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Abstract

Anaphora resolution is a central problem in natural language
understanding. We study a subclass of this problem involv-
ing object pronouns when they are used in simple imperative
sentences (e.g., “pick it up.”). Specifically, we address cases
where situational and contextual information is required to
interpret these pronouns. Current state-of-the art statistically-
driven coreference systems and knowledge-based reasoning
systems are insufficient to address these cases. In this pa-
per, we introduce, with examples, a general class of situated
anaphora resolution problems, propose a proof-of-concept
system for disambiguating situated pronouns, and discuss
some general types of reasoning that might be needed.

Introduction

Anaphors are linguistic referring expressions whose inter-
pretation depends on objects and entities introduced earlier
in a discourse (Mitkov 2014). For example, in the sentence:
“pick up the parcel and give it to me,” the pronoun “it” is
an anaphor that relies on its antecedent “the parcel” for its
meaning; both mentions likely pointing to the same real-
world parcel. Pronouns (and anaphors more generally) are
used extensively in dialogue and discourse and there are of-
ten multiple antecedent candidates for an anaphor, leading
to ambiguity, a problem that humans handle quite gracefully
(Grosz and Sidner 1986).

Naturally, artificial agents equipped with natural language
capabilities must also be able to resolve these ambiguous
expressions, if they are to perform commands issued to
them, whether it be a home kitchen helper robot or a voice-
activated personal assistant (Tellex et al. 2013). Contem-
porary approaches to anaphora resolution aim at solving
the sister-problem of coreference resolution, which requires
linking different mentions that reference the same entity or
object (Ng 2010; Mitkov 2014). The state of the art methods
are statistically driven machine learners that have learned
these associations from expansive datasets (Clark and Man-
ning 2016; Wiseman et al. 2015). Unfortunately, when extra-
linguistic information is needed, a situation all too common
in imperative task-oriented dialog, these systems are much
less accurate. Consider the simple example of the following
command to a robot to move blocks shown in Figure 1:
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Figure 1: Consider instructing a robot the following: “Pick
up blockl. Put it on block2. Pick up block3. Putit on blockl.”
Which block does the second “it” refer to? This question is
trivial for humans, but not so for many artificial systems.

Pick up [blockl ];. Put it,; on [block2]y,. Pick up

[block3]ys. Put ity s on blockl.” M

Many current coreference systems do not resolve (1) be-
cause it is not the statistical relationships that undergirds dis-
ambiguation, but instead extra-linguistic knowledge. Rec-
ognizing the importance of commonsense knowledge (Cas-
simatis 2008), Winograd Schemas (WS) were proposed as
a gold standard evaluation dataset for these types of more
difficult problems (Levesque, Davis, and Morgenstern 2012;
Morgenstern and Ortiz Jr 2015). Here’s an example:

“The sculpture rolled off the shelf because [it] s,
wasn’t [anchored/level].”

@

Resolving “it” in (2) requires at least some commonsense
knowledge about the physics of cause-and-effect, gravity
and friction. A number of computational approaches have
been proposed that formalize such knowledge. and then
use it for disambiguating pronouns. So these systems are
likely to be able to resolve (1), however, in many realistic
settings, what is needed is an ability to be able to reason
with situation-specific knowledge that can change dynami-
cally. Consider these three examples, all situated in a kitchen
where a robot is assisting a human with a cooking task:

“Pick up the [knife],. Cut the [tomato],. Put ity,
down.”

“Pick up the [knife]y. Cut the [tomato],. Put it
in the [bowl],.”

3)
“

[Speaker context - A:Washing dishes, B: Cooking]
“Pick up the [knife],. Cut the [tomato],. Pass ity to (5)
me.”



tL)

In each of these cases, the disambiguation of “it” re-
quires one to consider not just the statistical relationships
(like those inferred by the coreference systems) or static and
timeless bits of commonsense knowledge (like those used
in tackling WSs), but contextual information available to an
agent that is situated and embodied in an environment. It is
unclear what types of knowledge or reasoning capabilities
are needed. In the most general case, the problem is very
hard and been the subject of research for decades (Hobbs
1978; Lappin and Leass 1994; Winograd 1980). However, in
the narrower case of imperative dialogue we can simplify the
problem by focusing on the cause and effect relationships
associated with performing actions issued by the speaker.

The goal of this paper is to unpack this problem of situ-
ated or embodied anaphora resolution. We focus on object
pronouns (like “it”) as used in imperative utterances within
a larger discourse. We view natural language comprehen-
sion as a incremental model-building and generative process
(Kamp 1981) in which the listener must either perform (or
simulate) the issued actions thereby changing the surround-
ing world. In doing so, resolving anaphors becomes a task of
associating actions with its parameters in a way that “makes
sense” in this unfolding narrative. Specifically, the contribu-
tions of this paper are:

1. (Problem Characterization) We introduce the general
class of situated anaphor resolution problems in impera-
tive discourse. We characterize these problems by provid-
ing a set of exemplary problems and some insights into
what makes them particularly special and distinct.

(Proof of Concept) We construct a proof of concept
system using Answer Set Programming and Dempster-
Shafer theory for solving this class of problems. The sys-
tem can resolve the ambiguous anaphors in (3), (4) and
(5). We present a detailed walk-through for (5).

(Reasoning Characterization) We articulate some gen-
eral and domain-independent types of reasoning as well
as architectural capabilities needed to solve these prob-
lems.

Solving Situated Anaphora Problems
Overview of a Proof-of-Concept System

To solve situated anaphora problems, a listener agent must
reason about extra-linguistic information obtained as a result
of its embodiment (i.e., sensory-motor and bodily capabili-
ties of the agent) and its situatedness (agents interactions in
context with its environment, which includes other agents).
The agent’s decision making is guided by the mutual knowl-
edge shared with its interactants, which in turn is influenced
by the agent’s own capabilities, expectations of its interac-
tants and general normative expectations of the society in
which the agent is situated (Clark and Marshall 1981).

We propose that when tasked with disambiguating an
anaphoric object pronoun as part of an imperative (e.g.,
“pass itypife tomato t0 me.”), the agent must bind an action to
one of a set of two or more object candidates. To do so,
it must reason about three different aspects over and above
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syntactic considerations, which together form the mutual
knowledge, namely:

1. Plausibility: Can it perform the desired action on an ob-
ject candidate?

. Normative: Should it perform the desired action on an
object candidate?

. Speaker Intent: Is the speaker intending for it to perform
the desired action on an object candidate?

We formalize these notions by suggesting that these three
aspects or reasoning modes can be structured as microthe-
ories and represented as answer set programs. Reasoning
within these microtheories can happen in parallel with each
reasoner returning uncertainty measures for each object can-
didate. We propose then combining uncertain evidence ob-
tained from these theories using Belief-theoretic notions of
evidence combination. Belief theory (a subset of which is
Demspter-Shafer theory) generalizes Bayesian probability
theory and provides some unique advantages over Bayesian
updates to modeling epistemic and subjective uncertainty.
Moreover, it has a rich history of application in sensor-fusion
networks, which the proposed proof of concept system is
modeled after.

In the next section, we walk through a demonstrative ex-
ample in more detail. But, first, we provide some back-
ground on Answer Set Programming and Dempster-Shafer
theory and provide some intuition for why they might be
suitable frameworks for resolving situated anaphors.

Preliminaries

Answer Set Programming. Answer Set Programming
(ASP) is a knowledge representation language useful for
commonsense reasoning, especially in presence of incom-
plete information, defaults, exceptions and inductive defini-
tions (Baral 2003). A logic program II is a set of rules of the
form:

L0| ‘Lk — LkJrl,...,Lm,l’lOt Lm+1,...,1’10t L,

Where L;s are literals in the sense of classical logic and
the not represents negation-as-failure. The left and right
hand sides of the rule are called the head and body of the
rule, respectively. Either one of (or both) head and body
can be empty. When the head is empty, i.e., k¥ = 0 and the
Lo = L the rule is called an integrity constraint. When the
body is empty, the rule is called a fact. Intuitively the above
rule means that if Ly 1,..., L, are true and if there is not
proof that L,,.1,...,L, are true (i.e., can be safely as-
sumed to be false), then one of Lg| . . .|Lj must be true. The
semantics of ASP is based on the stable model semantics of
logic programming (Gelfond and Lifschitz 1990).

ASP serves as a suitable language with which to repre-
sent knowledge in the proposed microtheories for solving
situated anaphora resolution problems, for several reasons.
First, ASP allows non-monotonic reasoning, that is adding
more knowledge can change one’s previous beliefs, a mode
especially true of situated reasoning when the world state
and context can change and evolve. Second, because ASP



allows for negation-as-failure (not L;) and classical nega-
tion (-L;), default rules can be encoded, which as we will
see, allows for encoding complicated cases where, for ex-
ample, certain actions are not permissible if there is no rea-
son to think they are not forbidden. Third, ASP allows for
what are known as choice rules. In addition to literals, the
head of the rule can contain cardinality constraints of the
form I{ Ly, ..., L }u in which [, u are integers and explic-
itly allow the encoding of choices. Finally, we will need to
be able capture dynamic systems when reasoning about ac-
tions and ASP, through its implementation as an incremen-
tal logic program which allows for capturing knowledge ac-
cummulating over increasing time steps (Gebser et al. 2008).
For this paper, we use ASP implementations in c1ingo and
iclingo, which provide both grounding and solving capa-
bilities.
Dempster-Shafer Theory. DS-Theory is a measure-
theoretic mathematical framework that allows for combin-
ing pieces of uncertain evidential information to produce
degrees of belief for the various events of interest (Shafer
1976) . In DS-Theory a set of elementary events of interest
is called Frame of Discernment (FoD). The FoD is a finite set
of mutually exclusive events © = {61, ..., 0y }. The power
set of © is denoted by 2 = {A: A C ©}. Eachset A C ©
has a certain weight, or mass associated with it. A Basic Be-
lief Assignment (BBA) is a mapping me(+) : 29 — [0,1]
such that ), me(A) = 1 and me(0) = 0. The BBA
measures the support assigned to the propositions A C ©
only. The subsets of A with non-zero mass are referred
to as focal elements and comprise the set Fg. The triple
& = {0, Fo,me(:)} is called the Body of Evidence (BoE).
For ease of reading, we sometimes omit Fg when referenc-
ing the BoE. Given a BoE {©, Fo,mg(:)}, the belief for a
set of hypotheses A is Bel(A) = > 5 4, me(B). This be-
lief function captures the total support that can be commit-
ted to A without also committing it to the complement A°
of A. The plausibility of Ais PI(A) =1 — Bel(A°). Thus,
PI(A) corresponds to the total belief that does not contra-
dict A. The uncertainty interval of A is [Bel(A), PI(A)],
which contains the true probability P(A). In the limit case
with no uncertainty, we get PI(A) = Bel(A) = P(A).
DS-Theory extends Bayesian theory in several ways, al-
lowing for some capabilities that are suitable for our pur-
poses. First, it allows for assigning probabilistic measures to
sets of these hypotheses (not just individual ones), includ-
ing the set of all hypothesis. This allows DS-Theory to con-
sider ignorant and ambiguous information, which is help-
ful when there is evidence that an anaphor could resolve to
more than one object candidate. Second, DS-Theory does
not require assuming any prior distributions over object can-
didates, which is useful when priors are difficult to justify.
Bayesian and DS-theories do share many commonalities and
DS-theory is often viewed as being a generalization.

Detailed Walk-through of an Example Situated
Anaphoric Imperative Discourse

Consider the discourse D1 from (5). In the scene, the speaker
is performing a [washing dishes/cooking] task and is looking

6959

Plausibility Normativity Intent
Reasoner Reasoner Reasoner
S bl [y F -~
table .
Microtheor
Models y
r r r
Plausibility Normativity Intent
Consultant Consultant Consultant

En

Resolver

Figure 2: Approach for resolving situated anaphors. Each
of the three proposed reasoning modes are encoded as mi-
crotheory templates, filled with situational information by
a consultant and solved using a reasoner (e.g., answer set
solver). Uncertainty measures are computed over the set of
object candidates and combined to return the best guess.

to have the robot use a knife to cut the tomato and then to
pass over the [knife/tomato] once it is done. Below is the
discourse comprising three utterances, as follows:

Pick up the [knife].
Cut the [tomato];.
Pass ity to me

We propose a knowledge representation scheme and reso-
lution approach implemented through a resolver architecture
as shown in Figure 2. Specifically, we consider three consul-
tants, one for each reasoning mode. The consultants instanti-
ate and run a reasoner, and later compute uncertainty metrics
for object candidates. Each reasoner is an ASP solver that
operates on a microtheory which is a ground logic program.
The consultants maintain partial or incomplete microthe-
ories (microtheory template) that are domain-independent.
During resolution, the consultants “fill-in” the missing facts
and rules in order to be able to complete reasoning. The mi-
crotheory templates are not solvable logic programs as they
are not sufficiently ground, but merely serve as a general
blueprint for a consultant to flesh out. In the next section,
we will discuss properties of these templates in more detail,
but for now, we will look at specific microtheories for our
running example.

Once reasoning has been performed, each reasoner re-
turns, to its corresponding consultant, answer sets (if avail-
able) that are stable models consistent with the information
that the agent has used in reasoning. Thus, each reasoner an-
swers the question of whether a set of facts relating to the
discourse “makes sense” from a plausibility or normativity
or intent point of view, depending on the consultant. The
consultant defines a DS-theoretic mass function over these
models, which in turn allows the consultant to build a BoE
(&) over the objects of interest. We will now look at each
microtheory for (5) in more detail.



Plausibility Microtheory. The plausibility microtheory
contains knowledge for determining if an action requested in
an utterance can be performed in relation to an object, given
the agent’s action capabilities and the current situation. We
use an incremental answer set programming paradigm as
it is reasoning with action dynamics. First, we establish a
program base that incorporates a set of facts true of the
agent’s (initial) current situation in its interaction with a hu-
man (named “commX” or “commander X*)

o

% For incremental mode iclingo

#include <incmode>.

#program base.
% Percept types
is(objl,object) .
is (obj2,object) .
is (obj3, scene).
is (obj4, loc) .
is(obj5,person) .
is(self, loc) .

o

% Percept names

has (objl, name, knife) .
has (obj2, name, tomato) .
has (obj3, name, kitchen) .
has (obj4, name, table) .
has (obj5, name, commX) .

% Fluents

init (has(objl, loc, self)).
init (has (obj2, loc,table)) .
% Initial state axiom
holds (F,0):— init (F).
% Basic action definitions
action (pickup (X)) :- is(X,object).
action (putdown (X)) :- is(X,object).

action(pass(X,Y)) :- is(X,object),is(Y,person).

The next step is to GENERATE a set of action occur-
rences using ASP choice rule syntax, as follows:

#program step (t
%$GENERATE
{ occ(A,t)

).

action(A) } = 1.

The syntax states that at any given time instance ’t’, one
and only one action occurs from the set of possible actions.
We can then define the effects of our actions and various
action-related axioms.

$DEFINE
% Effect of action occuring

holds (has (X, loc,self),t) :- occ(pickup(X),t-1).
—-holds (has (X, loc, table), t)
holds (has (X, loc, table), t)

-holds (has (X, loc,self),t)

holds (has (X, loc,Y),t) :- occ(pass(X,Y),t-1).
-holds (has (X, loc,self),t)

:— occ (pickup (X),t-1).
:— occ (putdown (X),t-1).
:— occ(putdown (X),t-1).

:— occ(pass(X,Y),t-1).

% Inertia axioms

holds (F,t) :- holds(F,t-1), not -holds(F,t).
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-holds (F,t) :- -holds(F,t-1), not holds(F,t).

% Commonsense laws

% Objects cannot be in two locations at once.
-holds (has (X, loc,Y),t) :— holds(has(X,loc,Z),t),is(Y,loc),
Y!=2Z.

Once, the axioms are defined we use the integrity con-
straint syntax of ASP to represent various action require-
ments and various situations that do not make plausible
sense.

Cannot pick up something you are already holding

:— occ(pickup(X),t), holds(has(X,loc,self),t).

% Cannot pick up something when holding something else

:— occ(pickup(X),t), holds(has(Y,loc,self),t).

% Cannot put down something you are not holding

:— occ (putdown (X),t), -holds(has(X,loc,self),t).

% Cannot pass something you are not holding (on the table)

:— occ(pass(X,Y),t), holds(has(X,loc,table),t).

% Cannot pass if recipient already has it

:— occ(pass (X,Y),t), holds(has(X,loc,Y),t).

#program check (t) .

:— query(t), t<maxlength.

#const maxlength=5.

The #program check (t) operation provides a termi-
nation of the program, which in this case is after five steps,
set by the maxlength constant. This microtheory is es-
sentially a planning microtheory defined over a short time
horizon of five steps.

Normative Microtheory. The normative microtheory
contains knowledge for answering the question of whether
an action should be performed on an object candidate. This
microtheory shares many common features with the plau-
sibility microtheory including the types of fluents and static
predicates that are used such as is(X,Y") and has(X, Z,Y).
These predicates are intentionally quite general and are de-
signed to be representative of a high level language that
a situated agent can use (Baral, Lumpkin, and Scheutz
2017). A crucial difference in the normative microtheory
are the generate choice rules and the special predicate
(has(A, permissible, X)) used therein, as shown below

%GENERATE

has (obj5,1is_doing, (washing_dishes;cooking)) = 1.

{ has(A,permissible, X) is(A,action_verb),is (X,object),

is (S,person),has (S,uttered,A) } = 1.

The normative microtheory also has an additional choice
rule associated with the task context of washing_dishes
versus cooking. The task context choice rule is meant to
allow the program to consider what would happen in differ-
ent contexts. However, we anticipate that in real-world sit-
uations, the context is set and not necessarily choose-able



in this manner. Nevertheless, we provide this as a choice
rule, so we can compare performance across two different
contexts. We can then define and test “permissible” actions
against what is deemed forbidden or in some instances, what
is not shown to be not forbidden, depending on the norma-
tive requirements at play.

%DEFINE
% Forbidden to pass something that is not
% a dish to someone who is washing dishes.
has (X, function, tool) :- has(X,used_for,cutting).

has (cooking, requires, X) : - has (X,used_for,eating) .

has (washing_dishes, requires,X) :— has (X, function, tool) .
—has (A, forbidden, X)

has (A, permissible, X),

:— has(S,is_doing,T),
has (T, requires, X) .

STEST
:— has (A,permissible, X),not -has (A, forbidden, X) .

Speaker Intent Microtheory. The speaker intent mi-
crotheory contains knowledge for answering the question
of whether the action on an object candidate was what the
speaker intended for the agent to do. Once again, this mi-
crotheory shares many of the same predicates with the nor-
mative and the plausibility microtheories. And, as with those
other two theories, what is unique is the special predicate
used in the generate step (has(A4, speaker_intends, X)).

$GENERATE
%$Task that the speaker is doing

has (obj5,is_doing, (washing_dishes; cooking)) 1.

{has (A, speaker_intends, X)
has(S,uttered,A),is (X, object) }

: is(A,action_verb),is (S, person)
1.

The potential set of action-object pairings suggested by
the speaker’s utterance are constrained by what actions
might be relevant to the task that the speaker is performing.

%DEFINE

has (X, nextAction,A) :- has(X,loc,self),is(X,object),
has (A, name, putdown) .

has (X, nextAction,A) :- has(X,loc,table),is(X,object),
has (A, name, pickup) .

% When something is split, it is made up of multiple parts
% Speaker unlikely to use "it" when referring to

% multiple object

has (X, number_parts,multiple) -
has (X, physical_integrity, split),is (X, object).
~has (A, speaker_intends, X) : -

has (X, number_parts,multiple),

has (A, verb_pronoun_ref, W),

is (W, pronoun),has (W, name, it), is (X, object),
not has (A, speaker_intends, X) .

> speaker prefers the robot to perform the next action
—has (A, speaker_intends, X) : - not
has (X, nextAction,A),is (A,action_verb),is(X,object), not

has (A, speaker_intends,X) .

% relevance of an object to a speaker if it helps the
% speaker

has (X, function, tool) :- has(X,used_for,cutting).
has (cooking, requires, X) : - has (X,used_for,eating).

has (washing_dishes, requires, X) : - has (X, function, tool) .

’
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has (X, relevant_to,S) :- has(S,is_doing,T),

has (T, requires,X), 1is(S,person).

=t
=
w0
e}

speaker does not intend for the robot to pass

o0 oo oe

it irrelevant things.
:— has (A, speaker_intends, X),
has (S,uttered, ) .

not has (X, relevant_to,S),

Combining Evidence with Dempster-Shafer Theory.
We are reasoning about whether or not certain action-object
pairings make sense. Thus, if the set of candidate objects is
O = {o1,...,0,}, we can define the DS-theoretic frame
of discernment © = O. Now, each microtheory potentially
outputs a set of answer sets, A = {Aj,...,A,}, where
if A = () then the microtheory is unsatisfiable. We know
that each answer set contains a set of ground predicates
A; = {p},...,p*} including exactly one special genera-
tive predicate p;. The generative predicate contains one of
the n candidate objects O. We can define our mass function
of some subset B C O, B # () as being the following:

% Vb € B,di, such that p; € A; and
me(B) = p; contains b, does not contain &’ ¢ B
0 otherwise

Where A’ C A refers to those answer sets that contain
the desired action verb, and N is the number of answer sets
A; € A’ that satisfy the specified criterion. The reason-
ing consultants compute these mass functions and return a
BoE £ that contains the computed mass functions for the
focal elements For example, if there are two object candi-
dates © = {01,02} and a reasoner returns three answer
sets A = {A;, Ay, A3}, with A; containing 01, A con-
taining oo and Aj containing both object candidates, then
the BoE will contain masses m({o1}) = 1/3,m({o2}) =
1/3, m({o1,02}) = 1/3. The evidence from these sources
can be combined using the Dempster’s rule of combination,
which aggregates evidences or confidence values from dif-
ferent sources, but within the same frame of discernment.
The results from computing the fused uncertainties for each
of discourse examples (3), (4) and (5) are shown in Table 1.

General Properties

In this section, we discuss several general, domain-
independent aspects of the proposed approach.

Class of Situated Anaphora Resolution Problems

Thus far, we have presented a few examples of situated
anaphora resolution problems.! Discourses in this class of
problems share the following features:

1. Each discourse consists of a set of utterances, at least one
utterance being an imperative. The imperative utterance
contains at least one anaphoric referring expression.

! Additional examples: (1) “Walk to the green door. Enter your
passcode on the panel to open it.” (2) “My pen fell under the bed.
Grab that broom. Use the long end to get it out.” (3) “The knife is
on the chair. Pull it out. Grab the knife. Push it back.”



(5) “Pass it to me.” [washing dishes / cook- | (4) “Put it in the bowl.” [Bowl | (3) “Put it down.”
ing] contains food] © = {knife, tomato}
O = {knife, tomato} O = {knife, tomato, bowl}
10 Stable models with “pass” 29 Stable models with “put in” s« ’
L m({knife}) = 0.4 m({knife}) = 0.52 4 Stable models with “put down
Plausibility = — 091 m({knife}) = 0.25
&) m({tomato}) = 0.3 m({tomata}) =0. m(0) = 0.75
P m(0) =0.3 m({knife, tomato}) = 0.27 '
‘ Washing Dishes Cooking 1 Stable Model 1 Stable Model
Normative 1 Stable Model 1 Stable Model m({tomato}) = 1.0 m({knife}) = 1.0
(&n) m({knife}) = 1.0 | m({tomato}) = 1.0 o e
Washing Dishes Cooking 2 Stable Models
Speaker- T Stable Model 1 Stable Model . (1{ tsotszi Ol\f)("l_ell 0 m({knife}) = 0.5
Intent m({knife}) = 1.0 | m({tomato}) =1.0 o m({tomato}) = 0.5
(&)
. Washing Dishes Cooking . .
gco;::)smed Fnife : [1.0, 1.0] | tomato : [L.0, 1.0] tomato : [1.0,1.0] knife : [1.0,1.0]

Table 1: Computed uncertainties for each of the object candidates in three different scenarios. The bottom row contains the final
uncertainties for the object candidates. Thus, for example, the agent is certain that the object pronoun must resolve to “tomato”
when a speaker has the agent to “pass it” and the speaker was in the middle of a cooking task.

The discourse context contains, among other things,
two or more candidate antecedents to the at least one
anaphoric expression. The antecedents could be explic-
itly mentioned linguistic referring expressions or dis-
course entities (real-world objects or cognitive concepts)
being considered by the interlocutors as part of the dis-
course.

. Linking the anaphoric expression to one of the candidate
antecedents requires reasoning with extra-linguistic situ-
ational knowledge.

Executing an imperative (or mentally simulating it) dur-
ing the discourse can change the state of the world in
a way that influences the interpretation of a subsequent
anaphor. That is, the interpretation of the anaphor is not
merely influenced by the semantics of a linguistic expres-
sion (as in WS), but by what happens in the world as a
result of incrementally interpreting (and executing) each
utterance in the discourse.

Domain-Independent Aspects of the Reasoners

Each of the microtheories share a common structure as al-
lowed by the GENERATE-DEFINE-TEST methodology in
ASP. In the English language, every simple imperative utter-
ance with an object pronoun has no overt subject (i.e., the
subject is assumed to be the speaker) and the verb is often
in its bare form. This focused structure allows us to consider
specifically the relationship between just the action verb and
the object. In the case of pronoun use, the object is replaced
by an object pronoun such as “it.” From a representational
standpoint we are only interested in this relationship be-
tween action and object. This means we can pre-define use-
ful relationships between action and object for each of the
reasoners and generally ask the question if an action-object
pairing makes sense from the corresponding reasoner’s (or
microtheory’s) perspective. If we let a be the action verb in
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the utterance O represent the variable corresponding to the
object pronoun, then we have three general symbols, one for
each reasoning mode, as follows:

1. Plausibility Reasoning: occ(a(O),t)
2. Normative Reasoning: has(a, permissible, O)
3. Speaker Intent: has(a, speaker_intends, O)

Moreover, many of the commonsense definitions shown
in the code fragments in the previous section for each of the
reasoners are in fact domain-independent such as the axioms
of inertia in the plausibility reasoner, the rule associated with
when an action is not forbidden (-has(A, forbidden, O))
in the normative reasoner and the rule relating to when an
object is relevant to a speaker (has(O, relevant_to, S)) in
the speaker intent reasoner. In fact, we were able to model
(3) and (4) in much the same way as we did with (5).

We note that not only does this generality hold within a
domain (like cutting vegetables), it extends to other domains
as well as in cases where it is possible to incorporate several
object pronouns in sequence, each referring to different ob-
jects, as follows:

Pick up the [ladel],. Put it; in the [pot], containing
[soup],. Stir ity ;. Check if it;, ; is mixed. Take it;
out and wash ity ;.

(6)

Related Work

Early non-statistical approaches exploited hard constraints
(syntactic, semantic and morphological) and selection pref-
erences (salience and commonsense knowledge) that hu-
mans used when disambiguating anaphors (Winograd 1980;
Lappin and Leass 1994; Ge, Hale, and Charniak 1998). Ob-
ject pronouns like “it” were resolved by exercising a selec-
tion preference based on salience in the discourse, which in
turn was often tied to how near the antecedent was to the



ROWOMINAD | on \nlocn-\

Figure 3: Incorrect resolution of a current neural coreference
system (Clark and Manning 2016) on the example shown in
Figure 1. (Implementation: https://huggingface.co/coref/)

anaphor, i.e., its recency (Van Deemter 2016). Although
such an approach would suffice for (1), it would fail for (3),
(4) and (5) in certain contexts.

Contemporary approaches aim to solve the sister-problem
of coreference resolution using statistical and neural net-
work based algorithms. Mitkov (2014) and Ng (2010) pro-
vide nice overviews of the evolution of this field. The state-
of-the-art systems are trained on large corpora and they are
able to recognize mention-pairs that are statistically related
to one another. However, many of these systems fail when
presented with situated anaphors, much like (1). Clark and
Manning (2016)?> propose one such system that does not
produce correct resolution of (1) (see Figure 3), (3), (4),
(5) and all the examples provided in the paper. Extract-
ing statistical patterns are insufficient because disambiguat-
ing situated anaphors requires inference on world models
that evolve through the discourse. Some have proposed spe-
cific representations to incorporate background knowledge
needed to solve these more “hard coreference problems”
(Peng, Khashabi, and Roth 2015). However, these systems
still lack the ability to reason about plausibility, normativity
and speaker intent, which we argue to be important reason-
ing modes in situated cases.

There have been parallel efforts in tackling the Winograd
Schema Challenge and the leading approaches employ a
strategy of first selecting a format to represent commonsense
factual knowledge, learning vast amounts of static com-
monsense knowledge from online databases (ConceptNet,
WordNet and CauseCom), and then performing inference
or classification with this knowledge (Bailey et al. 2015;
Sharma et al. 2015; Liu et al. 2016; Golovin, Cla3en, and
Schwering 2017). However, these approaches do not con-
sider the three reasoning modes we discuss. Also, it is un-
clear how the knowledge needed for performing this situated
reasoning can be acquired from these online databases.

There has been considerable work in reference resolution,
more generally, and in applying various theories from cog-
nitive science in order to use pragmatics (Schiiller 2014;
Richard-Bollans, Gomez Alvarez, and Cohn 2017; Kehler
2000; Chai, Prasov, and Qu 2006; Williams et al. 2016;
Williams and Scheutz 2016; Van Deemter 2016). Unfortu-
nately, much of this work focuses on pragmatics as they per-
tain to processing effort and cognitive effect on the agent,
and less so on situational aspects of the agent’s surround-
ings. The models that do unpack discourse context informa-
tion have received a weaker computational treatment.

“https://huggingface.co/coref/ and http://corenlp.run/
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Discussion and Limitations

Although we propose three specific reasoning modes, we ex-
pect that there are sub-classes of situated anaphor resolution
problems that cannot be resolved with just the three reason-
ing modes proposed. For example, if the imperatives in the
discourse represent not the intent of the speaker but of an-
other in situations where the speaker may simply be convey-
ing a message or an order from, for example, their superior
or boss. In such cases, the agent would need the capability to
reason about intent of another beyond the speaker. Our ap-
proach is by no means limited to just these three reasoning
modes, and it is subject of future work to explore when and
how these and other reasoning modes are triggered.

In this paper, we did not address how these microthe-
ory templates (partial microtheories) are learned or how the
agent acquires them. The question of learning is an impor-
tant one and there has been extensive research efforts in ac-
quiring and encoding knowledge from the WWW. However,
situated anaphors present a unique challenge in that much of
the knowledge needed to resolve them might not be explic-
itly available in a dataset. Instead, this knowledge may be
quite implicit acquired by the agent throughout its lifetime.
We are currently exploring how an embodied agent might
glean these implicit rules from experience.

We have presented the first steps towards resolving am-
biguous references by reasoning with situated information
available to an agent when embodied in an environment. One
follow-on step for this research effort is to integrate these
capabilities into a cognitive robotic architecture and attempt
to empirically evaluate the system and the knowledge rep-
resented therein in real human-robot interaction scenarios.
One advantage of the proposed microtheories are the use of
identifiers for object constants that allow for the integration
of multi-modal perceptual information about the same en-
tity to be aggregated and reasoned with and allows for the
symbols to be ground in the robot’s sensory-motor system.

Conclusion

Artificial agents interacting with humans will need to be
able to disambiguate anaphoric expressions, which are used
freely and frequently in discourse. To do so, we argue that
the agent must consider what it can, should and be expected
to do in a situation. In this paper, we propose a knowledge
representation scheme to formalize domain-independent and
situation-specific knowledge for each of these three consid-
erations, and a resolution strategy for using this knowledge
to disambiguate object pronouns in simple imperative sen-
tences that are situated in real-world embodied discourse.
This work advances the state of the art in anaphora resolu-
tion by reframing the disambiguation problem from being
only about mention-pairs, to also being about the viability
of the actions being considered as the world state evolves.
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