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Abstract

Affect conveys important implicit information in human com-
munication. Having the capability to correctly express af-
fect during human-machine conversations is one of the major
milestones in artificial intelligence. In recent years, extensive
research on open-domain neural conversational models has
been conducted. However, embedding affect into such mod-
els is still under explored. In this paper, we propose an end-
to-end affect-rich open-domain neural conversational model
that produces responses not only appropriate in syntax and
semantics, but also with rich affect. Our model extends the
Seq2Seq model and adopts VAD (Valence, Arousal and Dom-
inance) affective notations to embed each word with affects.
In addition, our model considers the effect of negators and
intensifiers via a novel affective attention mechanism, which
biases attention towards affect-rich words in input sentences.
Lastly, we train our model with an affect-incorporated objec-
tive function to encourage the generation of affect-rich words
in the output responses. Evaluations based on both perplexity
and human evaluations show that our model outperforms the
state-of-the-art baseline model of comparable size in produc-
ing natural and affect-rich responses.

Introduction

Affect is a psychological experience of feeling or emotion.
As a vital part of human intelligence, having the capabil-
ity to recognize, understand and express affect and emotions
like human has been arguably one of the major milestones
in artificial intelligence (Picard 1997).

Open-domain conversational models aim to generate co-
herent and meaningful responses when given user input sen-
tences. In recent years, neural network based generative con-
versational models relying on Sequence-to-Sequence net-
work (Seq2Seq) (Sutskever, Vinyals, and Le 2014) have
been widely adopted due to its success in neural machine
translation. Seq2Seq based conversational models have the
advantages of end-to-end training paradigm and unrestricted
response space over conventional retrieval-based models. To
make neural conversational models more engaging, various
techniques have been proposed, such as using stochastic la-
tent variable (Serban et al. 2017) to promote response di-
versity and encoding topic (Xing et al. 2017) into conversa-
tional models to produce more coherent responses.
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However, embedding affect into neural conversational
models has been seldom explored, despite that it has many
benefits such as improving user satisfaction (Callejas, Griol,
and Loépez-Cézar 2011), fewer breakdowns (Martinovski
and Traum 2003), and more engaged conversations (Robi-
son, McQuiggan, and Lester 2009). For real-world appli-
cations, Fitzpatrick, Darcy, and Vierhile (2017) developed
a rule-based empathic chatbot to deliver cognitive behavior
therapy to young adults with depression and anxiety, and ob-
tained significant results on depression reduction. Despite
of these benefits, there are a few challenges in the affect
embedding in neural conversational models that existing ap-
proaches fail to address: (i) It is difficult to capture the emo-
tion of a sentence, partly because negators and intensifiers
often change its polarity and strength. Handling negators and
intensifiers properly still remains as a challenge in sentiment
analysis. (ii) It is difficult to embed emotions naturally in re-
sponses with correct grammar and semantics (Ghosh et al.
2017).

In this paper, we propose an end-to-end single-turn open-
domain neural conversational model to address the afore-
mentioned challenges to produce responses that are natu-
ral and affect-rich. Our model extends Seq2Seq model with
attention (Luong, Pham, and Manning 2015). We lever-
age an external corpus (Warriner, Kuperman, and Brysbaert
2013) to provide affect knowledge for each word in the Va-
lence, Arousal and Dominance (VAD) dimensions (Mehra-
bian 1996). We then incorporate the affect knowledge into
the embedding layer of our model. VAD notation has been
widely used as a dimensional representation of human emo-
tions in psychology and various computational models, e.g.,
(Wang, Tan, and Miao 2016; Tang et al. 2017). 2D plots of
selected words with extreme VAD values are shown in Fig-
ure 1. To capture the effect of negators and intensifiers, we
propose a novel biased attention mechanism that explicitly
considers negators and intensifiers in attention computation.
To maintain correct grammar and semantics, we train our
Seq2Seq model with a weighted cross-entropy loss that en-
courages the generation of affect-rich words without degrad-
ing language fluency.

Our main contributions are summarized as follows:

e For the first time, we propose a novel affective attention

mechanism to incorporate the effect of negators and in-
tensifiers in conversation modeling. Our mechanism in-
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Figure 1: 2D plot of words with either highest or lowest ratings in valence (V), arousal (A) or dominance (D) in the corpus.

troduces only a small number of additional parameters.

For the first time, we apply weighted cross-entropy loss in
conversation modeling. Our affect-incorporated weights
achieve a good balance between language fluency and
emotion quality in model responses. Our empirical study
does not show performance degradation in language flu-
ency while producing affect-rich words.

Overall, we propose Affect-Rich Seq2Seq (AR-S2S), a
novel end-to-end affect-rich open-domain neural conver-
sational model incorporating external affect knowledge.
Human preference test shows that our model is preferred
over the state-of-the-art baseline model in terms of both
content quality and emotion quality by a large margin.

Related Work

Prior studies on affective conversational systems mainly fo-
cused on rule-based systems, which require an extensive
hand-crafted rule base. For example, Ochs, Pelachaud, and
Sadek (2008) designed an empathetic virtual agent that
can express emotions based on cognitive appraisal theo-
ries (Hewstone and Stroebe 2001), which require numerous
event-handling rules to be implemented. Another example
is the Affect Listeners (Skowron 2010), which are conver-
sational systems aiming to detect and adapt to the affec-
tive states of users. However, their detection and adaptation
mechanisms heavily rely on hand-crafted features such as
letter capitalization, punctuation and emoticons.

In recent years, there is an emerging research trend in end-
to-end neural network based generative conversational sys-
tems (Vinyals and Le 2015; Shang, Lu, and Li 2015). To
improve the content quality of neural conversational mod-
els, many techniques have been proposed, such as improv-
ing response diversity using Conditional Variational Autoen-
coders (CVAE) (Zhao, Zhao, and Eskenazi 2017) and en-
coding commonsense knowledge using external facts corpus
(Ghazvininejad et al. 2018).

However, few work investigated the problems in improv-
ing the emotion quality of neural conversational models.
Emotional Chatting Machine (ECM) (Zhou et al. 2018) is a
Seq2Seq conversational model that generates responses with
user-input emotions. It employs an internal memory module
to model implicit emotional changes and an external mem-
ory module to help generate more explicit emotional words.
The main objective of ECM is to produce responses accord-
ing to explicit user-input emotions. While our model focuses
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on enriching affect in generated responses. Similar to ECM,
Mojitalk (Zhou and Wang 2018) presents a few generative
models, including Seq2Seq, CVAE and Reinforced CVAE,
to generate responses according to explicit user-input emo-
jis. Both ECM and Mojitalk do not consider emotions in in-
put sentences when generating emotional responses. In com-
parison, our model considers them naturally with focuses
on affect-rich words and avoids an additional step of deter-
mining which emotion to respond with during conversations.
Asghar et al. (2018) introduces a Seq2Seq model with three
extensions to incorporate affects into conversations. Simi-
lar to their work, we also adopt the approach of using VAD
embedding to encode affects. However, we perform extra
preprocessing on VAD embedding to improve model per-
formance. In addition, we specifically consider the effect
of negators and intensifiers via a novel affective attention
mechanism when generating affect-rich responses.

Seq2Seq with Attention

Prior to introducing our proposed model, we briefly describe
the vanilla Seq2Seq model with attention. Seq2Seq model
is a neural network model mapping the input sequence to
the output sequence. Specifically, it uses a Recurrent Neu-
ral Network (RNN) encoder to encode the variable length
input sequence X = (x1, 9, ..., x7) as a vector of fixed di-
mensionality ht and an RNN decoder to decode h as the
variable length output sequence Y = (y1,¥2, ..., Y7 ). The
objective function of Seq2Seq is to maximize

/

T
p(Y|X) = p(yl|hT> H p(yt’|hT,y]_, ""yt/—1>7
t'=2
h, = f(hy_1,2:),Vt =1,2,..,T,

where hy denotes the hidden state of input sequence at time
step t and hg is usually initialized as a zero vector. Func-
tion f denotes a non-linear transformation, which usually
takes the form of recurrent models such as Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber 1997) or
Gated Recurrent Units (GRU) (Cho et al. 2014).

After encoding X as hr, the decoder updates its decoder
hidden state s, by taking the previous hidden state s,/ _;
and previous output ¥,/ _; as inputs:

(D

Sy = g(st'—17yt'—1)7Vt, =12, "'7TI7 (2

where g is another recurrent model, so = h, and vy is the
start of sequence (SOS) token.
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Figure 2: Overall architecture of our proposed AR-S2S. This diagram illustrates decoding “fine” and affect bias for “bad”.

The output word probability in equation (1) is given by
p(yy ) = softmax(Wost/),Vt/ =1,2,...T, 3)

where W° denotes a model parameter.

The attention mechanism (Luong, Pham, and Manning
2015) is proposed to solve the problem of limited represen-
tation power of the final input hidden state h on which the
entire decoding process is conditioned. Specifically, the at-
tention mechanism focuses on different parts of the input
sequence by computing a context vector ¢, at each decod-
ing time step t/,Vt/ =12,.., T', as the weighted average
of all input hidden states hy, Vit = 1,2, ..., T, as follows:

T
¢y =y ayh, @
t=1
where the alignment vector ¢, is given by
exp(e,
at/t ( t t) (5)

S i1 expley )

where e,/, = score(hy, s, ) is the message energy function
that computes the energy or score between input hidden state
h; and output hidden state s, . This message energy function
is usually implemented as a Multilayer Perceptron (MLP).
In our case, we use a simple dot product operation due to
its fast training and good performance (Luong, Pham, and
Manning 2015).

The context vector ¢,/ is then concatenated with the de-
coder hidden state s,/ to form an attentional hidden state §,
as follows:

§; = tanh(W¢[c, ;s,]), (6)
where [; ] denotes vector concatenation. Finally, §, replaces
s,/ in equation (3) to compute the output word probability.
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Dimensions | Values | Interpretations

Valence 3-17 pleasant - unpleasant
Arousal 3-17 low intensity - high intensity
Dominance 3-17 submissive - dominant

Table 1: Interpretations of clipped VAD embeddings.

Affect-Rich Seq2Seq Model

In this section, we present our proposed model to produce
affect-rich responses, which falls outside the capability of
vanilla Seq2Seq models. The overall model architecture is
illustrated in Figure 2.

Affective Embedding

Our model adopts Valence, Arousal and Dominance (VAD)
(Mehrabian 1996) embedding to encode word affects as vec-
tors of size 3 from an annotated lemma-VAD pairs cor-
pus (Warriner, Kuperman, and Brysbaert 2013). This corpus
comprises 13,915 lemmas with VAD values annotated in the
[1, 9] scale. To leverage this corpus, we assign VAD values to
words based on their lemmas. To increase coverage, we ex-
tend the corpus to 23,825 lemmas by assigning the average
VAD values of their synonyms to absent lemmas. Further-
more, we empirically clip VAD values of all words to the
[3,7] interval to prevent words with extreme VAD values
from repeatedly showing in the generated responses, as ob-
served in our preliminary experiments. The interpretations
of clipped VAD embedding are presented in Table 1. For ex-
ample, word “nice” is associated with the clipped VAD val-
ues: (V: 6.95, A: 3.53, D: 6.47). For words whose lemmas
are not in the extended corpus, comprising approximately
10% of the entire training vocabulary, we assign them VAD
values of [5, 3, 5], which are the clipped values of a neutral



word. Note that a value of 3 in arousal (A) dimension is re-
garded as neutral because it has zero emotional intensity.

Finally, to remove bias, we normalize VAD embedding as
VAD(z;) = VAD(x;) — [5, 3, 5], where VAD(z;) € R? is the
VAD embedding of word z;. We incorporate VAD embed-
ding by concatenation as follows:

e(wt) = [x¢; AVAD(z,))], M

where x¢ € R™ denotes the word embedding of z, e(z;) €
R™*3 denotes the final affective embedding of x;, m de-
notes the dimensionality of word vectors, and A € R, de-
notes the affect embedding strength hyper-parameter to tune
the strength of VAD embeddings.

It is worth noting that the lemmas in our corpus were se-
lected across multiple domains and are quite neutral (Brys-
baert and New 2009). In addition, languages other than En-
glish, such as Spanish, Dutch, Finish, etc., also have such
lemma-VAD pairs corpus, although in smaller sizes. Hence,
our proposed conversational model has great potential to be
directly applied to other languages.

Affective Attention

To incorporate affect into attention naturally, we make
the intuitive assumption that humans pay extra attention
on affect-rich words during conversations. Specifically, our
model biases attention towards affect-rich words in the in-
put sentences, as well as considers the effect of negators and
intensifiers. Our model employs an affect bias 77 augmenting
the affective strength of each word in the input sentences
into the energy function (see equation (5)) as follows:

®)

where htht/ denotes the conventional dot product energy
function and 7 is defined as

m = |l (1 + B) @ VAD(zy)|]3,
B = tanh(Wbx¢_4),

T
etlt = ht Stl —+ Nt

©))

where ® denotes element-wise multiplication, ||.||; denotes
I, norm, W? € R3*™ denotes a model parameter, 3 € R3
is a scaling factor in V, A and D dimensions in the [—1, 1] in-
terval to scale the normalized VAD values of the current in-
put word, v € R denotes the affective attention coefficient
controlling the magnitude of affect bias towards affect-rich
words in the input sentence, and p(z;) € R in the [0, 1] in-
terval denotes a measure of term importance of x; (see the
following paragraph).

Term Importance The introduction of term importance
u(x¢) as weights in computing affective attention is inspired
by the sentence embedding work (Arora, Liang, and Ma
2016), where a simple weighted sum of word embedding
algorithm with weights being smoothed inverse term fre-
quency can achieve good performance in textual similarity
tasks. Term frequency has been widely adopted in informa-
tion retrieval to compute the importance of a word. In our
model, we propose three approaches, namely “uniform im-
portance” (ui), “global importance” (gi), and “local impor-
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Figure 3: 2D plot of the most frequent 30,000 words in our
training dataset in GloVe embedding after PCA. Selected
common negators and intensifiers are annotated in text.

tance” (li) to compute p(x):

1 ui

a/(a+p(e)) gi,

log(1/(p(x+)+e)) li
>24Z1 log(1/(p(ze)+e))
where p(z;) denotes the term frequency of z; in the training
corpus, a denotes a smoothing constant that is usually set
to 1072 as suggested by Arora, Liang, and Ma (2016), and
€ is another small smoothing constant with value 10~%. We
take the log function in p;(x;) to prevent rare words from
dominating the importance.

p(we) = (10)

Modeling Negators and Intensifiers The introduction of
B in equation (9) is to model the affect changes caused
by negators and intensifiers. Often, negators make positive
words negative but with much lower intensity, and make
negative words less negative (Kiritchenko and Mohammad
2016). Thus, S is expected to be negative for negators be-
cause negators tend to reduce the affect intensity of the fol-
lowing word (e.g., “not bad”). Intensifiers usually adjust the
intensities of positive words and negative words but do not
flip their polarities (Carrillo-de Albornoz and Plaza 2013).
As a result, 5 for extreme intensifiers (e.g., “extremely”)
is expected to be larger than 5 for less extreme intensi-
fiers (e.g., “very”). To specifically consider these phenom-
ena, ( is modeled to be a nonlinear transformation through
the word vector of z;_;. This idea is inspired by the ob-
servation that common negators and intensifiers share some
common underlying properties in their word vector repre-
sentations. Figure 3 shows that several common negators
and intensifiers tend to cluster together in 2D plots in GloVe
embedding (Pennington, Socher, and Manning 2014) after
applying Principle Component Analysis (PCA).

Note that our affective attention only considers unigram
negators and intensifiers, however, they are empirically
found as the majority of all negators and intensifiers. Statis-
tics based on our training set indicate that the unigram inten-
sifier “very” occurs 364,913 times, in comparison, the com-
posite intensifier “not very” only occurs 2,838 times.

Affective Objective Function

The conventional objective function of seq2seq model is to
maximize the probability of target response Y given input



sequence X measured by cross-entropy loss. To encourage
the generation of affect-rich words, we incorporate VAD em-
bedding of words into cross-entropy loss as follows:

1+ 6[[VAD(y, )|
25, ev(L+0[[VAD(G,)]]2)

;=

U, =—|V| log(p(yy)),
Y

where t =1,2,...,T", U,, denotes the affective loss at de-

coding time step t, 1y, denotes the target token at decoding

time step t/, V' denotes the dataset vocabulary, and ¢ denotes
a hyper-parameter named affective loss coefficient, which
regulates the contribution of VAD embedding.

Our proposed affective loss is essentially a weighted
cross-entropy loss. The weights are constant and positively
correlated with VAD strengths in /5 norm. The weight nor-
malization is applied to ensure that our weights do not alter
the overall learning rate during optimization. Intuitively, our
affective loss encourages affect-rich words to obtain higher
output probability, which effectively introduces a probabil-
ity bias into the decoder language model towards affect-rich
words. This bias is controlled by our affective loss coeffi-
cient . When 6 = 0, our affective loss falls back to the
conventional unweighted cross-entropy loss.

It is worth noting that our weighted cross-entropy loss in-
corporating external word knowledge, i.e., VAD in our case,
is simple but effective in controlling the response style. Our
loss function has many other potential application areas such
as controlled neural text generation.

t

Experimental Evaluation

In this section, we present our datasets, evaluation methods,
experimental results and discussions. Following the exper-
imental setup presented in (Zhou et al. 2018), we conduct
model component test (MCT) to examine the effectiveness
of our proposed affective attention and affective objective
function in generating affect-rich responses. In addition, we
conduct preference test (PT) between our best model (AR-
S2S) and the state-of-the-art baseline of comparable model
size to compare model responses. Finally, we conduct sen-
sitivity analysis on the hyper-parameters introduced in our
model to analyze their impacts on language fluency and the
number of distinct affect-rich words produced.

Datasets

We use OpenSubtitles dataset (Tiedemann 2009) as our
training dataset due to its large size. We use relatively
less noisy Cornell Movie Dialog Corpus dataset (Danescu-
Niculescu-Mizil and Lee 2011) as our validation dataset for
more reliable tuning. We use DailyDialog dataset (Li et al.
2017) for testing to examine model generalizations in differ-
ent corpus domains.

The pairs in the training dataset are selected by a simple
rule that the input sentence ends with a question mark and
the time interval between the pair of input and output sen-
tences is less than 20 seconds. In addition, sound sequences
such as “BANG” are removed. These pairs are then expanded
(e.g., isn’t — is not), tokenized, and special symbols and
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numbers were removed. Finally, the pairs with either input
or output sentence longer than 20 words are removed. The
validation and testing datasets are preprocessed by word ex-
pansion, tokenization and removal of special symbols and
numbers. Since we are modeling single-turn dialogue sys-
tem, only the first two utterances from each dialogue session
in the testing dataset are extracted because using utterances
in the middle would require context to respond.

After data preprocessing, we randomly select 5 million
pairs from OpenSubtitles dataset as the training dataset with
a vocabulary comprising the most 30,000 frequent words,
covering 98.89% of all tokens. We randomly sample 100K
pairs from Cornell Movie Dialog Corpus dataset for valida-
tion and 10K pairs from DailyDialog dataset for testing.

Evaluation Methods

We adopt perplexity metric to measure the language flu-
ency of a conversational model, as it is the only well-
established automatic evaluation method in conversation
modeling. Other metrics such as BLEU (Papineni et al.
2002) do not correlate well with human judgments (Liu et
al. 2016). A model with lower perplexity indicates that it is
more confident about the generated responses. Note that a
model with low perplexity does not guarantee to be a good
conversational model because it may achieve so by always
generating short responses.

To qualitatively examine model performance, we conduct
widely adopted human evaluations. We randomly sample
100 input sentences from the testing dataset. For each input
sentence, we then randomize the order of the responses gen-
erated by each comparison model. For each response, five
human annotators are asked to evaluate two aspects:

e +2: (content) The response has correct grammar and is
relevant and natural / (emotion) The response has ade-

quate and appropriate emotions conveyed.

+1: (content) The response has correct grammar but is too
universal / (emotion) The response has inadequate but ap-
propriate emotions conveyed.

0: (content) The response has either grammar errors or is
completely irrelevant / (emotion) The response has either
no or inappropriate emotions conveyed.

Experiment 1: Model Component Test (MCT)

We compare the following models to examine the perfor-
mance of our proposed affective attention and affective ob-
jective function on model perplexity and human evaluations:

S28S: The standard Seq2Seq model with attention.

S2S-UI, S2S-GI, S2S-LI: The standard Seq2Seq model
with our proposed affective attention using fi,;, ftg; and fu;
(see equation (10)), respectively.

S2S-AO: The standard Seq2Seq model with attention
and our proposed affective objective function (see equation
D).

AR-S2S: our best model, which incorporates both p;; and
affective objective function.

All models have a word embedding of size 1027 (1024 +
3) and hidden size of 1024. Both encoder and decoder have
two layers of bi-directional LSTM. All models implement



Experiment || Model #Params | PPL} | PPL}
S28 99M 425 124.3
S2S-UI 99M 404 116.4
MCT (5M S2S-GI 99M 40.7 120.3
pairs) S2S-LI 99M 404 117.0
S2S-AO 9IM 40.2 115.7
AR-S2S 99M 39.8 113.7
PT 3M S2S 66M 41.2 130.6
pairs) S2S-Asghar | 66M 46.4 137.2
AR-S2S 66M 40.3 121.0

Table 2: Model test perplexity. Symbol t indicates in-
domain perplexity obtained on 10K test pairs from the Open-
Subtitles dataset. Symbol I indicates out-domain perplexity
obtained on 10K test pairs from the DailyDialog dataset.

affective embedding. Parameters A, § and «a are set to 0.1,
0.15 and 10~3, respectively. Parameter - for S2S-UI, S2S-
GI and S2S-LI are set to 0.5, 1 and 5, respectively. The beam
size is set to 20. Note that all models implement the maxi-
mum mutual information (MMI) objective function (Li et
al. 2016) during inference to levitate the problem of generic
responses (e.g., “I don’t know”). For all models, a simple re-
rank operation is applied during inference to rank the gener-
ated responses wsed on their affective strength computed
as |—;‘ yey [[VAD(y)[|2. All models are initialized with a
uniform distribution in the [—0.08, 0.08] interval, using the
same seed. We trained all models with a batch size of 64 for
5 epochs using Adam (Kingma and Ba 2014) optimization
(f1 = 0.9 and B2 = 0.999) with the learning rate of 0.0001
throughout the training process.

Results Table 2 presents the results on model test perplex-
ity in both MCT and PT (see Experiment 2). To analyze
model generalization in different domains, we additionally
report test perplexity on in-domain test dataset, which is cre-
ated using 10K test pairs from the OpenSubtitles dataset. All
models have comparable perplexity on both in-domain and
out-domain test datasets, empirically showing that our pro-
posed methods do not cause performance degradation in lan-
guage fluency. One note is that the out-domain test perplex-
ity for all models is quite large as compared to in-domain
perplexity, as well as other dialog systems, e.g., (Vinyals
and Le 2015). One possible reason is that our testing dataset
is different from the training dataset in terms of both vo-
cabulary and linguistic distributions (the former was cre-
ated from daily conversations, whereas the latter was cre-
ated from movie subtitles). As a result, the models may not
generalize well.

Tables 3 and 4 present the evaluation results in MCT by
five human annotators on the content quality and emotion
quality, respectively. The values in brackets denote perfor-
mance improvement in percentage. The Fleiss’ kappa (Fleiss
and Cohen 1973) for measuring inter-rater agreement is in-
cluded as well. All models have “moderate agreement” or
“substantial agreement”. For content quality, all models ex-
cept S2S-AO have noticeably more +2 ratings than S2S. For
emotion quality, it is clear that all of our proposed affec-
tive models have significant improvement over S2S. Among
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Model (%) || +2 +1 0 Score Kappa
S28 22.4 | 47.0 | 30.6 | 0918 0.544
S2S-UI 30.0 | 48.6 | 21.4 | 1.086 (+18.3%) | 0.458
S2S-GI 28.6 | 46.6 | 24.8 | 1.038 (+13.1%) | 0.413
S2S-LI1 29.4 | 472 | 234 | 1.060 (+15.5%) | 0.525
S2S-AO 25.0 | 46.0 | 29.0 | 0.960 (+4.3%) 0.482
AR-S2S 29.6 | 44.8 | 25.6 | 1.040 (+13.3%) | 0.487

Table 3: Human evaluations on content quality (MCT).

Model (%) || +2 +1 0 Score Kappa
S28 19.0 | 33.2 | 47.8 | 0.712 0.613
S28-UI 23.6 | 36.0 | 40.4 | 0.832 (+16.9%) | 0.483
S2S-GI 26.0 | 34.2 | 39.8 | 0.862 (+21.1%) | 0.652
S2S-LI 24.6 | 36.4 | 39.0 | 0.856 (+20.2%) | 0.706
S2S-AO 22.6 | 37.6 | 39.8 | 0.828 (+16.3%) | 0.602
AR-S2S 26.8 | 37.2 | 36.0 | 0.908 (+27.5%) | 0.625

Table 4: Human evaluations on emotion quality (MCT).

Message Model Response
Mommy, can i S2S (MCT) Of course you can
stay up until stay up late.
eleven of the AR-S2S Of course you can,
clock? (MCT) sweetheart.
You are home S2S (MCT) It was fine.
late today, david. || AR-S2S Great fun today.
How was school? || (MCT)

S2S (PT) Yes, 1 do.
Do you like S2S-Asghar | I do not know.
singing? (PT)

AR-S2S (PT) | Ilove music.

S2S (PT) He will turn out to be
I’'m pretty sure a good lawyer.
that jim will S2S-Asghar | I'm sure he will.
turn out to be a (PT)
good lawyer. AR-S2S (PT) | The best lawyer in the

world.

Table 5: Sample responses for models in both MCT and PT.
Text in bold are affect-rich words.

the three affective attention mechanisms, S2S-LI achieves
the best overall performance. Note that the improvement
gained by affective attention and affective objective func-
tion are partially orthogonal. One explanation is that by ac-
tively paying attention to affect-rich words in the input sen-
tence, our model is able to produce more accurate affect-
rich words during decoding. Therefore, combing both tech-
niques (AR-S2S) results in maximum improvement in emo-
tion quality. Table 5 presents some sample responses in the
testing dataset.

Analysis of Affective Attention To examine our hypoth-
esis that our affective attention mechanism can correctly
capture the effect of negators and intensifiers, we plot the
learned parameter (3 (see equation (9)) in the Valence and
Arousal dimensions in Figure 4. It is obvious that our model
successfully learned to make (3 negative for negators. In ad-
dition, several extreme intensifiers such as “exceptionally”
and “remarkably” have higher /3 than less extreme intensi-
fiers such as “very” and “quite”, which is consistent with
our hypothesis. One note is that our model does not learn



Before Training After Training

exceptionally
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rather
never

exceptiol
extraor maw{hmely

remarkably

remarkably

Arousal (A)
Arousal (A)

extraordinarily

net
rather-

,,,,,

very

T Ve (v) Valence (V)

Figure 4: Learned parameter 3 (see equation (9)) in Va-
lence (V) and Arousal (A) dimensions for several common
negators and intensifiers. Left sub-figure: before AR-S2S is
trained. Right sub-figure: after AR-S2S is trained.

i went to jessie s birthday partyyesterday . it was very good .
i went to jessie s birthday partyyesterday . it was very - .
i went to jessie s birthday partyyesterday . it was very  good

i went jessie s birthday partyyesterday . it

very - .
Figure 5: Learned attention on a sample input sentence from
the testing dataset. From top to bottom, the models are S2S,
S2S-UI, S2S-GI and S2S-LI, respectively. Darker colors in-
dicate larger strength.

well for some intensifiers such as “extremely”, whose [ is
comparable to less extreme intensifiers such as “very”. This
result is not surprising because the impacts of intensifiers are
difficult to be completely captured as they tend to vary de-
pending on the following words (Kiritchenko and Moham-
mad 2016).

Figure 5 shows the attention strength over a sample in-
put sentence in the testing dataset. As expected, our pro-
posed affective attention models place extra attention on
affect-rich words, i.e., “good” in this case. In addition, S2S-
UI and S2S-LI have larger strengths than S2S-GI. This re-
sult is aligned with our model’s assumption because differ-
ent “term importance” have different impacts on the atten-
tion strengths and the word “good” here is quite common
(p(“good”) = 0.00143), which leads to the lower strength
in S2S-GI.

Analysis of Affective Objective Function We analyze the
capability of our proposed affective objective function in
producing affect-rich words. Table 6 presents the number
of distinct affect-rich words in randomly selected 1K test
responses produced by different models. Affect-rich words
are defined as words with VAD strength in /5 norm exceed-
ing the given threshold. It is clear that all S2S-AO mod-
els can produce more affect-rich words than S2S. In addi-
tion, the number of affect-rich words for every threshold in-
creases steadily as the affective objective coefficient § in-
creases, showing a good controllability of our model via 4.

Experiment 2: Preference Test (PT)

We conduct human preference test to compare our AR-
S2S with the state-of-the-art baseline S2S-Asghar, the best
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Threshold for /> Norm of VAD
Model 3 2 1
S28 25 104 190
S2S-AO0 (0 = | 36 138 219
0.5)
S2S-A0 (6 =1) | 50 154 234
S2S-AO0 (6 =2) | 69 177 256

Table 6: Number of distinct affect-rich words (MCT).

Threshold for /> Norm of VAD
Model 3 2 1
S2S 21 83 157
S2S-Asghar 31 120 217
AR-S2S 52 173 319

Table 7: Number of distinct affect-rich words (PT).

model proposed in (Asghar et al. 2018). To the best of our
knowledge, S2S-Asghar is the only model in the neural con-
versational model literature that aims to produce affect-rich
responses in an end-to-end manner (i.e., without explicit
user-input emotions). We also include S2S for comparison.

To make comparisons fair, we follow the specifications of
S2S-Asghar and keep the number of parameters in all mod-
els comparable by reducing the size of our model. We use
a smaller training dataset with 3 million random pairs and
a vocabulary of size 20,000 due to the reduced model size.
Note that our training dataset is still significantly larger than
the original dataset used in (Asghar et al. 2018), which com-
prises only 300K pairs and a vocabulary size of 12,000. All
models have a word embedding of size 1027, a single-layer
LSTM encoder and a single-layer LSTM decoder. All train-
ing specifications remain the same as the MCT except that
S2S-Asghar is trained for 4 epochs with conventional cross-
entropy loss and 1 more epoch with their proposed objective
function, which includes a term to maximize affective con-
tent.

For human evaluation, we follow the same procedures as
adopted in MCT except that five human annotators were
asked to choose their preferred responses based on content
quality and emotion quality, respectively, instead of annotat-
ing +2, +1 and 0. Ties are allowed.

Results Table 7 shows the number distinct of affect-rich
words in randomly selected 1K responses produced by S2S,
S2S-Asghar and our model. It is clear that our model pro-
duces significantly more affect-rich words than both S2S-
Asghar and S28.

Table 8 shows the result of human evaluation. The Fleiss’
kappa scores for content/emotion qualities are included in
the last column. All models have “moderate agreement” or
“substantial agreement”. For content preference, our model
scores relatively 21% higher than S2S-Asghar. For emo-
tion preference, our model scores relatively 50% higher than
S2S-Asghar. These findings show that our model is capa-
ble of producing better responses that are not only more ap-
propriate in syntax and content, but also significantly more
affect-rich than the state-of-the-art model.



Model (%) Content Emotion Kappa
S2S 64 26 0.522/0.749
S2S-Asghar || 66 (+3.1%) 32 (+23.1%) | 0.554/0.612
AR-S2S 80 (+25.0%) | 49 (+88.5%) | 0.619/0.704
Table 8: Human preference test (PT).
t;tlm H——-"\o\.izl;” ‘@'31‘((1 .\'\l——l—n
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Figure 6: Sensitivity analysis for affect embedding strength
A, affective attention coefficient ~, and affective objective
coefficient § on model perplexity. The blue, red and green
curves (best viewed in color) in the middle sub-figure repre-
sent fiy;, ftg; and py; (see equation (10)), respectively.

Experiment 3: Sensitivity Analysis

We examine the impacts of the affect embedding strength
A, affective attention hyper-parameter -y, as well as affective
loss hyper-parameter § on model perplexity and the num-
ber of affect-rich words produced. Due to the large number
of experiments, we conduct the sensitivity analysis using 1
million pairs and a vocabulary of size 20,000. All training
specifications remain the same as MCT except that the num-
ber of LSTM layers is 1, the hidden layer size is 512 and the
embedding layer size is 303.

Results Figure 6 shows the plots of model test perplex-
ity versus A, v and 0. Our model is fairly robust to a wide
range of A, v and &, regardless of the type of term impor-
tance. It is worth noting that the generated responses tend to
become shorter with v € [20, 0], which may be caused by
excessive attention placed on affect-rich words during de-
coding. Another interesting finding is that our affective ob-
jective function slightly improves test perplexity. One pos-
sible explanation is that affect-rich words are less common
than generic words in our training corpus. As a result, our
weighted cross-entropy loss placing extra weights on them
improves the overall prediction performance.

Figure 7 shows the plots of the number of distinct affect-
rich words in randomly selected 1K test responses versus
A, v and 6. The number of distinct words increases slightly
when )\ increases from 0 to 0.3, and then gradually decreases
and stabilizes as X increases from 0.3 to 1. For + in all three
term importance, there is an initial boost in the number of
distinct words when + is small, i.e., v € [0, 5]. However, as
~ furher increases, the number of distinct words gradually
decreases, which may be caused by limited word space dur-
ing decoding due to excessive attention on affect-rich words.
Among the three term importance proposed, local impor-
tance (u;;) is slightly more robust against v than the other
two approaches. Finally, the number of distinct words con-
sistently increases with &, which is similar to our findings
from Table 6. Note that the numbers in this sensitivity anal-
ysis are much smaller than MCT, which can be attributed to
smaller models and less training examples.
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Figure 7: Sensitivity analysis for affect embedding strength
A, affective attention coefficient 7, and affective objective
coefficient 6 on the number of distinct affect-rich words in
randomly selected 1K test responses. The solid, dashed and
dotted curves correspond to lo norm threshold of 1, 2 and
3, respectively. The blue, red and green curves (best viewed
in color) in the middle sub-figure represent fi,;, ftq; and fij;
(see equation (10)), respectively.

Conclusion

In this paper, we propose an end-to-end open-domain neu-
ral conversational model that produces affect-rich responses
without performance degradation in language fluency. Our
model leverages external word-VAD knowledge to encode
affect information into the conversational model. In addi-
tion, our model captures user emotions by paying extra at-
tention to affect-rich words in input sentences and consid-
ering the effect caused by negators and intensifiers. Lastly,
our model is trained with an affect-incorporated weighted
cross-entropy loss to encourage the generation of affect-rich
words. Empirical studies on both model perplexity and hu-
man evaluations show that our model outperforms the state-
of-the-art model of comparable size in producing natural and
affect-rich responses.
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