sampling during every epoch.

Similarly, for the real movie-actor-persona triple
〈mi, pi, ai〉 and a negatively sampled actor a− , we define
the loss Lmpa as,

Lmpa =
∑

〈mi,pi,ai〉
∈Dmpa

E
a− 6=ai

Jg(S(mi, pi, ai), S(mi, pi, a
−))K

(6)
The final loss function to be minimized is the sum L =
Lmk + Lmpa. Intuitively, this optimization pushes co-
occurring entity pairs (or triplets) toward each other and
pushes pairs (or triplets) that do not co-occur further apart,
so that the learned similarity function reflects the observed
co-occurrence data.

Regularization and Learning Rate Decay
Compared to the enormous corpora for training word em-
beddings, the data for movies and actors are drastically more
scarce. To bridge the gap, we devise a form of dropout
regularization (Hinton et al. 2012). For each pair or triplet
of entities in the loss function (Eq. 4 and Eq. 6), we cre-
ate a D-dimensional random vector q, whose components
qi ∈ {0, 1/p0} are independently drawn as 0-1 Bernoulli
trials with probability p0. q is component-wise multiplied to
all mean vectors during training and redrawn every epoch.
This is similar to ignoring some dimensions when comput-
ing the similarity for an individual data point.

To avoid numerical issues introduced by the inverse ma-
trix and stabilize training, we introduce an upper bound
σ2
max and lower bound σ2

min for the diagonal variances. Val-
ues that exceed the given range are clipped.

Moreover, we adopt the cosine schedule for learning rate
decay (Loshchilov and Hutter 2017). For the tth mini-batch,
the learning rate ηt is given by

ηt = ηmin +
1

2

(
cos

(
t

Tmax

)
+ 1

)
(η0 − ηmin) (7)

where η0 is the initial learning rate, ηmin the minimum
learning rate, and Tmax the total number of mini-batches
used during training. The cosine schedule achieves slow de-
cay at the beginning and the end of training but fast decay in
the middle, in comparison to the linear schedule. Early ex-
periments show the cosine decay improves training when the
range between σ2

max and σ2
min is large (e.g., 100 to 0.0001)

and helps in differentiating actors with diverse versatility.

Experiments
The experiments include two tasks. The supervised task of
cast prediction investigates if the model can predict which
actors played a given role in a given movie. In unsuper-
vised versatility ranking, we examine the degree to which
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the learned variances of the actor Gaussians agree with the
versatility judgments from human experts. In the ablation
study, we compare the performance of different persona de-
scriptors.

Data and Preprocessing
With permission from The Movie Database3, we collected
the metadata of 335,037 movies with complete cast lists,
genres, and user-supplied keywords. We kept prominent ac-
tors that appear in the first four leading roles of the cast and
entities that appear in at least 10 relations. This procedure
yields 2,200 actors in 15,997 movies, 2,213 user-supplied
keywords, and 20 curated genres.

To collect persona information, we perform Persona
Regression (Bamman, O’Connor, and Smith 2013) on
Wikipedia plot summaries that match the collected movies
on metadata including title, year, and IMDB identifiers. Ev-
ery story character is assigned to one of 50 latent persona
topic groups. Due to sparsity in the plot summaries and im-
perfect coreference resolution, we are only able to assign a
topic group to 30.5% of the 38,179 movie-actor pairs.

The age and gender of actors can also be considered as
persona descriptors. For example, the protagonist often re-
ceives advice from someone more mature (e.g., the Sage in
Carl Jung’s 12 characters). Persona Regression makes use
of age and gender in the prior. For this paper, we extract the
gender and the age of actors at the time of the movie release
from TMDB and Freebase (Bollacker et al. 2008). The range
of age (0-120) is discretized into 5-year segments.

We compute the persona vector νs as the sum of three
vectors νs,topic, νs,age, νs,gender ∈ RD, which respectively
represent the learned persona topic group (T) for the char-
acter in the plot summary, the actor’s age (A), and the ac-
tor’s gender (G). Every unique value in the three categories
is mapped to a vector learned during training.

Ablated Baselines
We create several ablated versions of the proposed model.
In the first baseline, which we name Joint Gaussian Em-
beddings (JGE), we ignore persona information. The sec-
ond (JGE+T) supplement JGE with the persona topic groups
identified by Persona Regression. The third (JGE+AG) em-
ploys only age and gender information as the persona, but
ignores the topic groups. The full joint Gaussian embed-
ding model, which uses all persona information, is denoted
as JGE+AGT. For each version, we also try initializing
the mean of keyword Gaussians with GloVe word embed-
dings (Pennington, Socher, and Manning 2014). For multi-
word expressions, we sum the individual word embeddings.
The JGE baseline uses the persona-free similarity function
in Eq. 2, but others use the similarity defined in Eq. 3.

Cast Prediction: Setup and Results
The task-specific baseline we adopt is the popular TransE
graph embedding algorithm (Bordes et al. 2013). The
movie-persona-actor triples are randomly split into a 70%
training set, a 15% validation set, and a 15% test set. All

3www.themoviedb.org

Table 2: Mean rank and hits@10 scores for the link predic-
tion task. The third column shows improvements on mean
rank with respect to different models indexed by line num-
bers in brackets. * denotes statistically significant improve-
ments of the best model JGE+AGT over JGE+AG.

Mean Rank Hits@10 MR Change

(1) TransE 506.75 3.73 %

(2) JGE 479.59 6.17 % -27.2 w.r.t (1)
(3) ...+GloVe 478.48 6.12 % -28.3 w.r.t (1)
(4) JGE+T 479.66 6.23 % 0.07 w.r.t (2)
(5) ...+GloVe 471.99 6.13 % -1.13 w.r.t (3)
(6) JGE+AG 176.66 12.52 % -303 w.r.t (4)
(7) ...+GloVe 176.77 12.69 % -295 w.r.t (5)
(8) JGE+AGT 174.64 12.54 % -2.0 w.r.t (6)*
(9) ...+GloVe 175.48 12.63 % -1.3 w.r.t (7)

movie-keyword pairs are in the training set. The hyperpa-
rameters of all methods, including training epochs, embed-
ding dimension, learning rate, margin, mini-batch size and
so on, are extensively tuned on the validation set. After val-
idation, we choose the best set of hyperparameters, train a
new model using both training and validation data, and re-
port the performance on test data.

The selected hyperparameters are as follows. The dimen-
sion D is set to 40, margin φ is 4, batch size is 128, and
dropout probability is 0.6. The learning rate starts at 0.15
and is reduced to 0.0001 over 600 epochs. The optimization
is performed using RMSProp. For the AG version, σmin is
set to 0.0001 and σmax is set to 25. For every other method,
σmax is set to 100. We report performance average of 20
runs with random initialization.

Table 2 shows two performance measures: the mean rank
and hits@10. Mean rank is defined as the average position
of all ground-truth answers in the ranked list of all possi-
ble answers. Hits@10 is defined as the percentage of correct
answers among the top 10 highest ranked answers. That is,
mean rank evaluates the entire ranked list, whereas hits@10
focuses only on the highest ranked portion, so we consider
mean rank to be a more holistic measure than hits@10.

Our best model outperforms TransE by 332.11 on mean
rank and 8.81% on hits@10. Even the basic JGE model
achieves an improvement of 27.16 on mean rank and
2.44% on hits@10 over TransE. Among the ablated ver-
sions, JGE+AGT attains the best mean rank of 174.64 and
JGE+AG+GloVe the best hits@10 of 12.69%. The differ-
ence between the best model, JGE+AGT, and the corre-
sponding second best, JGE+AG, is statistically significant
with p < 0.05 under one-tailed Welch’s t-test.

Cast Prediction: Discussion
Our method achieves significant performance improvement
over the TransE baseline, which makes use of translation
vectors but does not represent the uncertainty in the con-
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cepts. This suggests the Gaussian formulation is advanta-
geous for modeling the relations between movies, actors,
and keywords.

The benefits of persona descriptors deserve detailed anal-
ysis. Using age and gender information roughly doubles pre-
diction accuracy over the JGE models. The finding is con-
sistent with the general observation that actor choices are
limited by the roles they need to portray.

Additionally, under severe data sparsity (only 30.5%
movie-actor pairs have a persona topic) and substantial er-
rors in text parsing the and coreference resolution, the identi-
fied persona topics still improve mean rank, which is a more
holistic measure than hits@10. It is also worth noting that
we utilize far less information than the actual casting pro-
cess, which would consider complete actor profiles includ-
ing weight, height, accents and so forth as well as auditions
and the actors’ schedules. We find the algorithm’s perfor-
mance under existing data encouraging. To sum up, the re-
sults show that (1) the model successfully captures some
aspects of the cast selection process and (2) good under-
standing of character persona can indeed improve the perfor-
mance of cast prediction, corroborating our claim that cast
prediction can serve as an evaluation metric for automatic
persona discovery.

Actor Versatility: Data Collection and Setup
In the second evaluation task, we study if the learned Gaus-
sian variance of actors corresponds to actor’s versatility
ranked by human experts. We posit that actors with wider
acting spectra would have larger Gaussian variance than
typecast actors, e.g., actors who play only action heroes.

We collected versatility rankings from four judges who
received formal education in acting and had more than 5
years of acting experiences in Hollywood. None of them
was aware of our model’s output. We took two measures
to reduce ambiguity in the judges’ answers. First, in order
to make sure the judges are familiar with the actors, we se-
lected 250 actors that are most searched for on Google4 and
were likely well-known. Second, we used relative ranking
instead of Likert scale.

We created a list containing 200 sets of actors, where 5
actors (among 250) were randomly selected for a set (i.e.,
an actor can belong to multiple sets). Every judge received
the same list and was asked to rank actors in each set in
versatility. They were allowed to skip any sets or give iden-
tical ranks to actors. We break down each set to

(
5
2

)
= 10

pairwise comparisons. From 200 sets, there is a total of 987
unique pairs. The judges appeared to be very consistent with
themselves; three were inconsistent on only one pair of ac-
tors and one was consistent on all pairs. There is unanimous
agreement on 534 or 54.1% of pairs. On 318 pairs, or 32.2%,
one judge differed with the rest. Fleiss’ Kappa is 0.498, in-
dicating fair agreement. Given the vagueness and subjective
nature of the question, we believe the agreement is decent.
For evaluation, we only use 861 pairs where a majority de-
cision is reached.

4www.google.com/trends/

Table 3: Performance of ranking actors’ versatility, includ-
ing pairwise accuracy on the validation and test sets and rank
correlation on the test set. * denotes statistically significant
differences between the best models and their corresponding
second-best baselines.

Val. Acc.
(%)

Test Acc.
(%)

Test Rank
Corr.

Genre 42.72 45.60 -0.082
Keyword-Topics 34.74 39.78 -0.192
PTG 43.48 43.14 -0.196

JGE 47.77 55.13 0.070
... +Glove 46.71 55.06 0.072
JGE+T 61.78 59.72* 0.163*
... +Glove 62.30 59.39* 0.165*
JGE+AG 56.95 50.84 0.059
... +Glove 58.05 52.95 0.084
JGE+AGT 56.22 50.57 0.043
... +Glove 55.33 50.53 0.039

In creating the validation-test split, a potential issue is
that test data may sneak into the validation set due to the
transitivity in the rankings. Consider the triplet relations
a � b � c, if a � b and b � c both appear in the vali-
dation set, and a � c appears in the test set, we would have
seen test data during validation.

We prevent the issue above by distributing the actors
evenly into two disjoint sets Aval and Atest. Pairwise rank-
ings between actors in Aval are used as the validation set.
All other rankings are used as the test set. That is, the test
set is a subset of Aval ×Atest ∪Atest ×Atest. As a result,
for any ranking a � b in the test set, at least one actor does
not appear in the validation set. In training, we use all avail-
able relation data, but not the versatility rankings. Thus, this
task is unsupervised.

We created three heuristic baselines for this task. For the
first baseline (Genre), we compute the frequency that an ac-
tor appears in every genre. The entropy of the count vec-
tor is used as an indication for versatility. An actor with
higher entropy is considered more versatile. We repeat the
entropy computation for the automatically identified persona
topic groups (PTG) as well as topics of keywords (Keyword-
Topics), where topics are found by non-negative matrix fac-
torization (Kim and Park 2011).

Actor Versatility: Results and Discussion
Table 3 shows prediction accuracy for pairwise decisions
and rank correlation averaged over 20 runs. Since the ex-
pert rankings provide only a partial order, we generate 100
topological sorts with random tie breaking and compute the
average rank correlation. The two measures do not perfectly
align because (1) random tie-breaking introduced some fluc-
tuations and (2) pairwise comparisons do not carry the same
weight in rank correlation as some pairwise rankings imply
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Figure 2: Movies and movie series that replace one actor with another hint at the similarity between the two. We show the
nearest neighbor ranking between the two actors, computed by our best performing model for cast prediction.

others by transitivity. The hyperparameters for the best per-
forming model (JGE+T) are the same as the previous task
except that the initial learning rate is set to 0.01, σmin is
0.0001, and σmax is 50.

The three heuristic baselines fall below random chance,
indicating the problem is non-trivial. The best versatility
prediction is obtained by the JGE+T model with only au-
tomatically extracted persona topics. JGE is the second
best. Under one-tailed Welch’s t-test, the difference between
JGE+T and JGE, as well as that between JGE+T+GloVe and
JGE+GloVe, are statistically significant with p < 10−5.

Interestingly, while persona topics remain beneficial, the
use of age and gender information hurts performance, re-
versing the observation from cast prediction. It is likely that
age and gender do not correlate well with an actor’s skill,
even though they could practically limit the range of roles
the actor can play. Worse still, the additional parameters for
age and gender vectors contribute to more overfitting to the
validation set.

Overall, we attain significant improvements over base-
lines in an unsupervised manner with far less information
than to which the human judges have access. Automatically
identified persona topics boost performance by 4.59% over
the second best ablation and 6.77% over the best baseline
using age and gender. Together with the cast prediction task,
the results demonstrate that automatically recognized per-
sona topics can enhance the modeling of actors and movies.
The different performance of age and gender suggests that
the two tasks reveal different aspects of persona and are
likely complementary evaluation metrics.

Qualitative Evaluation: Actor Replacement
Substitution between actors provides a rare opportunity to
fathom actor similarity in the mind of industry practition-
ers since actors who can replace each other must be con-
sidered similar in some aspects. After movie production has
begun, casting decision may still change due to reasons such
as injuries or artistic differences. For example, Nicole Kid-
man withdrew from the production of Panic Room due to an
injury and Jodie Foster took her role. Sequels and reboots

may also use different actors for the same role. For example,
Bruce Banner/Hulk was first played by Edward Norton (The
Incredible Hulk) and later by Mark Ruffalo (The Avengers).

We check known cases against the best cast prediction
model (JGE-AGT). In the Dark Knight trilogy, Maggie Gyl-
lenhaal replaced Katie Holmes. Among more than two thou-
sand actors, Gyllenhaal is the 55th nearest neighbor (NN) of
Holmes and Holmes is the 46th NN of Gyllenhaal, making
them the top 2.5% most similar to each other. See Figure 2
for more examples.

Conclusions
Little attention was paid to understanding actors in the nar-
rative understanding literature, yet actors are correlated with
the characters they play and may provide useful information
for downstream applications such as content recommenda-
tion (Yu et al. 2014). We present a joint representation learn-
ing algorithm for movies, actors, and personae using Gaus-
sian embeddings that explicitly account for semantic uncer-
tainty and actor versatility. The algorithm substantially sur-
passes TransE at cast list prediction by 331 in mean rank; it
attains 59.72% agreement with human judgment on actors’
versatility in an unsupervised setting. To our knowledge, this
is the first successful attempt at predicting actors’ versatility.

Despite errors in text processing and low coverage, au-
tomatically identified persona topics lead to consistent and
statistically significant improvements on both cast predic-
tion and versatility ranking. When compared with age and
gender information, the results suggest the tasks offer com-
plementary evaluation metrics for persona. Research on au-
tomatic persona identification is still in an early stage. By
providing automatic evaluation methods, we believe this pa-
per lays the groundwork for further advancement on narra-
tive understanding.
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