
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Efficiently Reasoning with Interval Constraints in Forward Search Planning

Amanda Coles,∗ Andrew Coles,∗ Moises Martinez,∗ Emre Savas,∗
Juan Manuel Delfa,∗∗ Tomás de la Rosa,† Yolanda E-Martı́n,† Angel Garcı́a-Olaya†

∗Department of Informatics, King’s College London firstname.lastname@kcl.ac.uk
∗∗European Space Agency, Oxford, UK Juan.Delfa@esa.int

†Department of Computer Science, Universidad Carlos III de Madrid {trosa,yescuder,agolaya}@inf.uc3m.es

Abstract

In this paper we present techniques for reasoning natively
with quantitative/qualitative interval constraints in state-
based PDDL planners. While these are considered important
in modeling and solving problems in timeline based plan-
ners; reasoning with these in PDDL planners has seen rel-
atively little attention, yet is a crucial step towards making
PDDL planners applicable in real-world scenarios, such as
space missions. Our main contribution is to extend the plan-
ner OPTIC to reason natively with Allen interval constraints.
We show that our approach outperforms both MTP, the only
PDDL planner capable of handling similar constraints and a
compilation to PDDL 2.1, by an order of magnitude. We go on
to present initial results indicating that our approach is com-
petitive with a timeline based planner on a Mars rover do-
main, showing the potential of PDDL planners in this setting.

1 Introduction
Interval constraints are fundamental to modeling real-world
planning problems, allowing specification of constraints on
the temporal relationships between the execution of actions
and the achievement of facts. For example, a Mars Rover
must take a picture during a period in which the rover is sta-
tionary at the location, and remains so for some specified
time before and after the image is taken. Such constraints
appear frequently in applications, not only in space-based
domains, but also in terrestrial scenarios from scheduling ac-
tivities of nursing home assistance robots (Tran et al. 2017)
to planning ocean liner repositioning (Tierney et al. 2012).

Due to their ubiquity in applications, reasoning with in-
terval constraints has been a major focus of research in
timeline-based planning systems (Cesta et al. 2012; Frank
and Jonsson 2003; Chien et al. 2000). The need for expres-
sive languages has been noted (Cushing et al. 2007), but
handling such constraints in PDDL planners has seen rela-
tively little attention. This paper is the first to bridge the
gap between the two major paradigms in temporal planning,
combining their strengths: the expressive temporal reason-
ing of timeline planners and the powerful heuristics of PDDL
state-based planners, that are not readily accessible to time-
line planners, which typically use less-scalable partial-order
planning approaches. This provides a new, more efficient

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

approach for reasoning with these problems; and paves the
way for the use of decades of research on PDDL planning in
space applications typically dominated by timeline planners.

The lack of attention to explicitly reasoning with interval
constraints in PDDL has been, in part, due to the fact that
previous work noted they can be represented in PDDL 2.1
by adding additional actions to the domain (Fox, Long, and
Halsey 2004; Smith, Frank, and Cushing 2008). Early crit-
ics argued that this type of approach is cumbersome, forcing
a planner to do additional work (Smith 2003); and indeed,
as the first to fully define, and empirically evaluate the per-
formance of, such a compilation in this paper, we find its
scalability is very poor.

Our main contribution is a novel approach for reasoning
directly with interval constraints in state-based PDDL plan-
ning. We extend PDDL to provide new mechanisms for rep-
resenting interval constraints explicitly, and then go on to
show how an expressive PDDL planner, OPTIC, can be ex-
tended to reason directly with these constraints. We evalu-
ate the performance of our new approach against that of a
compilation on a range of benchmark domains with inter-
val constraints, showing empirically that it outperforms this
compilation by an order of magnitude (sometimes several).
Finally, to illustrate the potential of our work to in space
applications, typically dominated by timeline planners, we
provide an initial comparison to an APSI timeline planning
system (Cesta et al. 2012), on an existing ESA Mars rover
domain, originally written in DDL: the representation lan-
guage for APSI. We observe that our planner performs better
than APSI on many of the problem instances.

2 Background
2.1 PDDL Temporal Planning Problems
The basis for PDDL2.1 (Fox and Long 2003) temporal plan-
ning is a collection of propositions P , and a vector of nu-
meric variables v. These are manipulated by actions whose
executability is determined a precondition: a conjunction
of zero or more conditions. A condition is either a single
proposition p ∈ P , ¬p, or a numeric constraint over v. We
assume numeric constraints are linear, i.e. can be written
w.v{>,≥, <,≤,=}c (elements of w, and c, are constants).

Each durative action A has three sets of preconditions:
pre`A, pre↔A, preaA. These represent the conditions that

7562

Constraint Satisfied iff
synchronize g {after [lb,ub] f} ∀j · change(j, g), ∃i : 0 ≤ i ≤ j · change(i,¬f) ∧ lb ≤ tj − ti ≤ ub
synchronize f {before [lb,ub] g} ∀i · change(i,¬f), ∃j : j ≥ i · change(j, g) ∧ lb ≤ tj − ti ≤ ub
synchronize f {overlaps [lb,ub] g} ∀j · change(j,¬f), ∃i : 0 ≤ i ≤ j · cholds(i, j, g)

∧(lb ≤ tj − ti ≤ ub)
synchronize f {during [sl,su] [el,eu] g} ∀j, k · choldsc(j, k, f), ∃i : 0 ≤ i ≤ j · ∃l : l ≥ k · choldsc(i, l, g)
(where eu <∞) ∧(sl ≤ tj − ti ≤ su) ∧ (el ≤ tl − tk ≤ eu)
synchronize f {during [sl,su] [el,∞] g} ∀j, k · choldsc(j, k, f), ∃i : 0 ≤ i ≤ j·

(cholds(i, n, g) ∧ (sl ≤ tj − ti ≤ su))
synchronize g {contains [sl,su] [el,eu] f} (∀i, l · choldsc(i, l, g), ∃j : i ≤ j ≤ l · ∃k : j ≤ k ≤ l·
(where eu <∞) choldsc(j, k, f) ∧ (sl ≤ tj − ti ≤ su) ∧ (el ≤ tl − tk ≤ eu))
synchronize g {contains [sl,su] [el,∞] f} (∀i · cholds(i, n, g), ∃j : i ≤ j ≤ n · ∃k : j ≤ k ≤ n·

choldsc(j, k, f) ∧ (sl ≤ tj − ti ≤ su)

Table 1: Interval Constraint Semantics, w.r.t. a state trajectory 〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 induced by snap-actions [ai..an].
The conversion of each interval cosntraint to orderings on interval start (`) and end (a) points is shown below it in brackets.

must hold at its start, throughout its execution (invariants),
and at its end, respectively. Instantaneous effects can oc-
cur at the start or end of A: eff+`A (eff−`A) denote proposi-
tions added (resp. deleted) at the start; effnum` A denotes any
numeric effects. Similarly, eff+aA, eff−a and effnuma record
effects at the end. All numerical effects are of the form
v{+=, -=,=}w.v+ c (v ∈ v). The values of effects become
available small amount of time, ε, after they occur.

Finally, each action A has a duration constraint: a con-
junction of numeric constraints applied to a special variable
durA denoting its duration. As a special case, instantaneous
actions have duration ε, and only one set of preconditions
preA and effects eff+A, eff−A, and effnumA. A durative
action A can be split into two instantaneous snap-actions,
A` and Aa, representing the start and end of A respec-
tively. A` has precondition pre`A and effects eff+`A, eff−`A,
effnum` A. Aa is the analogous action for the end of A.

A solution is a sequence of timestamped actions, with as-
sociated durations, that transforms the initial state I into a
state that satisfies G; such that the start and end precondi-
tions of all actions are satisfied at the time they start/end;
all invariant conditions hold throughout the duration of each
action, and all temporal/duration constraints are respected.

2.2 Temporal Timeline-Based Planning
While timeline planners diverge in a number of ways they
share common concepts, and their divergence is not crucial
to the content of this paper. As we are working on a project
related to the European Space Agency we use, without loss
of generality, their APSI nomenclature and an APSI planner.

A timeline planning task comprises a domain and prob-
lem. The domain contains a set of components C and syn-
chronizations S among them. There are two main types of
component: state variables, that model discrete subsystems
(e.g. a camera) described by a set of states V and transi-
tions among them; and (typically bounded) numeric vari-
ables, used to represent resources (e.g. memory). A timeline
is a set of non-overlapping temporal intervals with associ-
ated values of one single component. The timeline must be
complete, i.e. it must define the value vi ∈ V of the com-

Figure 1: (a)bove: Example Synchronize Block in DDL;
(b)elow: Example of temporal relation between goals

ponent ci ∈ C at any given time t ∈ [o, h], where [o, h] is
the interval of the problem defined by its origin and horizon.
Components and timelines have no equivalent representa-
tion in PDDL, but it is possible to post-process a PDDL plan
to generate a timeline plan (Ocon et al. 2017).

Fundamental to timeline planning is the notion of a time
interval T , represented as two timepoints 〈Ts,Te〉 denoting
its start and end. A constraint between two intervals X and
Y relates the start or end of X with the start or end of Y .
A synchronization s over a value vi is used to define the set
of interval constraints that must be satisfied in order to add
vi to the plan. For example, in Figure 1(a) three temporal
constraints are defined: during the time the picture is taken,
the rover must stay in position; during the time the picture is
taken, the platine (camera mast) must be pointing at the tar-
get; and the time at which the rover is in position, must con-
tain the time during which the platine is pointing at the tar-
get. Note the synchronization over the value vi only applies
when that value holds: in our example, for the camera to take
the value TakingPicture(...) the conditions on the rover and
platine must be satisfied; but, we are otherwise free to move
the rover or platine without taking a picture. Synchroniza-
tions are the analog of (pre)conditions and effects of PDDL
actions, but with a richer temporal vocabulary.

A DDL problem (Cesta and Oddi 1996; 2004; 2008), as in
PDDL, defines a list of facts and goals. The facts define the
initial state of each timeline and the list of events (analogous
to timed-initial literals) that are not controllable (e.g. a com-

7563

munication window). The goals define a list of values for
different timelines to be satisfied at some point within [o, h].
It is possible to define an interval in the plan at which each
goal must be true and to define temporal relations over the
goals, providing a partial order between them, as shown in
Figure 1(b): as the plan must satisfy the goals these relations
must be satisfied at least once in any valid plan.

Two intervals X and Y can be related in 13 possi-
ble ways: 7 cases plus their inverses (equals has no
inverse). Timeline planners such as APSI (Cesta et
al. 2012), Europa (Frank and Jonsson 2003) and AS-
PEN (Chien et al. 2000) provide a variety of qualitative
(A EQUALS/MEETS/STARTS/ENDS B) and quantitative tempo-
ral relations (e.g A BEFORE [lb,ub] B) between actions
and/or states, thus effectively combining Allen’s interval
algebra (Allen 1983) and quantitative temporal expres-
sions (Dechter, Meiri, and Pearl 1991). A quantitative re-
lation between X and Y generalizes qualitative relations by
limiting the lower bound (lb)/upper bound (ub) distance be-
tween their endpoints. In this work we support all 13 Allen
constraints, for brevity we focus on the quantitative con-
straints listed in Table 1; the reasoning for qualitative con-
straints can trivially be derived by setting ub/lb/sl/su = 0
or∞ as appropriate in the equivalent quantitative constraint.

As the first step of translating a DDL model to PDDL we
introduce the notion of a ‘state holding’ durative action. This
represents the transition of a DDL component cj to, and then
from, a value vi ∈ V . For each component cj that can take
value vi we create an action A, with associated fact cjvi,
that regulates the transition of cjvi from false, to true, and
back again: preA` = {¬cjvi}, eff+A` = {cjvi}, pre↔A =
{cjvi}, eff−Aa = {cjvi}. The challenge remains to enforce
temporal constraints between state-holding durative actions
for different DDL components with respect to each other to
respect the DDL synchronization constraints (S). This redu-
ces to enforcing interval constraints between starts and ends
of PDDL durative actions, the topic of the rest of the paper.

2.3 Interval Constraints vs PDDL3 Constraints
The ability to express constraints and preferences over the
trajectory of the plan was introduced in PDDL3 (Gerevini et
al. 2009) and a number of planners were developed to sup-
port these (Benton, Coles, and Coles 2012; Edelkamp, Jab-
bar, and Nazih 2006; Baier, Bachus, and McIlraith 2007).
Two major semantic differences make PDDL 3 constraints
insufficient to capture Allen constraints. The first is change
semantics: DDL constraints are defined w.r.t. steps at which
the truth value of a fact (or formula) changes; whereas
PDDL3 constraints are defined w.r.t. whether the truth value
of a fact (or formula) holds at a step. Consider the DDL
constraint synchronize A {BEFORE [0,10] B}. To capture
this, one might propose state-holding durative-actions A
and B, with associated facts a and b, and a PDDL con-
straint (always-within 10 (a) (b)) (∀i · Si |= a,∃j :
i ≤ j ≤ n · Sj |= b ∧ tj − ti ≤ 10). The plan
0:(A) [5], 1:(B) [10] (i.e. start B as soon as A starts)
satisfies this PDDL3 constraint, but does not satisfy the DDL
constraint. (always-within 10 (not (a)) (b)) does not

help either: it does require B to start after A ends, but as
soon as B ends, a state is reached where ¬a ∧ ¬b is true, so
b must be achieved again within 10 time units.

Second, we are not able to refer to a specific instance of
a fact becoming true in PDDL so we cannot define transi-
tive relationships: for example, in DDL if a synchroniza-
tion defines A BEFORE [0,INF] B and B BEFORE [0,INF] C
the same A,B and C must be used for both, thus enforc-
ing A, B, C. But, (and (sometime-after (not (a)) (b))
(sometime-after (not (b)) (c))) can be satisfied by ¬b,
c, ¬a, b (Ba,C`,Aa,B`). Finally, we note that PDDL 3 con-
straints lack the ability to express lower bounds.

2.4 Other Related Work
There have been a number of other approaches to rea-
soning with interval constraints in planning. Perhaps the
most closely related is the planner MTP (To et al. 2017;
2016), it searches in a space of world models that use a
timeline-inspired representation, and makes use of a SAT
solver and Model Checker, which relies on a discretisation
of time, to ensure constraints are satisfied. Since MTP uses
a PDDL-style representation we are able to compare to it in
our evaluation. The ANML language was developed to act as
a bridge between PDDL and the more traditional timeline-
based NASA languages, in particular NDDL (Bedrax-Weiss
et al. 2005), used by Europa2, and AML (Sherwood et al.
2005) used by Aspen (Chien et al. 2000). It was written to
provide a language that could be used for both HTN-based
and generative planning and allows the expression of inter-
val constraints similar to those we have here. The planner
FAPE (Dvorak et al. 2014) was developed to reason with
the ANML language, and is capable of reasoning with in-
terval constraints such as those considered in our paper. It
performs plan-space planning, which is traditionally less ef-
ficient than forward-search, but does support HTN decomo-
postition to improve efficiency. A fair empirical compari-
son to FAPE is not possible here, due to the difference in
representation language, and the HTN planning approach.
Finally, we note that other researchers (Gigante et al. 2016)
have shown that timeline based languages are able to express
PDDL problems, which is the complement of our work.

3 Reasoning with Interval Constraints
In this section we discuss how interval constraints can be
handled natively in a forward-search temporal planner.

3.1 State Consistency Checking in Optic
We build on the forward-search planner OPTIC (Benton,
Coles, and Coles 2012). Search begins from the initial
state S0, and successive application of snap-actions [a1..an]
yields a state-trajectory [S1..Sn]. Plan steps are partially or-
dered according to the facts they refer to. To facilitate this,
each fact p, in each state, is annotated with:
• F+(p) (F−(p)): the index of the plan step that most re-

cently added (deleted) p;
• FP+(p): a set of pairs, each 〈i, d〉, used to record steps

with a precondition p. i denotes the index of a plan step,
and d ∈ {0, ε}. If d=0, then p can be deleted at or after

7564

step i: this corresponds to the end of an invariant condi-
tion. If d=ε, then p can be deleted ε after i or later.

Applying actions to states produces ordering constraints
based on the annotations and updates their values. These
ordering constraints form a simple temporal problem (STP):
• Steps adding (deleting) p are ordered ε after F−(p)

(F+(p)), ensuring effects on a fact are totally ordered.
Preconditions are fixed within this ordering: a step with
precondition p is ordered after F+(p); recording it in
FP+(p) ensures future deletors of p are ordered after it.

• If step j ends an action A that began at step i, the interval
[i, j] must respect the duration constraints of A.

A similar set of annotations and update rules is used for nu-
meric variables: the index of the last effect on each variable
is recorded; the indices of steps with preconditions on the
variable (or effects referring to its value) are recorded; and
ordering constraints are generated from these.

In this work, we build on the Mixed Integer Program
(MIP) approach OPTIC uses to support PDDL3 (Gerevini et
al. 2009) trajectory constraints, we inherit the OPTIC’S stan-
dard search and memoization techniques (Coles and Coles
2016). OPTIC’S MIP, solved at each state during search,
has a continuous variable ti representing the time of each
plan step with index i. These steps are constrained accord-
ing to the STP, to ensure the plan is temporally consistent:
for each ordering constraint imposed during search we have
tj−ti ≥ ε (or 0); and for each durative action starting at step
i and finishing at step j we write the duration constraints over
ti and tj e.g. tj − ti ≥ mindurA and tj − ti ≤ maxdurA.

To capture trajectory constraints, binary decision vari-
ables and associated constraints were introduced – there may
be disjunctive choice over how exactly to satisfy these con-
straints. The MIP finds an assignment of values to each ti
(i.e. timestamps for the start and end points of the actions in
the plan) that satisfies the constraints; or if no solution can
be found, the constraints cannot be satisfied, so the state is
pruned. In contrast to the optimisation of soft constraints in
OPTIC, in this work we are interested in finding satisfying
solutions that respect hard constraints on time intervals; we
are not optimising a particular objective.

3.2 Modeling Interval Constraints
Table 1 defines interval constraints in terms similar to those
used to define PDDL 3 constraints (Gerevini et al. 2009). We
use the following concepts defined over the state trajectory
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 produced by executing a plan
of snap-actions [a1..an]:

change(i, f)⇔ (Si |= f ∧ Si−1 |= ¬f) if i ≥ 1
(S0 |= f) otherwise

holds(i, j, f)⇔ ∀k : i ≤ k ≤ j, Sk |= f
cholds(i, j, f)⇔ (change(i, f) ∧ holds(i, j, f))
holdsc(i, j, f)⇔ (holds(i, j-1, f) ∧ change(j,¬f))

choldsc(i, j, f)⇔ (change(i, f) ∧ holdsc(i, j, f))

We now define PDDL analogs for DDL interval con-
straints. As discussed earlier a synchronization such as Fig-
ure 1 maps to a PDDL durative action. Thus, we allow dura-
tive actions to have their own :constraints section, where:

• (interval A (pred <?params>)): A denotes
a pair of plan steps 〈As,Ae〉 where choldsc
(As,Ae,(pred <?params>)). For instance, (interval
cd3 (Platine.platine.PointingAt ?pan2 ?tilt2))
corresponds to the definition of cd3 from Figure 1.

• (= ?p ?q) denotes that parameters p and q (parameters of
the action or of an interval defined therein) are equal.

• for each DDL constraint X, we create a new PDDL
keyword constrain-X. As in DDL, these then im-
pose constraints on the defined intervals, or a spe-
cial interval this referring to the action itself. For
instance, (constrain-DURING this 5 inf 0 inf cd3)
and (constrain-CONTAINS cd2 0 inf 0 inf cd3) cor-
respond to the constraints on cd3 from Figure 1.

We also allow each of these to appear in the :constraints sec-
tion of a problem, to specify temporal constraints over goals.

3.3 Enforcing Temporal Constraints in the MIP
We now detail how we extend the MIP in OPTIC to generate
plans that satisfy interval constraints. Recall that the MIP in
OPTIC contains a variable ti representing the time at which
the snap-action at index i in the plan is applied, which is con-
strained according to the duration constraints of actions and
the ordering constraints it generates during search. A MIP
solution assigns values to ti to satisfy the temporal (and any
other) constraints. Our approach extends this MIP with con-
straints to also enforce interval constraints by encoding the
quantified formulæ defined in Table 1 over the state trajec-
tory produced by the plan.

Our MIP must address three challenges to enforce in-
terval constraints. First, it must determine which pairs of
steps represent valid start and end points for intervals. If
action B, starting at step Bs and ending at step Be, has
(interval X (f)) in its :constraints section, there may
be many points in the plan where f changed from false to
true (or true to false), hence several candidate pairs of steps
Xs and Xe , that could represent the start and end of the in-
terval X . Second, once we have identified the candidate
pairs (Xs,Xe) the MIP must select which of these will be
chosen to be the interval X (we cannot enforce the interval
constraints over an arbitrarily chosen pair (Xs , Xe) as there
may not exist a solution plan with that pair satisfying the
constraints; but there may exist another pair that does admit
a solution). Finally, given this choice of (Xs , Xe) we must
enforce all temporal constraints defined for Bs , over these.
For example, if we also have at Bs (interval Y (g))
(constrain-DURING X sl su el eu Y) we must add con-
straints to ensure the chosen Xs ,Xe and Ys ,Ye satisfy this.

Marking Candidate Intervals in the Plan DDL con-
straints are based on points in the plan at which a formula
changes from false to true, or vice versa. These change
points mark the valid start and end point pairs that we need
to mark as possible candidates for representing intervals re-
ferring to that formula in the plan. In order to mark these we
introduce dummy steps to record their position in the plan.

During search, after the application of a snap-action ai to
yield a state Si, we evaluate the truth value of all formulæ

7565

f seen in any interval constraint whose truth value might
conceivably have changed compared to Si−1; that is, where
the effects of ai modify propositions and variables referred
to in f . If Si |= f , (and Si−1 |= ¬f) we immediately add
to the plan a dummy step oi(f) with condition f , and no
effects; likewise, if Si |= ¬f (and Si−1 |= f) , we add a
dummy step oi(¬f) with precondition ¬f , and no effects.
These dummy steps serve to generate ordering constraints,
and update annotations, to assert the truth value of a formula.

Unlike applying snap-actions, which have successive step
indices, the dummy step shares the step index of the snap
action i: this ensures i is ordered at least 0 time units after
the last step to affect any proposition p ∈ f , or variable
v ∈ f ; and the annotations in Si are updated to ensure future
effects on p (resp. v) are ordered at least 0 after i. Binding
oi(f) (or oi(¬f)) to step i ensures that ti marks the exact
point some snap-action ai was applied, and changed the state
into one in which f (resp. ¬f) holds. This differs from the
approach taken in OPTIC, where dummy steps were not tied
to a specific plan step: as interval constraints can have lower
and upper time bounds, we cannot allow them to ‘slip’ from
the step which caused the truth value of f to change.

In the simple case, f is a single fact that is only ever ma-
nipulated by an action that includes ¬f in its start precon-
ditions; f in its start effects; and ¬f in its end effects. This
is analogous to f being a fact that is true iff a DDL variable
takes the value f : oi(f), oi(¬(f)) mark when the variable
transitioned into and out of this value, defining the interval
relative to which interval relations are defined.

Returning to our first challenge, recall our canonical ac-
tion B, starting at step Bs and ending at step Be, with
(interval X (f)) in its :constraints section, candidate
steps for Xs , are now simply all steps at which o(f) oc-
curred in a plan: O(f, π) = {i · 0 ≤ i ≤ n ∧ oi(f) ∈ π}.
The second challenge requires us to encode the choice over
these in the MIP. We do this as a set of decision variables:
for each i ∈ O(f, π) the variable BsXs=i ∈ {0, 1} indicates
that step iwas chosen as the start of intervalX for the action
that started at step Bs . Likewise, for each j ∈ O(¬f, π), the
variable BsXe=j ∈ {0, 1} indicates that step j was chosen
as the end of interval X for this step.

It may be that, depending on the interval constraint used,
one of Xs or Xe is relevant. For instance, ifB is constrained
to come before X , only Xs is relevant, and Xe need not
necessarily be defined (in which case, it does not matter if
O(¬f, π) is empty). Hence, we do not insist that the choice
is made, unless a constraint requires it. Regardless, if steps
i, j are chosen as Xs,Xe , then we need to ensure that j was
the first step at which o(¬f) occurred after i:

BsXs=i+BsXe=j′ ≤ 1 ∀i ∈ O(f, π),
∀j′>min[j ∈ O(¬f, π) · j > i]

Enforcing Interval Constraints on Plans We now come
to the final challenge, writing the interval constraints at
Bs as MIP constraints over the chosen decision variables.
We must take care to only enforce each constraint between
the plan steps chosen as the interval start/end points. For
(constrain-BEFORE X lb ub Y) this is the step chosen to
be the end of X, and that chosen to be the start of Y; i.e.

Constraint Replace Replace bounds
Bs Xe=i Bs Ys=j lb ub

(AFTER X lb ub Y) Bs Ye=i Bs Xs=j lb ub
(OVERLAPS X lb ub Y) Bs Ys=i Bs Xe=j lb ub

(DURING X sl su el eu Y) Bs Ys=i Bs Xs=j sl su
and repeat equations 1–4 with Bs Xe=i Bs Ye=j el eu

(CONTAINS X sl su el eu Y) Bs Xs=i Bs Ys=j sl su
and repeat equations 1–4 with Bs Ye=i Xs Ye=j el eu

Table 2: Endpoints to constrain to enforce interval con-
straints showing substitutions to make in Equations 1–4.

the pair of steps i, j where BsXe=i and BsYs=j are set to 1.
We use “big-M” constraints for this, M is a large constant
comfortably exceeding the duration of the solution plan. For
lb ≤ tYs − tXe ≤ ub constraining the end ofX and the start
of Y –defined for the action B starting at step Bs–we write:
tj−ti+M(2−BsXe=i−BsYs=j) ≥ lb ∀i, j (1)
tj−ti−M(2−BsXe=i−BsYs=j) ≤ ub ∀i, j (2)

Intuitively, if step i is chosen to be the end ofX , and step j is
chosen to be the start of Y , then BsXe=i+BsYs=j = 2 and
the big-M term disappears – enforcing the temporal con-
straints. For any other setting of the decision variables, the
big-M makes the constraints trivial: they will be satisfied
regardless of the values of ti and tj . To ensure a choice of i
and j is definitely made, we further write:∑

i BsXe=i = 1 ∧
∑

j BsYs=j = 1 (3)
Now we must ensure that i ≤ j: as OPTIC searches for-

wards, steps added later in the plan never have ordering con-
straints placing them before earlier steps. So, BsXe=i can
only be set to 1, if a later (higher index) BsYs=j is set to 1:

BsXe=i ≤
∑

j·j≥i BsYs=j ∀i (4)
We can enforce all interval constraints defined for the

action starting at Bs by creating copies of equations 1–4
for each one. The given equations show how we constrain
BsXe=i and BsYs=j to enforce a before constraint but all
other constraints we consider can be represented by writing
equations 1–4 over different pairs of end points and setting
[lb, ub] to the appropriate bounds. Table 2 shows the pairs of
variables to respectively replace BsXe=i and BsYs=i with
equations in 1–4 to enforce all of of our quantitative con-
straints (the corresponding qualititative constraints can be
modelled by setting ub = lb = 0).

Finally we consider constraints relative this, i.e. the ac-
tion starting at Bs itself. We know that Bs and Be are the
appropriate start–end steps for this, so do not need to make
a decision over this. Thus, after creating decision variables
for the interval this relative to Bs , we fix its position:

BsTHISs=Bs = 1 BsTHISe=Be = 1
We note that this approach maintains a great deal of ex-

ecution flexibility. While steps and their orderings are de-
fined during search, timestamps for their execution are only
set when the MIP is solved for the solution plan. Moreover,
at execution time, if step i is delayed we can solve the MIP
again with ti set to the actual execution time, to obtain a new
valid schedule for the plan (if one exists).

Enforcing Interval Constraints on Incomplete Plans As
in OPTIC, we must define a relaxation of this MIP to be used

7566

* * *

Figure 2: Compilation of Quantitative Constraints. For† CAB restricts A and requires B; for∗ CAB requires A and restricts B.

during search: we cannot insist that a partial plan to some
state meets all interval constraints, as it may be the case that
adding more actions to the plan would satisfy them.

Consider again an action B, starting at step Bs and end-
ing at step Be , that defines an interval X; and interval con-
straints between this and X . If these imply an ordering
constraint l1 ≤ tBs−tXs ≤ u1 (or l2 ≤ tBs−tXe ≤ u2), an
interval X must already have started (or ended) in the plan,
prior to Bs . Thus, constraints of this form cannot be relaxed
for partial plans: actions in any extension of the plan cannot
precede Bs , so we add the requisite decision variables and
big-M constraints, as per equations 1-4. Conversely if these
imply an ordering constraint l1 ≤ tXs − tBe ≤ u1 we can
relax these constraints (omit them from the MIP) as actions
could be added later to the plan to satisfy them.

If this relaxed MIP cannot be solved, no extension of the
partial plan is valid: if it was extended to be a candidate solu-
tion plan, then when encoding the interval constraints for the
start/end of B at steps Bs/Be , the only options for Xs/Xe
that are available to precede the start/end of B must already
be in the plan before these steps. Thus, it is completeness-
preserving to insist the partial plan meets these constraints.

4 Compiling Interval Constraints into PDDL
As noted earlier, we can enforce all DDL temporal relations
by constraining the time between the starts and ends of snap-
actions. To compile this we can use clips (Fox, Long, and
Halsey 2004). With reference to Figure 3 (left), each clip
has one or more pair(s) of start and end preconditions that
require one or more snap actions to be applied during the
clip (here, x ∈ eff +

` (X) and eff −a (X)); and a pair of effects
(here CXY and ¬CXY) that restrict some snap action(s) (to
which CXY is added as a precondition) so that it can only
be applied during the clip. When a synchronization places
a constraint between X and Y , but not with itself – or if X
and Y are goals subject to a constraint – then both X and Y
must happen at least once, and there must be one pair X,Y
that satisfies the constraint. In this case we use a clip that
requires both X and Y but restricts neither, and additionally
adds a fact at the end (e.g. metXY) to represent that the
constraint is satisfied: this fact becomes a goal of the PDDL
problem, or an end-condition of the action corresponding to
the synchronization, as applicable.

Figure 3 (left), demonstrates how we can enforce
synchronize X {MET BY Y} (for Y to start, X must end) us-
ing a clip that requires X and restricts Y. Soundness fol-
lows from the fact that Y cannot be executed outside the
clip (due to precondition CXY) and the clip cannot exe-

Figure 3: Compilation Components (note ClipXY , cXY and
Strut are parameterised to make a unique clip/strut for each
pair of ground actions, parameters omitted here for clarity).

cute unless X ends within it (due to preconditions x (start)
and ¬x (end)). If we want to enforce the inverse relation-
ship, synchronize X {MEETS Y}, we instead make the clip
restrictXa and require Y`. This mechanism for synchroniz-
ing two snap actions allows us capture to all of the qualita-
tive Allen Relations: X MEETS Y clipsXa to Y`; X STARTS Y
clips X` to Y`; and X ENDS Y clips Xa to Ya. Inverse rela-
tions are obtained by swappingXa/` with Y`/a.If the condi-
tion with respect to Y appears inside synchronize X{...},
then we use a clip that requires Y and restricts X.

To model quantitative constraints we use the structure in
Figure 3 (right) comprising two clips and a strut. Our strut
is inspired by Halsey et al. (2004) but we add a flexible du-
ration (lb ≤ dur ≤ ub), allowing us to enforce both lower
and upper bounds on the interval between two snap actions
using one action. The start/end of the strut are respectively
clipped to snap actions A1 and A2. C1 requires A1 and re-
stricts strut`; C2 requires struta and restrictsA2. Hence,A2

can only occur [lb, ub] after A1: A2 can only be applied if
clipped to struta; and strut`had to be clipped to A1.

Figure 2 shows the compilation of quantitative con-
straints. The constraint enforced is determined by the clips
as for qualitative constraints. Clips that requireX and Y but
restrict neither are used if a synchronization places a con-
straint between X and Y , but not with itself; or if X and
Y are goals. If a constraint appears in a synchronize block
for X or Y itself (e.g. sync X {BEFORE [lb,ub] Y}) the
clips require/restrict X and Y as described in the caption.
The compilation can streamlined when lb=0 or ub=∞, e.g.
sync X {BEFORE [0,INF] Y}, it suffices to add a dummy
goal that is true initially, deleted by Xa and added by Y`.

5 Evaluation
In this section we evaluate our approach in two ways. We
compare the performance of our native approach to the com-
pilation and to the MTP planner across a range of PDDL
benchmark instances with interval constraints added. We
then compare both approaches to the default planner pro-
vided with APSI 3.3.2 on a Mars rover domain originally

7567

Table 3: Time (in seconds) taken to solve problems in Domains with Interval constraints, with native handling (nat) versus the
compilation (comp). ‘-’ indicates that the problem was unsolved, ’x’ that the problem does not exist.

written in DDL for an ESA project and translated to PDDL
using the methods described in this paper. This allows us to
show not only that we now have an efficient native mech-
anism for handling Allen Constraints in PDDL, but also to
make the case that PDDL planners can be competitive when
it comes to solving space related problems, traditionally
handled using timeline based approaches.

We compared the performance of our native approach, the
compilation and MTP on the following PDDL domains. For
MTP, these were translated to MPDDL. Concrete (new):
Trucks transport concrete, maintaining the liquid state by
mixing. The mixing action must occur [2,10] minutes after
initially combining the ingredients, and must meet the action
to offload concrete. All instances have 2 trucks and scale
from delivering concrete to 2–6 sites. Crewplanning (IPC
2008): A domain involving planning the daily routine of as-
tronauts. We added constraints that astronauts must have a
meal 15–300 minutes after waking up, and exercise at least
30 minutes before going to bed. Zeno Travel (IPC 2000):
Passengers must be transported via plane to specific goal air-
ports. We added interval constraints to require that aircraft
must leave an airport 20–30 minutes after arriving. Cafe
(Halsey 2004): Orders placed in a cafe must be prepared
and delivered. We added a constraint that food is delivered
1–3 minutes after cooking.

The challenges posed by interval constrainst vary in our
domains: in Concrete, solution plans can be padded to
satisfy interval constraints; whereas in other domains con-
straints change the structure of solution plans, e.g. the con-
straint that crew must eat within an interval after waking:
searching without considering interval constraints would
yield plans that could not be scheduled to satisfy them.

Our results in Table 3, show that while the compilation
has the expressivity to model temporal relations, it is not
feasible for solving larger problems as it introduces a large
number of additional actions. These increase the branching
factor, and lengthen the solution plans the planner must find.
Further, they make it much more likely there is a currently
executing action in a state, hence memoisation pruning has
to be much more conservative (Coles and Coles 2016). This

overhead is incurred by the compilation even in the Concrete
domain, where the interval constraints should not, in theory,
pose a significant challenge to solving the problem

The native approach significantly outperforms the com-
pilation by an order of magnitude (sometimes several). In-
deed, any problem solved at all by the compilation is solved
by the native approach in under 2 seconds; and the na-
tive approach scales significantly beyond the compilation’s
limits. Whilst MIP in general is NP-Hard, the MIPs gen-
erated during planning are relatively small and simple so
this is not an issue for the native approach in practice:
MIP building/solving remains <15% of planner runtime
and is dwarfed by heuristic computation time as in prior
work (Coles et al. 2012). We note that, while the na-
tive approach cannot handle the largest Crewplanning and
Zeno problems, this is not because interval constraints hin-
der search; but rather that these competition problems are
challenging for OPTIC even without additional constraints.

Although MTP can reason with interval constraints en-
coded in MPDDL, it was initially unable to solve any of the
benchmark problems. This is because it relies on a prede-
fined discretization of time that is not fine enough to ad-
mit solutions to the problems; i.e. it cannot satisfy tightly
bounded interval constraints (e.g. the [1,3] interval in Cafe).
We cannot change the discretization as the source code is un-
available. To give MTP a chance to solve these problems we
divided all durations and temporal constraints by 10. This
does not affect the performance of the native approach, or
compilation but allowed MTP to solve some problems; these
are the results shown for MTP in Table 3. Even with this scal-
ing to suit its discretization, our native approach solves many
more problems and solves mutually solved problems at least
an order of magnitude faster than MTP. In fact, MTP is gen-
erally outperformed even by the compilation. The makespan
of plans produced by MTP were often much longer, and
never better, than our approach.

Our comparison to timeline based planners is focused on
APSI: is was not possible to compare to other timeline plan-
ners, as these are generally commercial systems with no
uniform input language. We focus on a single Mars rover

7568

domain as there are no available standard benchmarks for
timeline based planning. The rover must take pictures at
certain waypoints, and periodically transmit them. The con-
straints on taking a picture are as Figure 1. Data transmis-
sion involves three interval relations. The rover must stay
at a designated position during (and some time before and
after) transmission by the antenna; the image must be taken
a specified interval before it is transmitted; and the antenna
can only be turned on to transmit during a communication
window, and the rover’s position must be syncronized dur-
ing the antenna being switched on. We defined three groups
of problems: the first problems (1-6) involve totally ordered
goals limited to taking pictures at waypoints. The second (7-
12) additionally require a communication activity for each
picture; the third (13-18) are equivalent to 7-12, but with no
temporal ordering between the goals. We created 6 problems
in each group by increasing the number of images taken and
the number of locations (both ranging from 2 to 7).

APSI is faster than OPTIC only on the simplest problems
(1-6), where no communication is required, scaling better
as problem size increases. In more complex problems (7-
12), OPTIC clearly outperforms APSI, solving within min-
utes problems unsolved by APSI after 30 minutes. Inter-
estingly, OPTIC performs better in problems 13-18 where
goals are not ordered because when the total ordering is
contrary to the search guidance provided by the heuristic,
this leads to more of the state space being explored. Con-
versely, APSI performs much worse here: if a goal ordering
is given, it is used to guide search. While the compilation did
not solve any Rover evaluation problems, in smaller tests it
could achieve a single goal of taking a picture at the initial
location, or to be at another location, but not to both travel
and take a picture. Again, neither planner is attempting to
optimise a specific metric, but for interest, we note that both
planners produce identical plans for all solved problems.

Acknowledgments
This work has received funding from the European Union’s
Horizon 2020 Research and Innovation programme (Grant
Agreement 730086, ERGO); EPSRC grant EP/P008410/1
(AI Planning with Continuous Non-Linear Change); the
European Space Agency (ESA/ESTEC) GOTCHA project,
Contract No. 4000117648/16/NL/GLC/fk; and Ministerio
de Economı́a, Industria y Competitividad TIN2017-88476-
C2-2-R and TIN2015-65686-C5.

References
Allen, J. F. 1983. Maintaining knowledge about temporal intervals.
Communications of the ACM 26:11.
Baier, J.; Bachus; and McIlraith, S. 2007. A heuristic search ap-
proach to planning with temporally extended preferences. In IJCAI.
Bedrax-Weiss, T.; McGann, C.; Bachmann, A.; Edgington, W.; and
Iatauro, M. 2005. Europa2: User and contributor guide. Technical
report, NASA Ames Research Center.
Benton, J.; Coles, A. J.; and Coles, A. I. 2012. Temporal planning
with preferences and time-dependent continuous costs. In ICAPS.
Cesta, A., and Oddi, A. 1996. DDL.1: A formal description of
a constraint representation language for physical domains. New
Directions in AI Planning.

Cesta, A., and Oddi, A. 2004. Planning with concurrency, time and
resources: A CSP-based approach. Intel. Techniques for Planning.
Cesta, A., and Oddi, A. 2008. Unifying planning and scheduling as
timelines in a component-based perspective. Arc. Control Sciences.
Cesta, A.; Fratini, S.; Orlandini, A.; and Rasconi, R. 2012. Con-
tinuous planning and execution with timelines. In International
Symposium on Artificial Intelligence.
Chien, S.; Rabideau, G. R.; Knight, R. L.; Sherwood, R.; Engel-
hardt, B.; Mutz, D.; Estlin, T. A.; Smith, B.; Fisher, F. W.; Barrett,
A. C.; Stebbins, G.; and Tran, D. 2000. Aspen - automated plan-
ning and scheduling for space mission operations. In Space Ops.
Coles, A. J., and Coles, A. I. 2016. Have I Been Here Before?
State Memoisation in Temporal Planning. In Proc. ICAPS.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2012. COLIN:
Planning with Continuous Linear Numeric Change. JAIR 44.
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. 2007.
When is temporal planning really temporal planning? In IJCAI.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks. Artificial Intelligence 49:61–95.
Dvorak, F.; Barták, R.; Bit-Monnot, A.; Ingrand, F.; and Ghallab,
M. 2014. Planning and Acting with Temporal and Hierarchical
Decomposition Models. In ICTAI, 115–121.
Edelkamp, S.; Jabbar, S.; and Nazih, M. 2006. Large-Scale Opti-
mal PDDL3 Planning with MIPS-XXL. In IPC5 booklet, ICAPS.
Fox, M., and Long, D. 2003. PDDL2.1: An extension of PDDL for
expressing temporal planning domains. JAIR 20.
Fox, M.; Long, D.; and Halsey, K. 2004. An investigation into the
expressive power of PDDL2.1. In Proceedings ECAI.
Frank, J. D., and Jonsson, A. K. 2003. Constraint-based attribute
and interval planning. Journal of Constraints 8:4.
Gerevini, A. E.; Long, D.; Haslum, P.; Saetti, A.; and Dimopoulos,
Y. 2009. Deterministic Planning in the Fifth IPC: PDDL3 and
Experimental Evaluation of the Planners. AIJ.
Gigante, N.; Montanari, A.; Mayer, M. C.; and Orlandini, A. 2016.
Timelines are expressive enough to capture action-based temporal
planning. In Proc. TIME 2016.
Ocon, J.; Delfa, J. M.; de la Rosa, T.; Garcı́a, A.; and Escudero, Y.
2017. Gotcha: An autonomous controller for the space domain. In
Proc. ASTRA.
Sherwood, R.and Engelhardt, B.; Rabideau, G.; Chien, S.; and
Knight, R. 2005. Aspen user’s guide. Tech. Report D15482, JPL.
Smith, D. E.; Frank, J.; and Cushing, W. 2008. The ANML lan-
guage. In KEPS Workshop, ICAPS.
Smith, D. E. 2003. The Case for Durative Actions: A Commentary
on PDDL2.1. JAIR.
Tierney, K.; Coles, A. J.; Coles, A. I.; Kroer, C.; Britt, A.; and
Jensen., R. M. 2012. Automated planning for liner shipping fleet
repositioning. In Proc. ICAPS.
To, S.; Roberts, M.; Apker, T.; Johnson, B.; and Aha, D. 2016.
Mixed propositional metric temporal logic: A new formalism for
temporal planning. In AAAI Hybrid Systems Workshop.
To, S.; Johnson, B.; Roberts, M.; and Aha., D. 2017. A new ap-
proach to temporal planning with rich metric temporal properties.
In Proc. ICAPS.
Tran, T. T.; Vaquero, T. S.; Nejat, G.; and Beck, J. C. 2017. Robots
in retirement homes: Applying off-the-shelf planning and schedul-
ing to a team of assistive robots. JAIR 58.

7569

