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Abstract

In this paper, we present a multi-step coarse to fine ques-
tion answering (MSCQA) system which can efficiently pro-
cesses documents with different lengths by choosing appro-
priate actions. The system is designed using an actor-critic
based deep reinforcement learning model to achieve multi-
step question answering. Compared to previous QA models
targeting on datasets mainly containing either short or long
documents, our multi-step coarse to fine model takes the mer-
its from multiple system modules, which can handle both
short and long documents. The system hence obtains a much
better accuracy and faster trainings speed compared to the
current state-of-the-art models. We test our model on four QA
datasets, WIKEREADING, WIKIREADING LONG, CNN
and SQuAD, and demonstrate 1.3%-1.7% accuracy improve-
ments with 1.5x-3.4x training speed-ups in comparison to the
baselines using state-of-the-art models.

Introduction
Machine comprehension based question answering (QA)
tasks have drawn lots of interests from the natural lan-
guage understanding research community. During the past
several years, lots of progresses have been made on build-
ing deep learning based QA models to answer questions
from large scale datasets including unstructured documents
(Hermann et al. 2015; Hill et al. 2015; Onishi et al. 2016;
Trischler et al. 2016; Nguyen et al. 2016). Currently, most
of the state-of-the-art models for different QA datasets
are based on recurrent neural networks which can process
the sequential inputs, and with a (co-)attention structure
to deal with the long term interactions between questions
and document context (Xiong, Zhong, and Socher 2016;
Chen, Bolton, and Manning 2016; Hermann et al. 2015;
Kadlec et al. 2016). One disadvantage of these models is that
their training and inference speeds are relatively slow due to
their recurrent nature, and the other weakness is that they
are still not good at dealing with very long documents and
model of the models use the truncated documents as their
inputs (Miller et al. 2016; Hewlett et al. 2016).

In (Choi et al. 2017), it introduces a coarse-to-fine ques-
tion answering model to select the related sentences in the
long document first, then find the answers from the selected
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sentences, which helps reduce the computational workload.
The fast model can be implemented using bag-of-words
(BoW) or convolutional neural network and the slow model
uses an RNN based model. The model gives decent perfor-
mance on long documents in WIKIREADING dataset, and
shows significant speed-up compared to earlier models. This
coarse to fine model, however, still have several disadvan-
tages:

1.The model doesn’t perform as good as baseline models
on the full WIKIREADING dataset including both short and
long documents (Hewlett et al. 2016). One reason is because
that the conventional RNN based models perform better on
generating answers from the first few sentences of a doc-
ument, hence can obtain the correct results on short docu-
ments more accurately than a coarse-to-fine model .

2. Many wrong answers are actually from the same sen-
tence containing the correct answer. By using a coarse-to-
fine model on sentence level, it may still extract wrong an-
swer by ignoring the correct one in the same sentence.

3. Some of the contextual information in document is still
useful and necessary in order to find the correct answers.
However, by only selecting the related sentence(s), the sys-
tem may ignore some important information to make the
correct judgment.

On the other hand, compared to the coarse-to-fine model
which gives decent results on long documents, more ques-
tion answering models focus on improving performance on
relatively short documents. QANet (Yu et al. 2018) uses
the convolutions and self-attentions to boost the training
speed and gives one of the state-of-the-art results on the
SQuAD1.1 dataset (Rajpurkar et al. 2016), which contains
mainly short documents (average 122 tokens/document).

Due to these reasons, in this paper, we would like to in-
troduce a novel mult-step coarse to fine question answer-
ing (MSCQA) system which can handle both long and
short documents. This new structure takes the advantages
from both coarse-to-fine and QANet structures depending
the lengths of documents. Furthermore, a false-positive de-
tection mechanism is also designed to further improve the
model performance.

In order to guide the model to learn what is the best action
to perform at each step, three types of states are defined as:
1. Generate answers directly from the answer generation
module (Terminal State).
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2. Select the related sentences and use them for next round
(Non-terminal State)˙
3. Remove the inaccurate answer generate from the answer
generation module, and use the rest of the document for next
round (Non-terminal State).

The first two states are corresponding to the QANet an-
swer generation module and a coarse sentence selector in
the coarse-to-fine model. The last state is designed to han-
dle the case where the predicted answer given by the answer
generator is a false positive one, which should be removed
from current document context to avoid confusion.

At each round of the decision making process, the system
performs an action and reaches one out of the three states. If
it is a non-terminal state, the system will continue to search
the correct answer from the current context, otherwise it
will generate the answer from the answer generation mod-
ule, which is a terminal state. A detailed system description
will be given in next section.

In this paper, we propose a DRL based multi-step coarse-
to-fine QA (MSCQA) system, which mainly gives three con-
tributions:

1. It is the first multi-step QA system which has the ca-
pability to decide whether to generate a fine result or a
coarse one based on the current context. By using this tech-
nique, the model can handle both short and long documents
in faster and a more robustness manner. To the best of our
knowledge, we are the first one to do so.

2. Besides generating answers from coarse or fine con-
text, the system also learn another ability to reject the false-
positive answer given by the answer generator. This self-
correctness ability makes the system more ”smart”.

3. The system achieves significant better QA accuracy
compared to our baseline models on four QA datasets, and
1.5x-3.4x training speed-up due to the improved efficiency
by reallocating of training data using three actions.

The System and Model Structure
In this section, the system structure of our multi-step coarse-
to-fine QA system is given. The system contains four parts:
the first one is a DRL based action selector, the second one
is a sentence selection module (M1), the third one is an an-
swer generation module (M2) and the last one is the sub-
context generation module (M3). Both the sub-context and
sentence selection module are non-terminal states, and the
answer generation module is a terminal state. Our system
diagram is as given in Figure 1.

Action Selector
The action selector is designed to generate one action to pick
one of the three modules at each time step. In order to model
the process of selecting an action, we choose a deep rein-
forcement learning (DRL) based algorithm to learn it auto-
matically. Formulated as a markov decision process (MDP)
, a DRL based model mainly contains four key elements:
state st, action at, reward rt and policy π. In a given a state
st during a stochastic process, the system is seeking its best
action at to perform in order to maximize its expected re-
wards to be obtained, by following some policy π. The main
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target of a DRL based model is to seek the best policy π∗,
hence the corresponding action a∗, for an agent to perform.
There are mainly three types of reinforcement learning al-
gorithms: value-based, policy gradient and actor-critic. We
choose the actor-critic based DRL model in order to obtain
a relative stable training result for a large state space as in
our system.

The definition of the states st and the actions at in our sys-
tem will be given in the section. We will also discuss how to
train the action selection module using our selected deep re-
inforcement learning model, i.e. an Actor-Critic based DRL
model.

States (st) The design of the state is as given in Figure 2,
which is the input of the action selection module. It mainly
contains two parts: one is the encoded document informa-
tion, and the other is the question information. The encoded
document (D̂i) at step i have three different types of vari-
eties:

Type 1: It contains the full document information in step
i, i.e. D̂i = Di. At step 0, this document is the the same as
the original given document (D), i.e. D0 = D.

Type 2: It contains the selected sentences information, i.e.
D̂i = Ds = ∪Ki=isi, where si is the ith selected sentence
from the current document Di, and K is the total number of
sentences selected.

Type 3: It contains the current documentDi excluding the
answer Ai predicted by Di, i.e. D̂i = Dc = Di \Ai.

Again, the third type of state’s definition is based on the
fact that most of the correct answers are within the top K
possible answers, if the one with highest probability is not
correct one. By defining three possible actions, it gives our
system more potentials to find the correct answers both from
document level (Type 1) and sentence level (Type 2) by re-
jecting the incorrect answers (Type 3).

Another important part of a state is the encoded question
embedding (Q), which doesn’t change during the multi-step
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procedure to guarantee that the system infers the answer
from the same given question.

Both the document and question are encoded using two
layers structure. The first layer is an input embedding layer
and the second layer is an embedding encoder layer. The in-
put embedding layer is used to generate each word’s repre-
sentation by concatenating its word-level embedding xw and
character-level embedding xc, i.e. xi = xw ⊕ xc ∈ Rd1+d2 ,
where d1 is the dimension of word-level embedding, d2 is
the dimension of the character-level embedding, and “ ⊕ ”
stands for the concatenation of two vectors. The word em-
bedding xw uses the pre-trained GloVe (Pennington, Socher,
and Manning 2014) embedding vector where d1 = 300,
and each character of the word is represented by a trainable
d2 = 200 dimension vector. The character level word repre-
sentation xc is then generated by taking the maximum value
of each row of the character matrix of a word. The word-
level vector and character-level vector combine together as
the input of the embedding encoder layer.

The embedding encoder layer takes the concatenated em-
beddings of tokens in a document or question as its input
x = [x1;x2; · · · ;xn], and pass through several layers as
illustrated in Figure 3. The set-up is similar to that in (Yu
et al. 2018) except that here we only use one convolution
layer to boost the training speed. The word vector x firstly
passed a convolution layer, then passed by a self-attention
layer, and finally a feed-forward layer. The convolution layer
has a kernel size ks, and the number of filters is df . The self-
attention layer adopt the multi-head attention mechanism as
given in (Vaswani et al. 2017). The output of the last layer is
the encoded document representation D̂i in a state st or the
question representation Q, depending whether the input is a
document or the given question.

Actions (at) As described earlier, three actions are defined
in our system to be selected from at each time step t. Their
definitions are given in Figure 4, and the three possible sce-
narios are as given below:

Action a1: The first action is to generate the answer di-
rectly. The answer generation module will read in the word

!": Generate Answer #$ from current document %$
!&: Select related sentences %' =∪$*"+ ,-
!.: Remove the predicted answer #$ from the current document %$

Figure 4: Design of Action

level embedding for the current context of document D̂i and
question Q, then generate two probabilities for each word as
the starting/ending point of the answer. The final answer Ai
will be given as the context between the words with highest
starting and end probabilities.

Action a2: The second action is the sentence selection ac-
tion. It will select the sentences with highest possibilities
containing the correct answers. Assuming K sentences are
selected at this step, the new document context will be D̂i =
[ŝ1; ŝ2; ŝ3; ...; ŝK ]. A detailed description will be given in
next section. This action will generate a non-terminal state.

Action a3: The last action is to remove the potential an-
swer Ai generated from the current context D̂i, as the sys-
tem believes that the answer is a false positive answer, it will
remove it to avoid confusion.

It is worth noticing that all three actions corresponding
to generating the three types of states as described before
(a1 → M2, a2 → M1 and a3 → M3). During the training,
our system can decide what is the best action to choose based
on the expected rewards.

Rewards (rt) Another important elements in reinforce-
ment learning is the reward rt, which can greatly affect the
performance and robustness of a DRL model. In our system,
different rewards are designed for three types of action-state
pairs:

1. If action a1 is selected, i.e. to generate the answer di-
rectly, the reward is then defined as the F1-score between
generate answer Ai and the ground truth A∗, i.e.:

r1 = F1(Ai, A
∗) if a = a1 (1)

2. If the action is chosen to select related sentences (a2),
then the reward is defined as whether the selected new con-
text D̂i = Ds = ∪Ki=isi contains the ground truth A∗. If it
contains the answer, the reward is 1, otherwise it is 0:

r2 =

{
1 if A∗ ⊆ Ds = ∪Ki=isi
0 otherwise

(2)

3. If the action is chosen to remove the potential answer
Ai generated from the current context Di, then reward is
defined as if the new context D̂i = Dc = Di \ Ai contains
the ground truth answer A∗. If it contains the answer, the
reward is 1, otherwise it is 0, i.e.

r3 =

{
1 if A∗ ⊆ Dc = Di \Ai
0 otherwise

(3)

It is worth noticing that the first reward is assigned to the
case when answer is generated directly at the first step. The
second and third rewards are assigned to the states before the
last answer generation step if there are multiple steps. The
reason is because we will only assign one final reward to a
sample to guarantee the convergence of our RL algorithm.
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Sentence Selection Module M1

If the action selector choose action a2, our system will
trigger the sentence selection module M1, where multi-
ple answer-related sentences are picked out. Following re-
cent work on sentence selection (Yu et al. 2014; Choi et
al. 2017; Yang et al. 2016), a convolutional neural net-
work fsscnn is used to define a distribution over the sen-
tences {s1, · · · , sN}, where N is the total number of sen-
tences in current document. Each of the N sentences in cur-
rent document context together with the question embed-
ding Q will be fed into the convolutional neural network,
whose outputs are the probability distributions of all sen-
tences p(s = si|x, d)(i = {1, · · · , N}). To represent it
mathematically:

p(s = si|Q,Di) = fsscnn(Q,Di) (4)

To explain it in detail, the embeddings of tokens in a ques-
tion Q are concatenated with those in a sentence si, then
used as the input to fsscnn. The structure is as shown in Fig-
ure 5. During the training process, the sentences with top K
highest probabilities are selected and combined as the doc-
ument context in next step, i.e. D̂i = Ds = ∪Ki=isi. The
predefined value K is reduced by 1 at each action step, i.e.
one fewer sentence is selected after one round. The convolu-
tional layer fsscnn is trained together in the system using the
actor-critic’s loss functions which are given in next section.

Answer Generation Module M2

If our system decides to answer the question directly based
on current context Di by choosing action a1, the answer
generation module will be triggered. Currently, most of the
state-of-the-art question answering models use RNN mod-
els to encode the document and question and generate the
answer. Here, we follow the QANET structure that gives the
state-of-the-art result using single model on the SQuAD1.1
dataset (Rajpurkar et al. 2016). The structure contains a
context-query attention layer, several model encoder layers
and an output layer. The structure is as shown in Figure 6.
Due to the space limitation, we only give a brief overview
about the context-query attention layer and model encoder
layer, all other details can refer to (Yu et al. 2018).

Context-Query Attention
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Figure 6: Structure of the Answer Generation Module M2

Context-Query Attention Layer This is a standard mod-
ule in many earlier reading comprehension models (Weis-
senborn, Wiese, and Seiffe 2017; Chen et al. 2017; Yu et al.
2018). Assuming that the encoded context and question em-
beddings are Di and Q. The context-query attention is com-
puted by using the similarity matrix S̄ generated from each
pair of context and query words by using their normalized
similarities (after applying a softmax layer to each row of
their original similarity matrix S). The context-to-query at-
tentionA can be computed asA = S̄ ·QT , and the similarity
function is a trilinear function:

f(q, d) = W0[q, d, q � d] (5)

where q is the word token in question Q, and d is the word
token in current context Di, � is the element-wise multipli-
cation and W0 is a trainable variable.

Similarly, by applying the softmax layer to each column
of their original similarity matrix S, we can obtain a column
normalized similarity matrix ¯̄S. The query to context atten-
tion can be computed as B = S̄ · ¯̄ST ·DT

i .

Model Encoder Layer Here we follow the structure of
model encoder layer designed in (Seo et al. 2016), where
the input of the model encoder layer at each position is:
[d, a, d�a, d�b], where a and b are a row of attention matrix
A and B. Similar to the embedding encoder for document
and question as given previously, the model encoder block
for answer generation also contains a convolutional layer, a
self-attention layer and a feedforward layer. There are three
repetitive encoder blocks which share the same weights be-
tween each other. The final outputs of the last layer of model
are the probabilities of the starting and ending positions, i.e.

pstart = softmax(W1[E0;E1])

pend = softmax(W2[E0;E2])
(6)

The final answer are the extracted tokens between the two
words with highest starting probability pmaxstart and ending
probability pmaxend . This generated answer is used to define
the reward r1, which will be further used to define our loss
function.
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Sub-context Selection Module M3

Besides the answer generation module (action a1), sentence
selection module (action a2), the last module corresponding
to the state after conducting action a3 is the sub-context se-
lection module, which is also used to take care of the cases
that the answerAi generated by the current documentDi has
a higher possibility as a false positive answer, hence should
be eliminated.

Once our action selection module choose action a3, the
sub-context selection module will be triggered. The system
firstly generate an answer Ai by calling the answer gener-
ation module (M2) based on current document context Di

at step i, then return a new document context D̂i by remov-
ing the answerAi and concatenating the sub-contexts before
and after Ai, i.e. D̂i = Di \Ai. This new document context
is fed back to the action selection module as the document
context in next round, that is Di+1 = D̂i.

Training
In this paper, we use the actor-critic based algorithm (Konda
and Tsitsiklis 2000; Peters and Schaal 2008) to build our
DRL model. Unlike the value based DRL approach like
DQN (Mnih et al. 2015) or policy based approach like pol-
icy gradient (Sutton et al. 2000), an actor-critic based model
has a better performance on continuous state space in terms
of convergence and stability. Due to the space limitation and
the focus of this paper, we will not spend too much time on
explaining the fundamental details of the actor-critic method
and only a brief overview is given.

Actor-Critic In actor-critic based RL algorithm, two neu-
ral networks are used to model the actor and critic separately.
The actor model performs like the policy gradient method by
taking state st as its input and generating action probabilities
based on the policies: πθ(at|st). Comparatively, the critic
model is similar to a value based approach (like DQN ): af-
ter performing the actor model generated state at, the system
will reach a new state st+1, and the critic model can gener-
ate two values (i.e.expect rewards) vt and vt+1 by taking st
and st+1 as inputs. It is worth noticing that there are two loss
functions for training actor neural network and critic neural
network separately, which are defined as:

Lactor = − log πθ(at|st)(rt + γvt+1 − vt)
Lcritic = (rt + γvt+1 − vt)2

(7)

where γ is a discount factor in our DRL model. In their def-
initions, we can find that the actor network aims to maxi-
mize the expected rewards to be obtained, and the critic net-
work is minimize the temporal difference error due during
the stochastic learning process.

Remarks: Deep neural network (DNN) and Deep rein-
forcement learning (DRL) based algorithms has been widely
applied in a variety of applications in many sequential learn-
ing tasks, like: system identification (Narendra, Wang, and
Mukhopadhay 2016; Wang 2017), sequence tagging (Wang
et al. 2018), slot filling (Wang, Shen, and Jin 2018); other
NLP tasks like: conference resoluton (Clark and Manning
2016), information extractionand (Narasimhan, Yala, and

Barzilay 2016), semantic parsing (Andreas et al. 2016)
and text games (Narasimhan, Kulkarni, and Barzilay 2015).
There are also many approaches to boost their performance,
like: adaptive boosting(Rätsch, Onoda, and Müller 2001;
Hastie et al. 2009) and multiple models (Wang and Jin
2018; Narendra, Mukhopadyhay, and Wang 2015; Narendra,
Wang, and Chen 2014). In our algorithm, we only use a rela-
tive standard actor-critic DRL algorithm as the stress of this
paper is on the novelty of its application on a QA problem
instead of a new DRL algorithm.

Experiment
Datasets
We conduct our experiment on four QA datasets which for
machine comprehension based QA tasks: WIKIREADING,
WIKIREADING LONG, CNN, and SQuAD1.1.

WIKIREADING (Hewlett et al. 2016) is a public question
answering dataset generated from Wikidata and Wikipedia.
It consolidated all Wikidata statements with the same item
and property into a single (item, property, answer) triple,
where answer is a set of values. Replacing each item with
the text of the linked Wikipedia article (discarding unlinked
items) yields a dataset of 18.58M (document, property, an-
swer) instances.

In order to compare fairly to our baseline models and
demonstrate system’s performance on long documents, we
perform the same operation on the WIKIREADING datasets
as in (Choi et al. 2017) to generate the WIKIREADING
LONG dataset. From the WIKIREADING dataset, docu-
ments with less than ten sentences are filtered, and only the
Wikidata properties for which (Hewlett et al. 2016)’s best
model obtains an accuracy of less than 60 % are considered.
This prunes out some properties such as GIVEN NAME,
INSTANCE OF and GENDER. The resulting WIKIREAD-
ING LONG dataset contains 1.97M instances (i.e. (docu-
ment, property, answer) pairs), and only 31% of the answers
are in the first sentence.

CNN is a question answering dataset containing news sto-
ries with associated queries collected from the CNN web-
sites starting from April 2007 till April 2015. There are a
total of 90,266 documents associated with more than 380k
queries in the training dataset, and 1093 documents with
more than 3k associated questions in test dataset. Each docu-
ment companies on average 4 questions approximately. Each
question is a sentence with one missing word/phrase which
can be found from the accompanying document/context. It is
a commonly used dataset to test the performance of models
for machine comprehension based QA tasks.

Stanford Question Answering Dataset (SQuAD) is an-
other well-known reading comprehension dataset, consist-
ing of questions posed by crowdworkers on a set of
Wikipedia articles, where the answer to every question is
a segment of text, or span, from the corresponding reading
passage. SQuAD contrains 107,785 question-answer pairs
on 536 articles. Currently, there are two versions of SQuAD
datasets: v1.1 and v2.0. The main difference between these
two datasets is the SQuAD2.0 added a new category named
as ”unanswerable questions” to reject the questions which
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are not in the context and answerable. In order to fairly com-
pare with the baseline models which have never been tested
on v2.0 data, we use the SQuAD1.1 in our experiment.

On average, each document in WIKIREADING contains
490 tokens, the filtered WIKIREADING LONG contains
1.2k tokens, those in CNN contains 763 tokens, and SQuAD
only contains 122 tokens.

Table 1 shows a detailed statistics and comparison be-
tween these four datasets.

Table 1: Statistics of Different QA Datasets

Datasets
# of

documents
# of QA

pairs
# of

words/question
# of

tokens/doc.

WIKIREADING 4.7M 18.58M 2.35 489
WR-LONG 3.9M 1.97M 2.14 1.2K

CNN 92K 387K 12.5 763
SQuAD 536 107K 4.53 122

Experiment Setup
For the WIKIREADING (Hewlett et al. 2016) and
WIKIREADING-LONG (Choi et al. 2017) datasets, we use
the 70% of the data as the training dataset and 10% for
validation and 20% for test. For he CNN dataset, we fol-
low the original splits of the train, validation and test set,
where 90,266 documents for training, 1,220 documents for
validation and 1,093 documents for test. On the SQuAD1.1
(Rajpurkar et al. 2016)1, the results on the dev set is re-
ported for the purpose of comparison with one of our base-
line models, i.e. QANet, which is specifically designed for
the SQuAD1.1 datasetl

The word embedding and character embedding size are
300 and 200 for the input embedding layer to generate the
document and question embeddings as in Figure 3, the out-
put size of the embedding encoder layer is set as 128 . The
filter size of the convolutional neural network in the embed-
ding encoder layer, the model encoder layer are set as 128
and and that in the sentence selection module is set as 100.
The CNN kernel size is set as 7 for the embedding encoder
layer and the model encoder layer, and set as 5 for the CNN
network in sentence selection module.

For the actor-critic model to generate the corresponding
actions, we use two Gated Recurrent Units (GRU) neural
networks (Chung et al. 2014) to model the actor and critic
separately. Both of the models take the current state st, i.e.
the concatenation of current document Di and question Q
as their inputs. The actor GRU generates three action prob-
abilities, and the critic GRU generates an expected reward
value based on the given input. The GRU state cells is cho-
sen as 512 for both networks, and the learning rate is 0.0001.
The discounted factor in defining loss functions L1 and L2

is chosen as γ = 0.9. AdaDelta (Zeiler 2012) optimizer is
selected to smooth the convergence of gradient during train-
ing.

1The SQuAD1.1’s test portal is replaced by SQuAD2.0 cur-
rently, hence we test our model on the dev dataset in SQuAD1.1
to compare with our baseline models which only have public re-
sults on SQuAD1.1

Evaluation Metrics
The main evaluation metric of our experiment is the exact
match (EM) accuracy, the proportion of predicted answers
match exactly to their ground truth. During the training, if
the system choose action a1, our system triggers the termi-
nal state-answer generation module and obtain a predicted
answer. If the system choose action a2 and a3, the system
will loop back the selected sentences Ds or the sub-context
Dc, and use it as the document context Di+1 for the action
selector in next step. To constrain the training and evaluation
time, up to K = 5 action steps is allowed for each question-
document pair. If the system still doesn’t select the action to
trigger the answer generation module (M2) after 5 rounds,
we will force the system to call theM2 module and generate
an answer based on the extracted document contextD5, then
evaluate on this answer.

Model and Baselines
Two baseline models are used to compare with our system
as shown below:

Baseline model 1: The first baseline we choose is a re-
implementation of the coarse-to-fine model by (Choi et al.
2017). In this work, the author uses the sentence selector
as a coarse selector, and generate the answer based on the
selected sentences. The sentence selector is the same as our
moduleM1, and the answer generator model is a GRU based
sequence to sequence model as described in (Choi et al.
2017). Since in our model, we also use sentence selector as
one of the three states, it is necessary to compare our model
with this model to demonstrate the need of an action selec-
tor and other two states. When re-implementing this base-
line model, we use the convolutional neural network model
as its sentence selection model, and hard attention for the
document summary. The predefined number of selected sen-
tences is K = 5.

Baseline model 2: The second baseline we choose is the
QANet given by (Yu et al. 2018), which also gives strong
performance on the SQuAD dataset. Since our answer gen-
erator model follows the structure of QANet, it is also nec-
essary to compare our model with this baseline model for
all datasets. When re-implementing this baseline model, we
choose the number of convolutional layer in embedding en-
coder layer as 1 and don’t use any data augmentation for
training.

ORACLE: This model select the sentence containing
the answer string (coarse) and generate the answer using
QANet.

Answer Accuracy Results
Table 2 gives an accuracy comparison between the baseline
models and our proposed model. To demonstrate the impor-
tance of learning to reject the false-positive answers, we also
build another comparative model without action a3 and the
sub-context selection module, named as MSCQA (w/o sub-
context). All the other model hyper-parameters are the same
as MSCQA. From Table 2, several experiment observations
are obtained:
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Table 2: Answer prediction accuracy on the test set (dev set
for SQuAD1.1)

Datasets Models Accuracy (%)

Base Model 1 (K=5) 73.9
Base Model 2 74.1

WIKIREADING Oracle 74.6
MSCQA 75.8

MSCQA (w/o
sub-context)

74.3

Base Model 1 (K=5) 42.3
Base Model 2 39.5

WR-LONG Oracle 43.9
MSCQA 43.6

MSCQA (w/o
sub-context)

42.8

Base Model 1 (K=5) 75.8
Base Model 2 72.4

CNN Oracle 78.8
MSCQA 77.6

MSCQA (w/o
sub-context)

76.3

Base Model 1 75.2 (dev)
Base Model 2 82.9 (dev)

SQuAD Oracle 86.2 (dev)
MSCQA 83.6 (dev)

MSCQA (w/o
sub-context)

80.5 (dev)

1. It can be observed that our MSCQA performs better
than all other baseline models on four QA datasets includ-
ing both long and short documents. One reason is because
that the model can efficiently choose the correct actions to
perform by considering the length of the document. The pro-
portions of choosing different actions on four datasets are
given in Table 4.

2. The MSCQA model performs better than MSCQA
without sub-context on all datasets, which shows that impor-
tance of removing the false-positive answers using another
action a3.

3. Base model 1 has relative better performance on long
documents ( WR-LONG, CNN) compared to base model 2,
and worse performance on shorter documents (WIKIREAD-
ING, SQuAD). The MSCQA model can handle both cases
well by taking the advantages from two baseline models

Speed Comparison

We further compare the training speed with two baseline
models on four datasets. The results are shown as in Table 3.

From Table 3, it shows that the MSCQA model im-
prove the training speed by 1.5x-3.4x compared to the base-
line models. It is worth noticing that the baseline models
are among the fastest QA models on WIKIREADING and
SQuAD datasets. The speed-ups are mainly from the im-
provement on the model’s efficiency by choosing appropri-
ate actions based on documents’ lengths.

Table 3: Comparison of Training Speed on Different
Datasets

Datasets Models Training
Speed(samples/sec)

Base Model 1 112
WIKIREADING Base Model 2 89

MSCQA 186

Base Model 1 66
WR-LONG Base Model 2 38

MSCQA 129

Base Model 1 83
CNN Base Model 2 67

MSCQA 173

Base Model 1 146
SQuAD Base Model 2 102

MSCQA 213

Table 4: Proportions of Three Actions

Datasets Choosing a1 (%) Choosing a2 (%) Choosing a3 (%)

WIKIREADING 67 22 11
WR-LONG 48 39 13

CNN 55 26 19
SQuAD 76 8 16

Evaluation on Action Selector
To further evaluate how well the DRL based action selec-
tor performs in our MSCQA model structure, we show the
statistics of proportions of three different actions chose by
our system during test in Table 4 . These numbers are calcu-
lated based as:

pai =
# of times choosing action ai∑
# of actions selected at all steps

(8)

Based on the statistics given in Table 4, one can conclude
that:

1. When the datasets contain more longer documents, the
system tend to select action a2 in order to firstly select sen-
tences in a coarse manner.

2. When the datasets contain more shorter documents, the
system tend to select action a1 in order to answer the ques-
tion directly without coarsely select some sentences.

In order to better understand the DRL action selector’s be-
havior, we use Table 5 to show the average number of steps
performed during training and test/dev on each dataset.

It can be observed that, datatsets containing more long
documents with higher average tokens per document tend to
have more average action steps. By combining Table 4 and 5,
it is shown that the multi-step DRL structure with multiple
actions is useful for our model to choose a more suitable
module to perform, in order to get a better performance.

Conclusion
In this paper, we present a multi-step coarse to fine ques-
tion answering (MSCQA) system which can efficiently pro-
cess both long and short documents by choosing appropriate
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Table 5: Number of Action Steps on Different Datasets

Datasets
Avg. steps on training

dataset (≤ 5)
Avg. Steps on test/

dev dataset

WIKIREADING 2.9 3.0
WR-LONG 3.8 3.9

CNN 3.3 3.2
SQuAD 1.8 1.9 (dev)

actions. The system shows decent results on four different
QA datasets in terms of accuracy and training speed. It also
gives a new concept of using DRL model to guide a multi-
step QA reasoning process, which is more close to human-
being’s judgment behavior. In the future, we would like to
investigate more on refining the design of system by adding
more possible actions and states, such that the system can
behave even smarter and faster.
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