
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Zero-Shot Adaptive Transfer for Conversational Language Understanding

Sungjin Lee, Rahul Jha
Microsoft Corporation, Redmond, WA

{sule,rajh}@microsoft.com

Abstract

Conversational agents such as Alexa and Google Assistant
constantly need to increase their language understanding ca-
pabilities by adding new domains. A massive amount of la-
beled data is required for training each new domain. While
domain adaptation approaches alleviate the annotation cost,
prior approaches suffer from increased training time and sub-
optimal concept alignments. To tackle this, we introduce a
novel Zero-Shot Adaptive Transfer method for slot tagging
that utilizes the slot description for transferring reusable con-
cepts across domains, and enjoys efficient training without
any explicit concept alignments. Extensive experimentation
over a dataset of 10 domains relevant to our commercial per-
sonal digital assistant shows that our model outperforms pre-
vious state-of-the-art systems by a large margin, and achieves
an even higher improvement in the low data regime.

Introduction
Recently, there is a surge of excitement in adding numerous
new domains to conversational agents such as Alexa, Google
Assistant, Cortana and Siri to support a myriad of use cases.
However, building a slot tagger, which is a key compo-
nent for natural language understanding (NLU) (Tur and
De Mori 2011), for a new domain requires massive amounts
of labeled data, hindering rapid development of new skills.
To address the data-intensiveness problem, domain adap-
tation approaches have been successfully applied. Previ-
ous approaches are roughly categorized into two groups:
data-driven approaches (Kim, Stratos, and Sarikaya 2016b;
2016a) and model-driven approaches (Kim, Stratos, and
Kim 2017; Jha et al. 2018).

In the data-driven approach, new target models are trained
by combining target domain data with relevant data from a
repository of arbitrary labeled datasets using domain adapta-
tion approaches such as feature augmentation (Kim, Stratos,
and Sarikaya 2016b). A disadvantage of this approach is
the increase in training time as the amount of reusable data
grows. The reusable data might contain hundreds of thou-
sands of samples, making iterative refinement prohibitive. In
contrast, the model-driven approach utilizes “expert” mod-
els for summarizing the data for reusable slots (Kim, Stratos,
and Kim 2017; Jha et al. 2018). The outputs of the expert

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a)

(b)

Figure 1: (a) Traditional slot tagging approaches with the
BIO representation. (b) For each slot, zero-shot models in-
dependently detect spans that contain values for the slot. De-
tected spans are then merged to produce a final prediction.

models are directly used when training new domains, al-
lowing for faster training. A drawback of this approach is
that it requires explicit concept alignments which itself is
not a trivial task, potentially missing lots of reusable con-
cepts. Additionally, it’s not easy to generalize these models
to new, unseen slots.

In this paper, we present a new domain adaptation tech-
nique for slot tagging inspired by recent advances in zero-
shot learning. Traditionally, slot tagging is formulated as a
sequence labeling task using the BIO representation (Fig-
ure 1a). Our approach formulates this problem as detecting
spans that contain values for each slot as shown in Figure 1b.
For implicit transfer of reusable concepts across domains,
we represent slots in a shared latent semantic space by em-
bedding the slot description. With the shared latent space,
domain adaptation can simply be done by fine-tuning a base
model, which is trained on massive data, with a handful of
target domain data without any explicit concept alignments.
A similar idea of utilizing zero-shot learning for slot tagging

6642



Figure 2: Network architecture for the Zero-Shot Adaptive Transfer model.

has been proven to work in semi-supervised settings (Bapna
et al. 2017). Our zero-shot model architecture differs from
this by adding: 1) an attention layer to produce the slot-
aware representations of input words, 2) a CRF layer to bet-
ter satisfy global consistency constraints, 3) character-level
embeddings to incorporate morphological information. De-
spite its simplicity, we show that our model outperforms all
existing methods including the previous zero-shot learning
approach in domain adaptation settings.

We first describe our approach called Zero-Shot Adaptive
Transfer model (ZAT) in detail. We then describe the dataset
we used for our experiments. Using this data, we conduct ex-
periments comparing our ZAT model with a set of state-of-
the-art models: Bag-of-Expert (BoE) models and their non-
expert counterparts (Jha et al. 2018), and the Concept Tagger
model (Bapna et al. 2017), showing that our model can lead
to significant F1-score improvements. This is followed by an
in-depth analysis of the results. We then provide a survey of
related work and concluding remarks.

Adaptive Transfer
Our Zero-Shot Adaptive Transfer model for slot tagging is a
hierarchical model with six layers (Figure 2).

Word Embedding Layer Let x1...xT and q1...qJ denote
the words in the input sentence and slot description, respec-
tively. Following Kim (2014), for every word, we obtain the
character-level embedding using Convolutional Neural Net-
works (CNN). Characters are embedded into vectors and
then get passed to the CNN. The outputs of the CNN are
max-pooled to obtain a 100 dimensional vector for each
word. We use pre-trained embeddings1 to obtain the word
embedding of each word. We concatenate these two vectors
to produce the input to the Contextual LSTM layer.

1We use 100 dimensional GloVe embeddings (Pennington,
Socher, and Manning 2014) for all the experiments in this study.

Contextual LSTM Layer To capture the contextual
meaning of words, we use a 200 dimensional bidirectional
LSTM which takes the output of the previous layer as in-
put and produces the forward and backward vectors for each
word, which are then concatenated to produce a 400 dimen-
sional vector. The outputs of this layer are two matrices:
X ∈ Rd×T for the input sentence and Q ∈ Rd×J for the
slot description, where d is 400. We share the same LSTM
for the input sentence and the slot description.

Attention Layer The attention layer is responsible for
producing the slot-aware representations of the input words.
The inputs to the layer are contextual representations of the
input sentence X and the slot description Q. For each input
word xt, we compute attention weights at ∈ RJ on the slot
description words:

atj =
exp(α(xt,qj))∑
n exp(α(xt,qn))

where qj is j-th column vector of Q. We choose α(x,q) =
wT [x;q;x ◦ q], where [; ] is vector concatenation and ◦
is elementwise multiplication. With the attentions, we pro-
duce the slot-aware vector representations G, where G:t =∑

j atjqj

Conditional LSTM Layer We use a 200 dimensional
bidirectional LSTM for the conditional layer which is re-
sponsible for capturing the interactions between the input
words conditioned on the slot description. To produce the
inputs of the layer, we combine the slot-aware vector rep-
resentations G with the contextual embeddings X via the
elementwise summation, H = G⊕X.

Feedforward Layer The feedforward layer takes the out-
put of the conditional layer, H, as input and predicts the la-
bel scores for each word, which we denote as U.

CRF Layer To capture the transition behavior between la-
bels, we use the Conditional Random Fields (CRF) layer on

6643



top of the feedforward layer. CRFs are a popular family of
models that have been proven to work well in a variety of se-
quence tagging NLP applications (Lafferty, McCallum, and
Pereira 2001).

In this study, we make predictions independently for
each slot by feeding a single slot description and then
obtain a final prediction by simply merging the predic-
tion results for each slot. For example, we merge “Find
[mexican]category deals in seattle” and “Find mexican eals
in [seattle]location” to produce “Find [mexican]category
deals in [seattle]location.” When there are conflicting spans,
we select one of the spans at random.

We initialized all LSTMs using the Xavier uniform dis-
tribution (Glorot and Bengio 2010). We use the Adam op-
timizer (Kingma and Ba 2015a), with gradients computed
on mini-batches of size 32 and clipped with norm value 5.
The learning rate was set to 1 × 10−3 throughout the train-
ing and all the other hyperparameters were left as suggested
in (Kingma and Ba 2015a). We performed early stopping
based on the performance of the evaluation data to avoid
overfitting.

Experiments
Data
For our experiments, we collected data from a set of ten
diverse domains. Table 1 shows the domains along with
some statistics and sample utterances. Since these are new
domains for our digital assistant, we did not have enough
data for these domains in our historical logs. Therefore, the
data was collected using crowdsourcing from human judges.
For each domain, several prompts were created to crowd-
source utterances for a variety of intents. These utterances
were then annotated through our standard data annotation
pipeline after several iterations of measuring interannotator
agreement and refining the annotation guidelines. We col-
lected at least 5000 instances for each domain, with more
data collected for some domains based on business priority.

For each of the domains, we sampled 80% of the data as
training and 10% each as dev and test sets. Further samples
of 2000, 1000, and 500 training samples were taken to com-
pare our approach with previous methods. All samples were
obtained by stratified sampling based on the annotated in-
tents of the utterances.

Baseline Systems
In order to compare our method against the state-of-the-art
models, we compare against the models presented in (Jha
et al. 2018), including the BoE models and their non-BoE
variants. We also compare our method with another zero-
shot model for slot tagging (Bapna et al. 2017) in domain
adaptation settings.

LSTM Following Jha et al. (2018), we concatenate
the output of 25 dimensional character-level bidirec-
tional LSTMs with pre-trained word embeddings to obtain
morphology-sensitive embeddings. We then use a 100 di-
mensional word-level bidirectional LSTM layer to obtain
contextualized word representations. Finally, the output of

this layer is passed on to a dense feed forward layer with a
softmax activation to predict the label probabilities for each
word. We train using stochastic gradient descent with Adam
(Kingma and Ba 2015b). To avoid overfitting, we also apply
dropout to the output of each layer, with a default dropout
keep probability of 0.8.

LSTM-BoE The LSTM-BoE architecture is similar to the
LSTM model with the exception that we use the output vec-
tors of the word-level bidirectional LSTM layer of each ex-
pert model to obtain enriched word embeddings. Specifi-
cally, let e1...ek ∈ E be the set of reusable expert domains.
For each expert ej , we train a separate LSTM model. Let heji
be the word-level bi-directional LSTM output for expert ej
on wordwi. When training on a target domain, for each word
wi, we first compute a BoE representation for this word as
hE =

∑
ei∈E h

ej
i . The input to the word-level LSTM for

word wi in the target domain is now a concatenation of the
character-level LSTM outputs, the pre-trained word embed-
ding, and the BoE representation.

Following Jha et al. (2018), We use two expert domains
containing reusable slots: timex and location. The timex do-
main consists of utterances containing the slots date, time
and duration. The location domain consists of utterances
containing location, location type and place name slots.
Both of these types of slots appear in more than 20 of a set
of 40 domains developed for use in our commercial personal
assistant, making them ideal candidates for reuse. Data for
these domains was sampled from the input utterances from
our commercial digital assistant. Each reusable domain con-
tains about a million utterances. There is no overlap be-
tween utterances in the target domains used for our exper-
iments and utterances in the reusable domains. The data for
the reusable domains is sampled from other domains avail-
able to the digital assistant, not including our target domains.
Models trained on the timex and location data have F1-
scores of 96% and 89% respectively on test data from their
respective domains.

CRF We use a standard linear-chain CRF architecture
with n-gram and context features. In particular, for each to-
ken, we use unigram, bigram and trigram features, along
with previous and next unigrams, bigrams, and trigrams for
context length of up to 3 words. We also use a skip bigram
feature created by concatenating the current unigram and
skip-one unigram. We train our CRF using stochastic gra-
dient descent with L1 regularization to prevent overfitting.
The L1 coefficient was set to 0.1 and we use a learning rate
of 0.1 with exponential decay for learning rate scheduling
(Tsuruoka, Tsujii, and Ananiadou 2009).

CRF-BoE Similar to the LSTM-BoE model, we first train
a CRF model cj for each of the reusable expert domains ej ∈
E. When training on a target domain, for every query word
wi, a one-hot label vector lji is emitted by each expert CRF
model cj . The length of the label vector lji is the number of
labels in the expert domain, with the value corresponding to
the label predicted by cj for word wi set to 1, and values for
all other labels set to 0. For each word, the label vectors for
all the expert CRF models are concatenated and provided as

6644



Domain #Data size #Slots Sample Utterance
Fashion 6670 8 Show me outfits with [hats]item
Flight Status 10526 9 Status of [Chicago flight]location that departed [last night]start time

Deals 28905 5 Find the [best]rating deals for [restaurants]category
Purchase 5832 18 Return the [outfit]item I purchased [last week]date
Real Estate 6656 7 Show [houses]property type [for rent]listing type on [Livenia street]location
Shopping 21723 16 [Gifts]category for [Christmas]keyword

Social Network 39323 21 Show [Grace]username’s [profile]media type

Sports 22437 21 find [spurs]team name game schedule
Transportation 202381 17 What’s the traffic like to [work]place type

Travel 53317 27 I need a list of [hotels]accomodation type that have [free kennel services]amenities

Table 1: List of domains we experimented with. 80% of the data is sampled for building the training sets, with 10% each for
dev and test sets.

features for the target domain CRF training, along with the
n-gram features.

CT For comparison with a state-of-the-art zero-shot
model, we implement the concept tagger (CT) (Bapna et
al. 2017). The CT model consists of a single 256 dimen-
sional bidirectional LSTM layer that takes pre-trained word
embeddings as input to produce contextual word representa-
tions. This is followed by a feed forward layer where the
contextual word representations are combined with a slot
encoding to produce vectors of 128 dimensions. The slot
encoding is the average vector of the word embeddings for
the slot description. This feeds into another 128 dimensional
bi-directional LSTM layer followed by a softmax layer that
outputs the prediction for that slot.

Domain Adaptation using Zero-Shot Model
For domain adaptation with zero-shot models, we first con-
struct a joint training dataset by combining the training
datasets of size 2000 from all domains except for a target
domain. We then train a base model on the joint dataset.
We sample input examples during training and evaluation
for each slot to include both positive examples (which have
the slot) and negative examples (which do not have the slot)
with a ratio of 1 to 3. After the base model is trained, domain
adaptation is simply done by further training the base model
on varying amounts of the training data of the target domain.
Note that the size of the joint dataset for each target domain
is 18,000, which is dramatically smaller than millions of ex-
amples used for training expert models in the BoE approach.
Furthermore, there are a lot of utterances in the joint dataset
where no slots from the target domain is present.

Results and Discussion
Comparative Results
Table 2 shows the F1-scores 2 obtained by the different
methods for each of the 10 domains. LSTM based models
in general perform better than the CRF based models. Both
the CRF-BoE and LSTM-BoE outperform the basic CRF
and LSTM models. Both zero-shot models, CT and ZAT,
again surpass the BoE models. ZAT has a statistically sig-
nificant mean improvement of 4.04, 5.37 and 3.27 points

2To compute slot F1-score, we use the standard CoNLL evalu-
ation script.

over LSTM-BoE with training size 500, 1000 and 2000, re-
spectively. ZAT also shows a statistically significant aver-
age improvement of 2.58, 2.44 and 2.5 points over CT, an-
other zero-shot model with training size 500, 1000 and 2000,
respectively. Looking at results for individual domains, the
highest improvement for BoE models are seen for trans-
portation and travel. This can be explained by these do-
mains having a high frequency of timex and location slots.
But BoE models show a regression in the shopping domain,
and a reason could be the low frequency of expert slots. In
contrast, ZAT consistently outperforms non-adapted mod-
els (CRF and LSTM) by a large margin. This is because
ZAT can benefit from other reusable slots than timex and
location. Though not as popular as timex and location,
slots such as contact name, rating, quantity, and price
appear across many domains.

We plot the averaged performances on varying amounts
of training data for each target domain in Figure 3. Note
that the improvements are even higher for the experiments
with smaller training data. In particular, ZAT shows an im-
provement of 14.67 in absolute F1-score over CRF when
training with 500 instances. ZAT achieves an F1-score of
76.04% with only 500 training instances, while even with
2000 training instances the CRF model achieves an F1-score
of only 75%. Thus the ZAT model achieves better F1-score
with only one-fourth the training data.

Table 3 shows the performances of CT and ZAT when
no target domain data is available. Both models are able
to achieve reasonable zero-shot performance for most do-
mains, and ZAT shows an average improvement of 5.07 over
CT.

Model Variants

In Table 4, we ablate our full model by removing the
CRF layer (−CRF ) and character-level word embeddings
(−CHAR). Without CRF, the model suffers a loss of 1%-
1.8% points. The character-level word embeddings are also
important: without this, the performance is down by 0.5%-
2.7%. We study the impact of fine-tuning the pre-trained
word embeddings (+WEFT ). When there is no target do-
main data available, fine-tuning hurts performance. But,
with a moderate amount of target domain data, fine-tuning
improves performance.

6645



Train size 2000
Domain CRF LSTM CRF-BoE LSTM-BoE CT ZAT
Fashion 76.04 75.08 77.19 77.31 78.11 81.58
Flight Status 86.46 89.30 87.91 90.12 88.56 90.11
Deals 80.01 79.93 79.99 82.36 84.16 84.94
Purchase 57.19 71.95 61.41 72.30 72.97 75.33
Real Estate 91.85 89.47 91.75 91.01 91.58 93.39
Shopping 71.96 73.01 71.45 72.83 77.06 78.14
Social Network 81.85 82.15 81.77 82.24 79.70 82.85
Sports 71.84 72.50 71.87 75.49 78.67 80.83
Transportation 71.19 67.59 84.94 79.08 75.54 80.78
Travel 62.71 61.50 67.13 68.20 72.14 75.57
Average Improvement +1.14 +2.43 +3.98∗ +4.74∗ +7.24∗

(a)

Train size 1000
Domain CRF LSTM CRF-BoE LSTM-BoE CT ZAT
Fashion 68.73 74.02 70.98 71.59 78.90 81.57
Flight Status 82.36 85.14 84.53 88.98 86.60 89.88
Deals 74.60 70.98 74.13 74.57 80.69 82.76
Purchase 52.11 62.05 53.50 63.91 72.97 71.71
Real Estate 88.11 88.64 88.68 90.29 89.04 91.56
Shopping 63.72 67.88 63.47 68.65 73.81 75.52
Social Network 79.05 79.17 76.68 78.00 80.03 84.40
Sports 63.13 63.75 63.71 67.25 73.81 77.40
Transportation 66.45 60.12 82.84 79.99 72.58 78.26
Travel 54.03 58.14 62.12 65.68 69.52 69.53
Average Improvement +1.76 +2.84 +5.66∗ +8.57∗ +11.03∗

(b)

Train size 500
Domain CRF LSTM CRF-BoE LSTM-BoE CT ZAT
Fashion 62.64 67.55 66.42 71.59 73.59 74.33
Flight Status 75.97 83.13 80.11 84.62 81.70 86.76
Deals 64.04 67.55 67.22 74.24 77.34 79.93
Purchase 45.19 57.99 47.76 60.59 69.33 69.45
Real Estate 84.15 82.05 84.60 85.49 86.21 89.14
Shopping 51.43 59.22 49.88 60.50 66.69 69.75
Social Network 70.78 76.49 66.21 78.21 79.23 80.39
Sports 53.29 55.71 53.85 63.61 68.20 68.71
Transportation 60.23 55.18 81.07 78.39 67.36 75.56
Travel 45.90 54.77 57.93 62.66 64.86 66.34
Average Improvement +4.60∗ +4.14 +10.63∗ +12.09∗ +14.67∗

(c)

Table 2: F1-scores obtained by each of the six models for the 10 domains, with the highest score in each row marked as bold.
Table (a), (b) and (c) report the results for 2000, 1000 and 500 training instances, respectively. The average improvement is
computed over the CRF model, with the ones marked ∗ being statistically significant with p-value < 0.05.

Analysis
To better understand our model, in Figure 7, we visualize the
attention weights for the input sentence ”Can I wear jeans to
a casual dinner?” with different slots: (a) category, (b) item,
and (c) time. From (a) and (b), it is clear that the attention
is concentrated on the relevant words of the input and slot
description. In contrast, there is no salient attention when
the slot is not present in the input sentence.

To analyze the impact of context, we compute the error
rate with respect to span start position in the input sentence.
Figure 4 shows that error rate tends to degrade for span start

positions further from the beginning. This highlights oppor-
tunities to reduce a significant amount of errors by consider-
ing previous context.

As shown in Figure 5, our model makes more errors for
longer spans. This can be improved by consulting spans de-
tected by parsers or other span-based models such as coref-
erence resolution systems (Lee et al. 2017).

Finally, we compute the percentage of POS tags that are
tied to labeling errors. 3 Figure 6 shows POS tags which oc-

3We use spaCy for POS tagging: https://spacy.io/. The tag set
used follows spaCy’s universal POS tags.

6646



Figure 3: Performance curves with varying amounts of train-
ing data for target domain.

Domain CT ZAT
Fashion 31.51 30.66
Flight Status 23.04 25.10
Deals 37.76 38.86
Purchase 56.34 61.23
Real Estate 36.47 48.63
Shopping 43.64 50.46
Social Network 2.20 7.22
Sports 4.49 4.73
Transportation 39.45 49.29
Travel 34.97 44.34
Average Improvement +5.07

Table 3: F1-scores with zero training instances for target do-
main.

Model 0 500 1000 2000
ZAT 36.05 76.04 80.26 82.35
- CRF 35.06 74.39 78.41 81.58
- CHAR 35.49 73.71 77.86 81.11
+ WEFT 33.71 76.52 80.61 83.09

Table 4: Model variants.

Figure 4: Error rate with respect to span position

curs more than 10,000 times and contributes to more than
10% of errors. It is not surprising that there are many er-

Figure 5: Error rate with respect to span length

rors for ADJ, ADV and NOUN. Our system suffers in han-
dling conjunctive structures, for instance “Help me find my
[blackandtan]described as [jacket]item”, and parsing infor-
mation can be helpful at enforcing structural consistencies.
The NUM category is associated with a variety of concepts
and diverse surface forms. Thus it is a probably good idea to
have an expert model focusing on the NUM category.

Figure 6: Error rate with respect to POS tag

Related Work
A number of deep learning approaches have been applied
to the problem of language understanding in recent years
(Deng et al. 2012; Mesnil et al. 2015; Celikyilmaz, Deng,
and Hakkani-Tür 2018). For a thorough overview of deep
learning methods in conversational language understanding,
we refer the readers to (Chen, Celikyilmaz, and Hakkani-Tür
2017).

As the digital assistants increase in sophistication, an in-
creasing number of slot models have to be trained, making
scalability of these models a concern. Researchers have ex-
plored several directions for data efficient training of new
models. One of the directions has been multi-task learning,
where a joint model across multiple tasks and domains might
be learned (Liu and Lane 2016; Hakkani-Tür et al. 2016;
Jaech, Heck, and Ostendorf 2016). As a recent example,
Rastogi, Gupta, and Hakkani-Tur (2018) presented an ap-
proach for multi-task learning across the tasks of language
understanding and dialog state tracking. Goyal, Metallinou,

6647



(a) (b) (c)

Figure 7: Visualization of attention weights for the input sentence ”Can I wear jeans to a casual dinner?” with different slots:
(a) category, (b) item, and (c) time.

and Matsoukas (2018) presented a multi-task learning ap-
proach for language understanding that consists of training a
shared representation over multiple domains, with additional
fine-tuning applied for new target domains by replacing the
affine transform and softmax layers.

Another direction has been domain adaptation and trans-
fer learning methods. Early focus was on data driven adap-
tation techniques where data from multiple source domains
was combined (Kim, Stratos, and Sarikaya 2016b). Such
data-driven approaches offer model improvements at the
cost of increased training time. More recently, model-driven
approaches have shown success (Kim, Stratos, and Kim
2017; Jha et al. 2018). These approaches follow the strat-
egy of first training expert models on the source data, and
then using the output of these models when training new tar-
get models. A benefit of these approaches over data-driven
adaptation techniques is the improved training time that
scales well as the number of source domains increase.

However, both these transfer learning approaches require
concept alignment to map the new labels to existing ones,
and cannot generalize to unseen labels. This has led re-
searchers to investigate zero-shot learning techniques, where
a model is learned against label representations as opposed
to a fixed set of labels.

Several researchers have explored zero-shot models for
domain and intent classification. Dauphin et al. (2014) de-
scribed a zero-shot model for domain classification of input
utterances by using query click logs to learn domain label
representations. Kumar et al. (2017) also learn a zero-shot
model for domain classification. Chen, Hakkani-Tür, and
He (2016) learn a zero-shot model for intent classification
using a DSSM style model for learning semantic represen-
tations for intents.

Slot tagging using zero-shot models has also been ex-
plored. Ferreira, Jabaian, and Lefèvre (2015) presented a

zero-shot approach for slot tagging based on a knowledge
base and word representations learned from unlabeled data.
Bapna et al. (2017) also applied zero-shot learning to slot-
filling by implicitly linking slot representations across do-
mains by using the label descriptions of the slots. Our
method is similar to their approach, but we use an additional
attention layer to produce the slot-aware representations of
input words, leading to better performance as demonstrated
by our empirical results.

More recently, zero-shot learning has also been applied
to other tasks. For example Elsahar, Gravier, and Lafor-
est (2018) presented a zero-shot model for question genera-
tion from knowledge graphs. Huang et al. (2018) described
a model for zero-shot transfer learning for event extraction.
Upadhyay et al. (2018) proposed a nearly zero-shot learning
approach for jointly training bilingual language understand-
ing models and show good results with only a few hundred
labeled examples from the target language.

Conclusion
In this paper, we introduce a novel Zero-Shot Adaptive
Transfer method for slot tagging that utilizes the slot de-
scription for transferring reusable concepts across domains
to avoid some drawbacks of prior approaches such as in-
creased training time and suboptimal concept alignments.
Experiment results show that our model performs signifi-
cantly better than state-of-the-art systems by a large margin
of 7.24% in absolute F1-score when training with 2000 in-
stances per domain, and achieves an even higher improve-
ment of 14.57% when only 500 training instances are used.
We provide extensive analysis of the results to shed light on
future work. We plan to extend our model to consider more
context and utilize exogenous resources like parsing infor-
mation.

6648



References
Bapna, A.; Tur, G.; Hakkani-Tur, D.; and Heck, L. 2017. To-
ward zero-shot frame semantic parsing for domain scaling.
In Proc. Interspeech.
Celikyilmaz, A.; Deng, L.; and Hakkani-Tür, D. 2018. Deep
Learning in Spoken and Text-Based Dialog Systems. Singa-
pore: Springer Singapore. 49–78.
Chen, Y.-N.; Celikyilmaz, A.; and Hakkani-Tür, D. 2017.
Deep learning for dialogue systems. In Proceedings of ACL
2017, Tutorial Abstracts, 8–14. Association for Computa-
tional Linguistics.
Chen, Y.; Hakkani-Tür, D.; and He, X. 2016. Zero-shot
learning of intent embeddings for expansion by convolu-
tional deep structured semantic models. In 2016 ICASSP,
6045–6049.
Dauphin, Y.; Tur, G.; Hakkani-Tur, D.; and Heck, L. 2014.
Zero-shot learning and clustering for semantic utterance
classification. In ICLR.
Deng, L.; Tur, G.; He, X.; and Hakkani-Tür, D. 2012. Use
of kernel deep convex networks and end-to-end learning for
spoken language understanding. IEEE Workshop on Spoken
Language Technologies.
Elsahar, H.; Gravier, C.; and Laforest, F. 2018. Zero-
shot question generation from knowledge graphs for unseen
predicates and entity types. In NAACL-HLT, 218–228. As-
sociation for Computational Linguistics.
Ferreira, E.; Jabaian, B.; and Lefèvre, F. 2015. Zero-shot
semantic parser for spoken language understanding. In IN-
TERSPEECH.
Glorot, X., and Bengio, Y. 2010. Understanding the dif-
ficulty of training deep feedforward neural networks. In
Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, 249–256.
Goyal, A. K.; Metallinou, A.; and Matsoukas, S. 2018. Fast
and scalable expansion of natural language understanding
functionality for intelligent agents. In NAACL-HLT, 145–
152. Association for Computational Linguistics.
Hakkani-Tür, D.; Tur, G.; Celikyilmaz, A.; Chen, Y.-N. V.;
Gao, J.; Deng, L.; and Wang, Y.-Y. 2016. Multi-domain
joint semantic frame parsing using bi-directional rnn-lstm.
ISCA.
Huang, L.; Ji, H.; Cho, K.; Dagan, I.; Riedel, S.; and Voss,
C. 2018. Zero-shot transfer learning for event extraction. In
Annual Meeting of the Association for Computational Lin-
guistics, 2160–2170. Association for Computational Lin-
guistics.
Jaech, A.; Heck, L. P.; and Ostendorf, M. 2016. Domain
adaptation of recurrent neural networks for natural language
understanding. CoRR abs/1604.00117.
Jha, R.; Marin, A.; Shivaprasad, S.; and Zitouni, I. 2018.
Bag of experts architectures for model reuse in conversa-
tional language understanding. In NAACL-HLT, volume 3,
153–161.
Kim, Y.-B.; Stratos, K.; and Kim, D. 2017. Domain at-
tention with an ensemble of experts. In Proceedings of the

55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1, 643–653.
Kim, Y.-B.; Stratos, K.; and Sarikaya, R. 2016a. Domainless
adaptation by constrained decoding on a schema lattice. In
Proc. COLING.
Kim, Y.; Stratos, K.; and Sarikaya, R. 2016b. Frustratingly
easy neural domain adaptation. In COLING, 387–396.
Kim, Y. 2014. Convolutional neural networks for sentence
classification. arXiv preprint arXiv:1408.5882.
Kingma, D., and Ba, J. 2015a. Adam: A method for stochas-
tic optimization. ICLR.
Kingma, D. P., and Ba, J. 2015b. Adam: A method for
stochastic optimization. ICLR.
Kumar, A.; Muddireddy, P. R.; Dreyer, M.; and Hoffmeister,
B. 2017. Zero-shot learning across heterogeneous overlap-
ping domains. In Proc. Interspeech.
Lafferty, J. D.; McCallum, A.; and Pereira, F. C. N. 2001.
Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In ICML, 282–289. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Lee, K.; He, L.; Lewis, M.; and Zettlemoyer, L. 2017.
End-to-end neural coreference resolution. In Proceedings
of the 2017 Conference on Empirical Methods in Natural
Language Processing, 188–197.
Liu, B., and Lane, I. 2016. Joint online spoken language
understanding and language modeling with recurrent neural
networks. CoRR abs/1609.01462.
Mesnil, G.; Dauphin, Y.; Yao, K.; Bengio, Y.; Deng, L.;
Hakkani-Tur, D.; He, X.; Heck, L.; Tur, G.; Yu, D.; and
Zweig, G. 2015. Using recurrent neural networks for
slot filling in spoken language understanding. IEEE/ACM
Transactions on Audio, Speech, and Language Processing
23(3):530–539.
Pennington, J.; Socher, R.; and Manning, C. 2014. Glove:
Global vectors for word representation. In Proceedings of
the 2014 conference on empirical methods in natural lan-
guage processing (EMNLP), 1532–1543.
Rastogi, A.; Gupta, R.; and Hakkani-Tur, D. 2018. Multi-
task learning for joint language understanding and dialogue
state tracking. In Proceedings of the 19th Annual SIGdial
Meeting on Discourse and Dialogue, 376–384. Association
for Computational Linguistics.
Tsuruoka, Y.; Tsujii, J.; and Ananiadou, S. 2009. Stochastic
gradient descent training for l1-regularized log-linear mod-
els with cumulative penalty. In Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP:
Volume 1 - Volume 1, ACL ’09, 477–485.
Tur, G., and De Mori, R. 2011. Spoken language under-
standing: Systems for extracting semantic information from
speech. John Wiley & Sons.
Upadhyay, S.; Faruqui, M.; Tur, G.; Hakkani-Tur, D.; and
Heck, L. 2018. (almost) zero-shot cross-lingual spoken lan-
guage understanding. In Proceedings of the IEEE ICASSP.

6649


