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Abstract

Ci is a lyric poetry form that follows highly restrictive met-
rical structures. This makes it challenging for a computer
to compose Ci subject to a specified metrical requirement.
In this work, we adapt the CVAE framework to automated
Ci generation under metrical constraints. Specifically, we
present the first neural model that explicitly encodes the des-
ignated metrical structure for Ci generation. The proposed
model is shown experimentally to generate Ci with nearly
perfect metrical structures.

Introduction

The revival of neural networks, under the new paradigm
of deep learning, is impacting many areas of natural lan-
guage processing. In particular, the generation of natural
languages, such as dialogue generation(Moore and Moore
1995), document summarization(Fattah and Ren 2008), ma-
chine translation(Bhattacharyya 2015), and poetry genera-
tion, has benefited greatly from the methodology of deep
learning. Common to these tasks, the deep model must learn
a distributed representation of semantics, and be able to map
between the semantic representation and a sequence of dis-
crete tokens, i.e., words or characters.

Among these language generation tasks, poetry gener-
ation has unique characteristics. That is, not only having
implied semantics, poetry is often associated with metri-
cal structures, which specify certain “sounding” rules that
a poem must follow. Thus the problem of poetry generation
is not only challenged by the need of learning a semantic
representation, it is also complicated by the metrical rules
to which it must conform. It is worth noting that rule-based
learning classically belongs to the symbolist regime of Al in
which rules are usually expressed by certain logical formu-
las or via some formal language. Neural networks and dis-
tributed representations however belong to the connectionist
regime of Al, which has been largely disconnected from the
symbolist methodology. Thus generating poetry subject to
metrical regulation is a perfect example for studying how
the two worlds may be combined in a common framework.
This has been the motivation behind this work.

*First three authors have equal contribution. Corresponding au-
thor: yymao@eecs.uottawa.ca
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In this work, we consider the problem of generating Ci,
an ancient Chinese poetry form, subject to their metrical re-
quirements. Comparing with many other genres of poetry,
Ci has highly restrictive metrical structures. Specifically, the
metrical structure of a Ci is specified by Cipai. There are
more than 800 Cipai’s in the Ci poetry, each specifying at
least three kinds of rules: a rhythmic rule, a tonal rule and
a rhyming rule. The rhythmic rule dictates the number of
lines in the Ci and the varying number of characters in each
line, the tonal rule prescribes the tones with which charac-
ters at given locations must be pronounced, and the thyming
rule regulates the rhyming pattern. Every Ci must be written
for one of these Cipai’s and is then subject to the restriction
imposed by these metrical rules.

There has been a rich body of literature on automated
poetry generation, for example, (Yi, Li, and Sun 2017;
Nong 2017; Zhang et al. 2017; Wang et al. 2016b; 2016a;
Feigenbaum 2003; Yan 2016; Zhang and Lapata 2014; Yang
et al. 2017; Ghazvininejad et al. 2016; Oliveira et al. 2014;
Rashel and Manurung 2014). These existing methods can
be divided into “template-based” approaches and “learning-
based” approaches. The template-based approaches, such as
(Oliveira 2012; Oliveira et al. 2014; Rashel and Manurung
2014), usually involve designing a set of templates and cer-
tain scoring functions, in a process often requiring a sig-
nificant amount of intervention from human experts. The
templates are then used to generate a set of candidate po-
ems, which are further evaluated by the scoring function.
The candidates poem with top scores are then returned as
the output. The learning-based approaches, such as (Yi, Li,
and Sun 2017; Zhang et al. 2017; Wang et al. 2016b; 2016a;
Yan 2016; Zhang and Lapata 2014; Yang et al. 2017), on the
other hand, rely on designing a probabilistic or neural net-
work model and training the model on a large poetry corpus.
The trained models are then used to generate poems.

In general, the template-based approaches are capable of
explicitly importing the metrical rules in the design of tem-
plates, but the quality of the generated poems are highly de-
pendent of the poetry expertise of the designer. The learning-
based approaches on the other hand aim at “learning” the
poetry expertise from the corpus automatically and rely less
on human experts. However, they largely ignore the known
metrical structure of the poetry and hope that the model can
be sufficiently expressive and learnable to extract the met-



rical rules. To what extent this is possible is questionable,
since it not only depends on the capacity of the model but
also requires a sufficient amount of training data. This issue
is arguably further magnified if the poetry to be generated
has highly restrictive metrical structures, such as Ci.

With the learning-based perspectives, the philosophy of
this work is to directly encode the known metrical structures
of Ci into neural networks. In this paper, we show that the
Conditional Variational Auto-Encoder (CVAE) framework
(Sohn, Lee, and Yan 2015) can be naturally adapted to gen-
erating Ci with a designated Cipai. Specifically, we present
the Metrically Restricted Ci Generation (MRCG) model us-
ing this framework. In this model, the metrical structure dic-
tated by a Cipai is explicitly encoded and supplied to the
CVAE model as the “condition”. Through experiments, we
demonstrate that the MRCG model is capable of generating
excellent metrical structure required by the Cipai. Our re-
sults also suggest that rules and prior knowledge can be in-
tegrated into a neural network model, and that a unification
of the connectionist and symbolist regimes in the construc-
tion of learning systems can be made possible.

Ci and Their Metrical Structures

Ci, also known as Shiyu or Changduanju, is a lyric poetry
form in ancient Chinese poetry. Although having its root in
much earlier ancient Chinese poetry, such as Shijing (about
500 BC), Ci was known to flourish in the Tang Dynasty
(618-907 AD). It was further developed and reached its pin-
nacle in the Song Dynasty (960-1279 AD). Ci of the Song
Dynasty is widely recognized as one of the highest achieve-
ments in the classical Chinese literature.

Historically, Ci were written as song lyrics for a set of
popular tunes. For this reason, each such tune, called a Cipai,
regulates strictly a unique metrical pattern which the Ci must
follow. To date, over 800 Cipai’s have been used to compose
Ci, where every Cipai prescribes a metrical pattern by simul-
taneously insisting at least the three kinds of rules below.
Rhythmic Rule. In general, the number of characters in each
line (i.e. sentence or clause) and the number of lines may
vary. The rhythmic rule of a Cipai specifies strictly the
length of each line in the Ci and the total length of the Ci.
Depending on the Cipai, the number of characters in a Ci
can range from tens to about a hundred, and the number of
lines in a Ci can range from a few to tens.

Tonal Rule. The ancient Chinese language, particularly dur-
ing the Tang and Song Dynasties, uses five different tones.
Every character was pronounced in one the five tones. The
five tones are further classified into two categories, known as
Ping and Ze'. The tonal rule of a Cipai dictates the Ping/Ze
pattern of the Ci. More specifically, for most character loca-
tions in the Ci, the tonal rule specifies whether the location
must be filled with a character having the Ping tone or filled
with a character having the Ze tone. In other character loca-
tions, the tonal rule insists no tonal constraint, namely, the

"Modern Chinese only uses four tones with one of the ancient
tone lost. But the classification of modern Chinese characters into
the Ping and Ze classes largely remains the same as that in ancient
Chinese.
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location can be filled with a character having any tone.
Rhyming Rule. Unlike the European languages, in which the
fundamental pronunciation units are consonants and vow-
els, the fundamental units in Chinese pronunciation are ini-
tials, and finals. For the purpose of this paper, there is no
harm to interpret initials simply as the Chinese-equivalent
of consonants and finals as the Chinese-equivalent of vow-
els. A syllable in Chinese (particularly Mandarin) can be
most naturally pronounced by pronouncing an initial imme-
diately followed by a final. Almost all Chinese characters
are pronounced in a single syllable. In Ci, lines that have
their ending characters pronounced with the same final are
said to rhyme with each other, and each of the ending char-
acters is called a rhyming foot. In the lines that thyme, the
common final pronounced in the rhyming feet is referred to
as the Yunshe. Not only between consecutive sentences, in
Ci, rhyming is also allowed between lines that are one or a
few lines apart. A group of consecutive lines that rhyme on
the same Yunshe (allowing non-rhyming lines within) may
be referred to as a rhyming group. In some case, all lines in
a Ci form a single rhyming group; in other cases, a Ci may
be partitioned into a few rhyming groups, each rhyming on a
different Yunshe. The rhyming rule of a Cipai may also spec-
ify the partition of the lines in the Ci into rhyming groups,
and in each group, which lines must rhyme. What Yunshe to
use in each rhyming group is not enforced by the rthyming
rule. According to the ancient Chinese pronunciation, there
are in total 16 finals, and hence 16 Yunshe’s.

We note that beyond these three kinds of rules, there are
additional miscellaneous and often subtle metrical require-
ments that a Ci must satisfy. Vary with Cipai, those finer
metric prescriptions are ignored in this paper.

Comparing with other poetry forms, such as the Qiyan
and Wuyan in Chinese poetry, Haiku in Japanese poetry, or
Couplets and Fourteeners in English poetry, the highly re-
strictive metrical structure dictated by a Cipai arguably im-
poses greater difficulties in the composition of Ci.

Applying the CVAE Framework

Let ¢ = (s1,892,...,81) be a Ci with L lines, where line
[ is denoted by s;. In particular, each s; is a sequence of
N(I) words (wy,1,wy 2, . .., w; nqy)- Let r denote the Cipai
regulating the metrical structure of c. We will postpone to a
later section the precise form of . Throughout the paper, we
use a lower-cased letter, e.g. ¢, to express the realization of
a random variable, and the random variable itself is denoted
by its corresponding upper-cased letter, e.g., C'.

A natural probability model for ¢ with a designated Cipai
r is given below.

(1)

where Z is a latent semantic representation of Ci C. Note
that in (1), we assume that the Ci C' depends on its latent se-
mantics Z and its metrical structure R jointly. Additionally,
it is assumed that Z does not depend on the Cipai RR. This
latter assumption is justified since for each Cipai, Ci having
arbitrary semantics can be written, and the metrical structure
insisted by a Cipai imposes no semantic restrictions.

peir(dr) == / peirz(elr, 2)pz(2)dz,



Cipai: fzitdé (YiJiang Nan)

Rhythmic Rule: | 3 characters, 5 characters. 7 characters , 7 characters o 5 characters?
Ci: EE, RFAYHE. Akinigapk, SARioKEeE. ERliog?
Tonal Rule: 0+-, 0- -4+ 4+, 0-0++_--, 0++_- _++,0--++7
Rhyming Rule: e -y e = - Xa = = =& — g 4 = - 2 . Xa - - --x17
Translation: | Fair Southern shore, with scenes [ adore. At sunrise riverside flowers redder than fire. In spring green
waves grow as blue as sapphire. Which I cannot but admire.

Figure 1: An example of Ci “Yi Jiang Nan”, with translation taken from (Yuanchong 2005)

Figure 2: Context embedding and generation of latent se-
mantic representation in the encoder. Round-corner box: the
function GRUY(+). Circle: the function concat(-).

Wi4 W3 -~ W2 -« Wi <« GO
¢ 4 4 t
[sofonas ] [sofms ] [sofmes | [sofonas ]
%) : 0) : D) : 0)
1,4 1,3 T2 1,1 2]

Figure 3: Generating line s; in the decoder. Round-corner
box: the function GRU(:). Circle: the function concat(-).

We note that the term semantics in this paper refers to the
meaning of a Ci in a broad sense. It may include the literal
meaning, connotation, mood, sentiment, emotion, impres-
sion, imagery, conception or any other aspects of semantics.

The integration in (1) makes it in general intractable to
learn such a model through log-likelihood. In the CVAE
framework(Sohn, Lee, and Yan 2015), the log-likelihood in
(1) is bounded by the following variational lower bound, for
any arbitrary conditional distribution qz|cg:

log por(clr) > — KL(gzjcr( le,7)||pz)+
]EZN‘IZ\CR {long\RZ(dTa 2)}
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Similar to an earlier argument, we assume that the seman-
tic representation Z is independent of the metrical structure
R given Ci C. Thus the qz|cr reduces to gz|c. Usually
Pc|rz 1s called the decoder, and we will use © to denote
its parameters; gz|c is called the encoder, and we will use
® to denote its parameters. The prior distribution p in this
paper will take a fixed distribution.

Define the “KL loss” and the “reconstruction loss” by

ZKL(Q T (I))
Erec(ca 7‘; ("'), ¢)

KL(qz|cr(|e,7)|lpz)
_]EZNQZ\CR {IngC'lRZ(C|T7 Z)} .

Let D denote a set of training examples, each being a pair
(¢, 7). Then the learning of model (1) can be solved by max-
imizing the variational lower bound or minimizing the loss
function

L(O,®) := Z {lxr(c,r; @) + lrec(c, 7,0, @)}

(¢,r)€D

2

We note that this framework is in general applicable to
generating any form of poetry beyond Ci. We now present a
model specific for Ci generation.

Proposed MRCG Model

We will use NV (z; i, k) to denote a multi-variate Gaussian
density function (in variable =) with mean vector p and co-
variance matrix . The processing in a GRU network(Chung
et al. 2014) is denoted by function GRUY(-), namely, the
state h; in the GRU is updated by

ht = GRU(ht_l, CCt)

where x; denotes the input of the GRU at time ¢. We also call
the dimension of h; the dimension of the GRU. For the exact
composition of the function GRU(:), the reader is referred
to (Chung et al. 2014). Unless otherwise stated, the initial
state of every GRU used in this paper is set to be the all-zero
vector by default.

We use MLP(-) to denote a function that maps an in-
put vector to an output vector via a multi-layer percep-
tron network. The notation concat(-) refers to the opera-
tion that concatenates two vectors into a single vector. Nota-
tion softmax(-) refers to the standard soft-max transform



(Nasrabadi 2007) converting a score vector into a probability
vector having the same length.

For a Ci ¢ (s1,82...,81) containing L lines, we
let its latent semantic representation z take the form z :=
(21,22,...,21), where each z is a vector in R¥, corre-
sponding to the line s;. The prior distribution pz is chosen
such that each Z; is independently distributed according to
N (21;0,1) on RE. Here I denotes the identity matrix.

Encoder Model

Following a similar architecture as in (Serban et al. 2016),
the proposed encoder successively encodes the Ci c into
three levels of representations, i.e. character embeddings,
line embeddings, and context embeddings (Figure. 2). The
latent semantic representation is then generated. We now
give a precise description of the encoder.

Character Embedding Let V denote the vocabulary of all
characters. Each character in V can then be identified with
a one-hot vector in RIVI. Let D be a K x |V| matrix. The
character embedding w;,; of the 5" character w; ; in the [*P
line is then a K¥-dimensional vector constructed by

wy ;= le,j

3

Line Embedding The embedding 5; of line s; is a vector
constructed by passing the embeddings of the characters in
s; as the input sequence to a GRU network. More specifi-
cally, let hj, be the state variable of the GRU network that

encodes line /. The computation of the state hj, is via

1= GRU(h?,jfl,@l,j). “)

We then take the final state of the GRU network as the
embedding s; for line s;, namely,

§; = h’?,N(l) (5)

The dimension of the GRU is denoted by K*® and it pa-
rameters are denoted by ®S.
Context Embedding For each s;, a vector u; with dimen-
sion K", referred to as the context embedding of s, is con-
structed. These embeddings are constructed using a stacked
two-layer GRU network. Both layers of the network have

dimension K. The states h}l’l of the first layer is updated
by
ht = GRU(h, ) (©6)

These states are then fed into the second layer as input,
but in reverse order. The state h?’z of the second layer is
computed recursively by

W= GRU(B2, BYE, ) ™

The states of the second layer are taken as context embed-
dings, i.e., the context embedding of s; is

®)

Latent Semantic Representation Overall the encoder
model gz|¢ takes the following form.

w2
w=hp7

7462

L

qzic(21, 22, ..., 2L|c) = HQZl|C’Zl,1(Zl|Ca z1-1), )
=1

where zg is set to the all-zero vector in R¥. Each q4z1c 21
in (9) is defined as the

azicz (2l zi-1) = N(z; i, diag(a7)) (10)
where both y; and olz are vectors in R and are computed
from u; and 2;_; using an MLP:

concat (i, log o7) := MLP(concat(u;, z_1)). (11)

The MLP is structured to contain one hidden layer with
PReLu activation(He et al. 2015) and one linearly-activated
output layer.

Decoder Model

We will use 7 := {+, —, *} to denote the set of possible
tones. Here + and — denote Ping and Ze respectively and
* denotes “NO SOUND”, namely, the tone for the punctu-
ation marks, the unknown or rare ancient characters whose
tone can not be determined. Thus the one-hot vectors in R?,
referred to as the fone vectors, can be used to represent all
three considered tones. For any character w, we will use
a(w) to denote its tone vector.

Similarly, recalling that there are 16 Yunshe’s, we will
use YV := {1,2,...,16,*} to denote the set of all possible
Yunshe’s, where the symbol * also refers to “NO SOUND”.
Thus, the one-hot vectors in R'7, called the Yunshe vectors,
can be used to represent all 17 considered Yunshe’s. We use
b(w) to denote Yunshe vector of character w.

We note that a(w) (resp. b(w)) can be regarded as a prob-

ability vector which puts probability one on one of the tones
(resp. on one of the Yunshe’s).
Encoding Metrical Structure For a given Cipai r which
prescribes a Ci to have L lines, we represent it as a
sequence (r1,79,...,71). Here r; specifies the metrical
structure for line s;. In addition, r; is as a sequence
(ri,1,7m1,25- -5 7,N(y)» Where 1y ; specifies the rule that
character w; ; must follow. We now explain r; ; and its en-
coding.

First we construct a tone-rule vector a; j, which is vector
in R? representing a distribution over the set 7 of all pos-
sible tones. Specifically, if r; ; specifies that w; ; must take
tone “+” (resp. “—"), then a,_; is the one-hot vector for “+4”
(resp. for “~"). If 7 ; specifies that w; ; must be a punctua-
tion mark, then @, ; is the one-hot vector for “x”. If r;_; does
not specify the tone of w; ;, then @, ; is the vector [.5, .5, 07,
which puts probability 0.5 on “+” and “—", and puts proba-

TL

bility O on “x”.
We will also need to construct a rhyme-rule vector by ;,

which is a vector in R'” representing a distribution over the
set Y of all possible Yunshe’s.



If r; ; suggests that wy ; is a character (i.e., not a punctua-

tion mark) and not a thyming foot, b; ; is taken as the empir-
ical distribution, say, p, over the 16 Yunshe’s in the dataset.
2

If r; ; suggests that wy ; is a punctuation mark, then E, jis

taken as the one-hot vector for “+”.
If r; ; dictates that w; ; is a rhyming foot in a rhyming

group, then b; ; need to be specified with the rhyme-rule
vectors Fl;lg j+’s for all other rhyming feet wy/ ;-’s in the same
rhyming group. In this case, for this rhyming group, a ran-
dom Yunshe Y is drawn from p, and the rhyme-rule vector
is set to the one-hot vector for Y.

With q; ; and b; ; constructed, we can then construct r; ;
as a vector in R?9, defined as

Ty = concat(’dl,j,glyj). (12)

We note that although this scheme of constructing r; ; en-
tails no difficulty in testing (i.e., generating Ci), it does re-
sult in high complexity (due to sampling in the construction
of by ;). To resolve this issue, we actually take advantage
of the fact the Ci is available at the training time and take

a;; = a(wy,;) and by j = b(w; ;) during training.

We note that although @; ; and b, ; are designed for encod-
ing the tonal and rhyming rules, they also encode the rhyth-
mic rule. This is because @; ; and b; ; also contains indicators
for “NO SOUND”. With the model properly learned, these
indicators force the punctuation marks to arise at the correct
locations and impose the correct rhythmic parsing.
Generating Ci Overall the decoder model p¢| gz (Figure. 3)
is assumed to take the form

L

pC|RZ(C|r> Z) = Hpslmlz, (Sl|7"l, Zl)~
=1

(13)
Further each pg, | g, z, (1|1, 21) factors as

N (1)

psirz s 2) = [ pwiyiwe oo mez (wiglwn 1,1, )
j=1
(14)

The model for pw, ;|w, ;_, r, 7 is constructed via another
GRU network. Specifically, we let the initial state ), of the
network be obtained by

1o = MLP(2) (15)
Let the state /)", of the GRU be computed by
1= GRU(hz’i’j_l,concat(leyj_l,rl,j)) (16)

“When using the trained MRCG to generate a Ci, we find it

is beneficial to make the Bl,j “peakier”. Then we actually draw M
samples from p and use the empirical distribution of the M samples

as by ;.
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where w; g is the special token character “GO” in the charac-
ter vocabulary V. We will denote the dimension of this GRU
by KV

Let V be a [V| x K“ matrix. The distribution
PW,;|Wy ;1 R, z, 18 then computed, as a vector, by

a7

At this end, our MRCG model is completely specified via
Equations (2) to (17).

PW, Wi, 1 Rz, -= softmax(Vh';).

Training
Mini-batched Stochastic Gradient Descent (SGD) can be
used to minimize the loss function in (2). Specifically the
“reparametrization trick” (Kingma and Welling 2013) is
used to generate the latent semantic representations, as is
standard.

It is observed in the literature that training of CVAE or
VAE model may suffer from the issue of “KL vanishing”
(namely, that the KL loss tends to zero) when the decoder
has high capacity(Bowman et al. 2015). We adopt the KL
clamping approach presented in (Kingma et al. 2016) to re-
solve this issue, where when the KL loss is below a pre-
scribed threshold, it is clamped to the threshold and no
longer decreased with SGD.

Experimental Study

We now study the performance of the proposed MRCG
model. Ideally we would like to compare MRCG with some
recent art in Ci generation. It is unfortunate however that the
papers presenting those models do not include sufficient im-
plementation details, nor did the authors make available their
source code. As such, we instead implement two baseline
models, one being a Seq2Seq model (Sutskever, Vinyals, and
Le 2014) and the other being an attention model(Bahdanau,
Cho, and Bengio 2014) for comparison. We note that these
baselines underlie most of the recent neural models for po-
etry generation and should be reasonably representative.

Datasets and experimental setup

There is no standard Ci corpus to date. We extract a dataset
from a Chinese poetry website(Yun 2017). The dataset con-
tains 82,724 Ci’s, written for 818 Cipai’s. The distribution
of the number Ci’s per Cipai roughly follows an exponential
distribution. Specifically, 95% of the corpus are contributed
by the most popular 314 Cipai’s, and the most popular 20
Cipai’s contribute to about 45% of the corpus. The average
number of lines per Ci is aboutl6. The number of characters
per line is about 7 on average. The dataset is split into the
training set and the testing set as follows. For each Cipai,
we randomly select 5% of its Ci’s to assemble the testing
set. For the Cipai’s having less than 20 Ci’s, they are not in-
cluded in the testing set. In total, we have 3,797 Ci’s in the
testing set and 78,927 in the training set.

In our implementation of MRCG, we choose the latent
semantic dimension K = 64. Other dimensions are chosen
as K% = K% = K° = 128, and K" = 256.

We also implemented a reduced version of MRCG, which
we refer to as MRCG™, with the same hyper-parameter



settings. The difference between MRCG™~ and MRCG is
that in MRCG™ the metrical information is completely re-
moved.

Both the Seq2Seq model and the attention model are built
using the tensorflow NMT tool (Luong, Brevdo, and Zhao
2017). In both baselines, bi-directional GRU layers are used
in the encoder, and single-directional GRU layers is used as
the decoder. In order to compensate for the structural dis-
advantages of these baselines relative to MRCG, we used
multiple such layers in the encoder and decoder so that the
resulting model has a similar number of parameters to that
of MRCG.

We remark that the MRCG model and the two baselines
differ in a fundamental way. That is, MRCG is a model con-
ditioned on a designated Cipai, whereas the two baselines
are models conditioned on a Ci. The objective of MRCG is
to generate a Ci complying with the Cipai’s requirement,
whereas the objective of the baselines is to reproduce the Ci
that is input to the model. For this reason, we design two test
protocols.

Blind Generating. This test is only for MRCG and MRCG ™.
In this test, a random Cipai is passed to the model as input,
and a latent semantic representation is drawn from the prior
pz to generate an output Ci.

Guided Generating. This test applies to all compared mod-
els. For the baselines, they take a random input Ci from the
testing set as input and attempt to reproduce it at the output.
For MRCG and MRCG™, they take as input the same ran-
dom Ci and its Cipai. The latent semantic representation is
drawn from the approximating posterior gz|cr, Which de-
pends on both inputs.

For both tests, beam search is used to generate Ci from
the model’s predictive distribution.

Metrical Performance

We use three metrics to quantify how well a generated Ci
meets the Cipai requirement.

Length Accuracy. Given a Ci to be evaluated, we compare
the length of each line with that specified by the rhythmic
rule of the Cipai. The length correctness of the Ci is then
defined as the percentage of lines in the Ci that have the
correct length. The length accuracy is the average of length
correctness over all generated Ci’s.

Tone Accuracy. Given a generated Ci and for each character
within, we check if the tone of the generated character satis-
fies what is dictated by the tonal rule of the Cipai. The fone
correctness of the Ci is then defined as the percentage of the
characters in the Ci that have the correct tone. The fone ac-
curacy is the average of tone correctness over all generated
Ci’s.

Rhyme Accuracy. Given a generated Ci and for each rhyming
group within, the rhyme correctness of the rhyming group is
defined as the fraction of rhyming foot locations that have
the correct Yunshe. Specifically, the correct Yunshe is taken
as the majority Yunshe in the thyming group. The rhyme ac-
curacy is the average of thyme correctness over all thyming
groups in a Ci and then further averaged over all generated
Ci’s.
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Table 1: Metrical Performances
Blind Generation Guided Generation

Model Length Tone| Rhymel Lengthl Tone| Rhyme
Seq2seq - - - 27.1 | 55.0f 29.8
Attn - - - 282 | 56.3| 26.7
MRCG™| 35.49| 59.43 33.34| 41.96| 66.21| 39.77
MRCG | 99.21| 92.03 96.87| 99.37| 93.71] 98.28

Table 1 shows the metrical performances of the compared
models under the three metrics. Note in the table, MRCG,
under either guided or blind generation, demonstrates excel-
lent accuracy scores, outperforming the baselines by a huge
margin. This validates the effectiveness of MRCG in follow-
ing the designated metrical structure. It also suggests that
without explicitly designing the model to handle Cipai re-
quirements as in the baselines, it is much more difficult for
the model to learn the metrical rules. This is at least the case
when the training data isn’t abundant.

MRCG shows a tonal accuracy slightly inferior to its other
two metrical performances. We believe that this is due to
polyphones in Chinese. In Chinese some characters have
multiple pronunciations, and hence multiple tones. In our
dataset, we set the tone of each character to its most popu-
lar one. This introduces training noise, thereby reducing the
tone accuracy. It is worth noting however that in Chinese,
a character having multiple pronunciations usually has the
same Yunshe across its different pronunciations. This is the
reason that the rhyme accuracy is not affected as much. We
expect that carefully looking after polyphones in the training
data will improve the tonal accuracy.

Semantic Performance

Although the main focus of this work is to integrate known
metrical structure in the generation of Ci, it is important that
such an integration does not result in deteriorated semantics.
To verify this, we carry out several semantic tests.

Absolute Semantics Test (AST). Following the approach of
(He, Zhou, and Jiang 2012; Jiang and Zhou 2008), this test
is conducted as follows. A random Ci is generated from a
model. For every two consecutive lines therein, say (51, 52),
we find from a Ci database Shixuehanying (Liu 1735) 10
lines that are the most similar to 5;. For each of these 10
lines, we collect its next line in the database into a set So,
then the BLEU score of Sy against Sy is computed. After
repeating this experiments, the average BLEU score is used
to evaluate the model.

Relative Semantics Test (RST). We devise this test to evalu-
ate, under guided generation, whether the outputs of a model
preserve the similarities and differences between its inputs.
Specifically, a pair of Ci’s (c1,c¢q) are drawn at random
from the testing set, both of which are used as an input to
the model. Let (¢1,¢2) be their respective outputs from the
model. We then compute the BLEU score S of ¢; against co

and the BLEU score S of ¢; against ¢;. After this experiment
is repeated many times, the Pearson Correlation Coefficient

between S and S is used to evaluate the model.



Cipai: %#48% (Chang Xiang Si)

Cipai: #-FF (QingPing Yue)

bmlpLk The pretty hairpin I wear HRAR Have you lost your mind
FRA With loneliness and boredom WE UL R Dreaming of Mr. Shen last night?
HHLER Y Tears drop on the moon-lit pillow RS s A Don’t pity the green grass withering in the wind of time
RRMIBAK Lightly drenching this night of autumn Ad#Fda A %A Tears like rain, you linger in the moonlight
L 33 Let my pen and ink REFIHE Sadness when you listen to an old song
A EH Run through the Dynasty of Jin SRS 5 Resonates with the raven, crying on the bridge
FREA YA In the dream of romance, let thousands of doves chirp 7 &R A Leave behind the pain of parting
T A Where on a leisureful balcony, | play on a swing iR fe s For an old memory, who would sacrifice youth, beautiful and shining?
Figure 4: Two example Ci’s generated by MRCG
. Nonetheless, our experiments suggest that Ci generated by
Taple 2 Semantics Test Results i MRCG still exhibits a visible gap from those written by hu-
Model Objective Tests Human Evaluation man writers.
AST | RST | Flu | The | Aes | All First, in some cases, certain implicit rhythmic rules are
Seq2Seq | 0.242 | 0.358 | 2.65 | 2.8 | 2.26 | 2.33 not obeyed in the generated Ci. For example, suppose that
Attn 0.221 | 0323 | 2.53 | 2.72 | 2.25 | 2.21 a particular line in some Cipai is to contain 5 characters
MRCG- | 0.235 | 0.541 | 2.38 | 2.41 | 2.34 | 2.26 in the format of (AB)(CD)(FE), where a pair of parenthe-
MRCG | 0.229 | 0.529 | 2.59 | 2.68 | 2.54 | 2.45 ses groups the characters forming a phrase. But occasion-

Human Evaluation. A total of 12 Human examiners are in-
vited to evaluate 25 Ci’s randomly generated by each model
(without revealing the identity of the model). Specifically,
fluency (Flu), theme consistency (Thm), aesthetics (Aes)
and overall (All) performance are evaluated using scores
{1,2,3,4}, where the examiners are told to calibrate the
score of 1 to “poor” and the score of 4 to “expert level”.

The results of these tests are shown in Table 2. From these
results, it can be seen that MRCG performs comparably to
the compared models. This suggests that the proposed en-
coding and integration of metrical structures bring no nega-
tive impact on semantics.

In fact, by inspecting a large number of Ci generated by
MRCQG (guided or blind), we observe that most generated of
them have coherent sentiment and smooth grammar. Many
of them contain some excellent lines whose literacy levels
are comparable to those in the classical Ci literature. Figure
4 contains a demonstration of two Ci’s generated blindly by
MRCG, together with their English translations.

It must be noted however that overall an educated Ci
reader would still be able to distinguish the Ci’s generated
by MRCG from those in the classical Ci literature, due to
the limitations of MRCG that we will present next. For this
reason, we believe that MRCG will not pass the Turing test.
This will also be the case for the baselines, since, due to their
poor metrical performances, they would fail obviously at the
metrical level.

Limitations of MRCG

As discussed above, we believe that MRCG represents the
state of the art in the neural models for Ci generation.

7465

ally the line generated by MRCG may have the structure
(A)(BC)(DE). Note that such a rule is an implicit conven-
tion in Ci composition for that Cipai, and we did not encode
the rule in the MRCG model. As such, MRCG model can
only learn such a rule from the training examples. Depend-
ing on the number of training examples for this rhythmic
pattern and that of the confusing examples®, the learning of
such a rhythmic rule may not be very effective. We however
expect that such a problem can be resolved to a good ex-
tent by fine-tuning the MRCG model so that such rules are
explicitly encoded.

Another limitation we observe in MRCG is on the seman-
tics side. Although MRCG is capable of expressing moods,
sentiments and emotions very well by creating imageries
containing the essential related elements, the model appears
to be weak in generating a rich story with logical coherence.
Specifically, in some Ci’s generated by MRCG, the transi-
tion of ideas appears to be largely governed by a smooth
evolution of sentiments, rather than by a smooth develop-
ment of an idea or story that can be well reasoned logically.
Thus these Ci, particularly the longer ones within, may ap-
pear full of emotions but lacking ideas or stories.

Concluding Remarks

Chinese Ci is among the poetry forms that have the most
restrictive metrical structures. This makes computer compo-
sition of Ci a great challenge. In this paper, we show that
the CVAE framework can be naturally adapted to the metri-

*Depending on the Cipai, a line containing 5 characters
may take both the format of (AB)(CD)(E) and the format of
(A)(BC)(DE) format. Thus the model must learn to distinguish
the two formats.



cally restricted CI generation. Based on this framework, we
propose the MRCG model which explicitly encodes a desig-
nated metrical structure. We show via experiments that the
Ci generated from this model satisfy the desired metrical re-
striction nearly perfectly and have good semantics.

To the best of our knowledge, the MRCG model is the
first model that explicitly encodes the metrical restriction in
a neural model. The methodology employed in MRCG may
be seen as a great demonstration that the rule-based learn-
ing in the symbolist paradigm and the neural network ap-
proaches in the connectionist paradigm can be seamlessly
integrated into the same distributed representation frame-
work. We believe that such a methodology can be extended
to generating poetries with other metrical constraints and,
beyond this context, to integrating rules into a neural net-
work based learning model.

By now, we have an excellent solution to generating Ci
with a desired metrical structure. The bottleneck in Ci gen-
eration, or more generally in poetry generation, then remains
on the semantics side. How to generate poetry with “human-
level semantics” is still a grand challenge in computational
linguistics. Significant advances in this direction, we be-
lieve, will rely on the development of new natural language
understanding models, particularly those capable of repre-
senting reasoning at a fundamental level.
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